-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
52 lines (41 loc) · 1.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
def str2ind(categoryname,classlist):
try:
return [i for i in range(len(classlist)) if categoryname==classlist[i].decode('utf-8')][0]
except:
return [i for i in range(len(classlist)) if categoryname==classlist[i]][0]
def strlist2indlist(strlist, classlist):
return [str2ind(s,classlist) for s in strlist]
def strlist2multihot(strlist, classlist):
return np.sum(np.eye(len(classlist))[strlist2indlist(strlist,classlist)], axis=0)
def idx2multihot(id_list,num_class):
return np.sum(np.eye(num_class)[id_list], axis=0)
def interpolate_feat(feat):
mid = np.expand_dims((feat[:-1] + feat[1:])/2,axis=1)
feat1 = np.concatenate([np.expand_dims(feat[:-1],axis=1), mid], axis=1).reshape(len(mid)*2,len(feat[0]))
return np.concatenate([feat1, feat[[-1]]], axis=0)
def random_extract(feat, t_max):
r = np.random.randint(len(feat)-t_max)
return feat[r:r+t_max]
def pad(feat, min_len):
if np.shape(feat)[0] <= min_len:
return np.pad(feat, ((0,min_len-np.shape(feat)[0]), (0,0)), mode='constant', constant_values=0)
else:
return feat
def process_feat(feat, length):
if len(feat) > length:
return random_extract(feat, length)
else:
return pad(feat, length)
def write_to_file(dname, dmap, itr):
fid = open('logs/' + dname + '-results.log', 'a+')
string_to_write = str(itr)
for item in dmap:
string_to_write += ' ' + '%.2f' %item
fid.write(string_to_write + '\n')
fid.close()
def write_summary(dname, summary):
fid = open('logs/' + dname + '-results.log', 'a+')
string_to_write = summary
fid.write(string_to_write + '\n')
fid.close()