Skip to content

Latest commit

 

History

History
936 lines (653 loc) · 21.6 KB

File metadata and controls

936 lines (653 loc) · 21.6 KB
title author header-includes abstract
Abstract Algebra by Pinter, Chapter 18
Amir Taaki
- \usepackage{mathrsfs} - \usepackage{mathtools} - \usepackage{extpfeil} - \DeclareMathOperator\cis{cis} - \DeclareMathOperator\ker{ker} - \DeclareMathOperator\ord{ord} - \DeclareMathOperator\gcd{gcd} - \DeclareMathOperator\lcm{lcm} - \DeclareMathOperator\rad{rad} - \DeclareMathOperator\mod{mod}
Chapter 18 on Ideals

A. Examples of Subrings

Q1

$${ x + \sqrt{3}y : x, y \in \mathbb{Z} }$$

Closed wrt subtraction

$$(x + \sqrt{3}y)(v + \sqrt{3}w) = xv + \sqrt{3}(yv + xw) + 3yw \in \mathbb{R}$$

Thus it's a subring.

Q2

As before, it's closed under subtraction and multiplication.

Q3

$${x2^y : x, y \in \mathbb{Z}}$$

Closed under multiplication because:

$$x_1 2^{y_1} \cdot x_2 2^{y_2} = (x_1 x_2) 2^{y_1 + y_2}$$

Also contains negatives since $x \in \mathbb{Z}$.

To show closure under addition is trivial for positive powers since

$$x 2^y + v 2^w = x 2^{(y - w)} 2^w + v 2^w = (x 2^{(y - w)} + v) 2^w$$

Now for the negative case, assume $y > w$, hence $y - w$ is positive and the formulation still holds.

Q4

The sum and product of continuous functions are continuous.

Q5

The sum and product on any interval $[0, 1]$ also remains continuous, and hence also includes $\mathcal{C}$

Q6

Addition and negatives remain in $\mathcal{M}_2(\mathbb{R})$ as does multiplication $$ \begin{pmatrix} 0 & 0\ 0 & x \end{pmatrix} \begin{pmatrix} 0 & 0\ 0 & y \end{pmatrix}

\begin{pmatrix} 0 & 0\ 0 & xy \end{pmatrix} $$

B. Examples of Ideals

Q1

Identify which of the following are ideals of $\mathbb{Z} \times \mathbb{Z}$

${(n, n) : n \in \mathbb{Z}}$

\begin{align*} (n, n) + (m, m) &= (m + n, m + n) \in I \ -(n, n) &= (-n, -n) \in I \ (n, n) \cdot (a, b) &= (na, nb) \notin I \end{align*}

Not an ideal.

${(5n, 0) : n \in \mathbb{Z}}$

\begin{align*} (5m, 0) + (5n, 0) &= (5(m + n), 0) \in I \ -(5n, 0) &= (5(-n), 0) \in I \ (5n, 0) \cdot (a, b) = (5(na), 0) \in I \end{align*}

Is an ideal.

${(n, m) : n + m \text{ is even }}$

\begin{align*} (n_1, m_1) + (n_2, m_2) &= (n_1 + n_2, m_1 + m_2) \in I \ -(n, m) \in I \ (n, m) \cdot (a, b) &= (na, mb) \end{align*}

$na$ is even and $mb$ is even, so $na + mb$ is even so $(na, mb) \in I$.

Is an ideal.

${(2n, 3m) : n, m \in \mathbb{Z}}$

\begin{align*} (2n_1, 3m_1) + (2n_2, 3m_2) &= (2(n_1 + n_2), 3(m_1 + m_2)) \in I \ -(2n, 3m) &= (2(-n), 3(-m)) \in I \ (2n, 3m) \cdot (a, b) &= (2na, 3mb) \in I \end{align*}

Is an ideal

Q2

List all the ideals of $\mathbb{Z}_{12}$

$\mathbb{Z}_{12} = \langle 1 \rangle$ and is cyclic. All subgroups are also cyclic.

  • $\mathbb{Z}_{12} = <1> = <5> = <7> = <11>$ because $\gcd(m, 12) = 1$
  • $<4> = <8>, <4> = {4, 8, 0}$
  • $<3> = <9>, <3> = {3, 6, 9, 0}$
  • $<2> = <10>, <2> = {2, 4, 6, 8, 10, 0}$
  • $<6> = {6, 0}$
  • $<0> = {0}$

Let $m \in \bar{m} = $, then $ = {mj : j \in \mathbb{Z}_{12}}$

Let $x \in $ and $y \in \mathbb{Z}{12}$, since $x \in $, then $x = mj$ for some $j \in \mathbb{Z}{12}$, thus $xy = mjy$, thus $$ is an ideal of $\mathbb{Z}_{12}$.

Ideals are $<0>, <1>, <2>, <3>, <4>, <6>$

Q3

See previous exercise

Q4

$$ \begin{pmatrix} 1 & 1\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0\ 0 & x \end{pmatrix}

\begin{pmatrix} 0 & x\ 0 & x \end{pmatrix} \notin \mathcal{M}_2(\mathbb{R}) $$

Q5

The product of a continuous and non-continuous function are non-continuous, hence $\mathcal{C}(\mathbb{R})$ is not an ideal of $\mathcal{F}(\mathbb{R})$

Q6

a

Assume he means multiplication here. $$f(x) \cdot g(x) = 0 \quad \forall x \in \mathbb{Q}$$ Thus $f \cdot g \in I$

b

Likewise $f(0) g(0) = 0 g(0) = 0$, so $f \cdot g \in I$

Q7

Ideals of $P_3$ such that $AB = A \cap B \in I$. See also 17D5

$$P_3 = { \varnothing, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}$$

Any subgroup must contain $\varnothing$.

$A + A = \varnothing$ so $A$ is its own negative.

${\varnothing, {a}}$, ${\varnothing, {b}}$, ${\varnothing, {c}}$ are all ideals since ${a}{a, c} = {a}$ and ${a}{b, c} = \varnothing$.

Likewise ${\varnothing, {a}, {c}, {a, c}}$, ${\varnothing, {a}, {b}, {a, b}}$, ${\varnothing, {b}, {c}, {b, c}}$ since ${a, c} {b, c} = {c}$

Lastly we have $P_3$ itself

Q8

Example of a non-ideal subring is ${\varnothing, {a, c}}$ which is closed under addition, negatives and multiplication.

Q9

$$A = \langle (1, 1) \rangle = {(0, 0), (1,1), (2,2) }$$

C. Elementary Properties of Subrings

Q1

Let $x \in B$ and since $B$ is a ring then $0 \in B$, thus $0 - x = -x \in B$.

So $B$ is closed wrt negatives and hence addition since $x - (-y) = x + y \in B$

Q2

As per part 1

Q3

A ring is a group under addition. Hence order of a subring divides ring by Lagrange.

Q4

$A$ has no zero divisors, hence neither does $B$ $\implies$ $B$ is an integral domain.

Q5

$B$ is a subring of field $F$. Let $b \in B, b \neq 0$, then $b^{-1} \in F$ (because $F$ is a field and contains inverses). Every field is an integral domain, hence so is $B$.

Q6

$F$ is a commutative ring with inverses and unity.

Since $B$ is a subring, it also is commutative.

Since $B$ also contains inverses and is closed wrt multiplication, it must contain $1_F$.

Thus $B$ is a field.

Q7

a

$$B = \langle 2 \rangle = { 0, 2, 4, \dots, 16 }$$

b

$$B = \langle 9 \rangle = { 0, 9 }$$

Q8

$$f(e) = e$$ $$f(x_1 + x_2) = f(x_1) + f(x_2)$$ $$f(x_1 x_2) = f(x_1) f(x_2)$$

But $\forall x \in B \quad f(x) = x$ $$x_1, x_2 \in B$$ $$ x_1 + x_2 = f(x_1) + f(x_2) = f(x_1 + x_2)$$ Likewise for multiplication.

Since $A$ is a ring $\forall -x \in A$ st $x + (-x) = e$ but $x \in B$

$$f(x) + f(-x) = f(e) = f(x + (-x)) = x + (-x)$$ Hence $-x \in B$ also.

Q9

$$ax = xa \qquad bx = xb$$ $$(a + b)x = x(a + b)$$ So $a + b$ also is in the center. $$(ab)x = axb = x(ab)$$ Finally $0x = 0 = x0$ $$-a \in A$$ $$-ax = -(ax) = -(xa) = -xa$$ By associativity.

D. Elementary Properties of Ideals

Q1

Explain why $J$ is an ideal of $A$ iff $J$ is closed with respect to subtraction and $J$ absorbs products in $A$.

$$0 - x = -x \in J$$ $$x - (-y) = x + y \in J$$

So $J$ is closed wrt negatives and addition from the statement about subtraction.

Q2

If $A$ is a ring with unity, prove that $J$ is an ideal of $A$ iff $J$ is closed with respect to addition and $J$ absorbs products in $A$.

Note that $A$ is a ring with unity, and by definition must include $-1$.

Then note that since $J$ absorbs products, that $(-1)\cdot a = -a \in J$.

Q3

Prove that the intersection of any two ideals of $A$ is an ideal of $A$.

  1. Since $x, y \in I_j$, and $I_j$ is an ideal, $x - y \in I_j, \forall j \in J$. Therefore $x - y \in \bigcap_{j \in J} I_j = I$.
  2. Since $x \in I_j, rx \in I_j, \forall j \in J$. Therefore $rx \in I$.

Q4

Prove that $J$ is an ideal of $A$ and $1 \in J$, then $J = A$.

Since ideals absorb products, then if $1 \in J$, then since $a \cdot 1 = a \in J$, then $J = A$.

Q5

Prove that if $J$ is an ideal of $A$ and $J$ contains an invertible element $a$ of $A$, then $J = A$.

$$a \cdot a^{-1} = 1 \in J$$ By previous exercise $J = A$.

Q6

Explain why a field $F$ can have no nontrivial ideals.

Every nonzero element of a field is invertible. Hence the only ideals are ${0}$ or $F$ itself.

E. Examples of Homomorphisms

Q1

Let $f, g \in \mathcal{F}(\mathbb{R})$

$$\phi(f + g) = (f + g)(0) = f(0) + g(0) = \phi(f) + \phi(g)$$ $$\phi(f \cdot g) = (f \cdot g)(0) = f(0)g(0) = \phi(f)\phi(g)$$

$$K = {f \in \mathcal{F}(\mathbb{R}) : f(0) = 0 }$$ Range is $[-\infty, \infty]$.

Q2

$$h: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$$ $$h(x, y) = x$$ $$h(x_1 + x_2, y_1 + y_2) = x_1 + x_2 = h(x_1, y_1) + h(x_2, y_2)$$ $$h(x_1 x_2, y_1 y_2) = x_1 x_2 = h(x_1, y_1) h(x_2 y_2)$$ \begin{align*} K &= { x, y \in \mathbb{R} \times \mathbb{R} : h(x, y) = 0 } \ &= { (0, y) : y \in \mathbb{R} } \end{align*} Range is $[-\infty, \infty]$

Q3

$$h : \mathbb{R} \rightarrow \mathcal{M}_2(\mathbb{R})$$ $$h(x) = \begin{pmatrix} x & 0\ 0 & 0 \end{pmatrix} $$ $$h(x + y)

\begin{pmatrix} x + y & 0\ 0 & 0 \end{pmatrix}

\begin{pmatrix} x & 0\ 0 & 0 \end{pmatrix} + \begin{pmatrix} y & 0\ 0 & 0 \end{pmatrix} = h(x) + h(y)$$ $$h(x y)

\begin{pmatrix} x y & 0\ 0 & 0 \end{pmatrix}

\begin{pmatrix} x & 0\ 0 & 0 \end{pmatrix} \begin{pmatrix} y & 0\ 0 & 0 \end{pmatrix} = h(x) h(y)$$ $$K = { 0 }$$ Range is $$ \begin{pmatrix} \pm \infty & 0\ 0 & 0 \end{pmatrix} $$

Q4

$$h: \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{M}_2(\mathbb{R})$$ $$h(x, y) = \begin{pmatrix} x & 0\\ 0 & y \end{pmatrix} $$ \begin{align*} h(x_1 + x_2, y_1 + y_2) &= \begin{pmatrix} x_1 + x_2 & 0\ 0 & y_2 + y_2 \end{pmatrix} \ &= \begin{pmatrix} x_1 & 0\ 0 & y_1 \end{pmatrix} + \begin{pmatrix} x_2 & 0\ 0 & y_2 \end{pmatrix} \ &= h(x_1, y_1) + h(x_2, y_2) \end{align*} $$K = {(0, 0) }$$ Range is $$ \begin{pmatrix} \pm \infty & 0\\ 0 & \pm \infty \end{pmatrix} $$

Q5

$$f: \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{M}_2(\mathbb{R})$$ $$f(x, y) = \begin{pmatrix} x & 0\\ y & 0 \end{pmatrix} $$

\begin{align*} f(x_1 + x_2, y_1 + y_2) &= \begin{pmatrix} x_1 + x_2 & 0\ y_2 + y_2 & 0 \end{pmatrix} \ &= \begin{pmatrix} x_1 & 0\ y_1 & 0 \end{pmatrix} + \begin{pmatrix} x_2 & 0\ y_2 & 0 \end{pmatrix} \ &= f(x_1, y_1) + f(x_2, y_2) \end{align*}

$$f((x_1, y_1) \otimes (x_2, y_2)) = f(x_1x_2, y_1x_2) = \begin{pmatrix} x_1 x_2 & 0\ y_1 x_2 & 0 \end{pmatrix} $$ $$f(x_1, y_1)f(x_2y_2) = \begin{pmatrix} x_1 & 0\ y_1 & 0 \end{pmatrix} \begin{pmatrix} x_2 & 0\ y_2 & 0 \end{pmatrix}

\begin{pmatrix} x_1 x_2 & 0\ y_1 x_2 & 0 \end{pmatrix} $$ $$K = {(0, 0)}$$

Q6

$$h: P_C \rightarrow P_C$$ $$h(A) = A \cap D$$ $$D \subseteq C$$ \begin{align*} h(A + B) &= h((A - B) \cup (B - A)) \ &= [(A - B) \cup (B - A)] \cap D \ &= [(A - B) \cap D] \cup [(B - A) \cap D] \ &= [A\cap D - B \cap D] \cup [B \cap D - A \cap D] \ &= h(A) + h(B) \ h(AB) &= h(A \cap B) = A \cap B \cap D \ &= (A \cap D) \cap (B \cap D) \ &= h(A) h(B) \end{align*} $$K = { A \in P_C : A \cap D = \varnothing }$$ Range is every subset of $D$.

Q7

Rules for ring homomorphisms: $$f(a + b) = f(a) + f(b) \qquad f(ab) = f(a)f(b)$$ $$f(0) = 0 \qquad f(1_A) = 1_B$$ $$f(n) = f(1 + \cdots + 1) = f(1) + \cdots + f(1) = nf(1)$$ $$mf(1) = 0 \qquad f(1)^2 = f(1)$$

Homomorphisms for $\phi_i : \mathbb{Z}_2 \rightarrow \mathbb{Z}_4$ $$\phi_e = \begin{pmatrix} 0 & 1\ 0 & 0 \end{pmatrix}$$

The other mappings do not work:

  • $1 \rightarrow 1$ then $2 f(1) \neq 0$
  • $1 \rightarrow 2$ then $f(1)^2 \neq f(1)$
  • $1 \rightarrow 3$ then $f(1)^2 \neq f(1)$

Homomorphisms for $\phi_i : \mathbb{Z}_2 \rightarrow \mathbb{Z}_4$ $$\phi_e = \begin{pmatrix} 0 & 1 & 2\ 0 & 0 & 0 \end{pmatrix}$$ $$\phi_a = \begin{pmatrix} 0 & 1 & 2\ 0 & 4 & 2 \end{pmatrix}$$

The other mappings do not work:

  • $1 \rightarrow 1$ then $f(1)^2 \neq f(1)$
  • $1 \rightarrow 2$ then $f(1)^2 \neq f(1)$
  • $1 \rightarrow 3$ then $3f(1) \neq 0$
  • $1 \rightarrow 5$ then $3f(1) \neq 0$

F. Elementary Properties of Homomorphisms

Q1

Prove $f(A) = { f(x) : x \in A }$ is a subring of $B$.

Since $f$ is a homomorphism, ring operations are obeyed in the homomorphism. For negatives we note that $f(0_A) = 0_B = 1_B + (-1_B)$ and every negative is expressible as $(-1_B) \cdot a$ where $a \in B$.

Q2

Prove the kernel of $f$ is an ideal of $A$.

$$K = { x \in A: f(x) = 0_B }$$

From $f$ being a homomorphism, we conclude $K$ is a subring of $A$.

To show it's an ideal, for any $a \in A$ and $x \in K$, then $f(ax) = 0 = f(x)$. So $K$ absorbs the product $ax$.

Thus the kernel of a homomorphism is an ideal of the input ring.

Q3

Prove $f(0) = 0$, and for every $a \in A, f(-a) = -f(a)$.

$$f(0) = f(0 + 0) = f(0) + f(0) \implies f(0) = 0$$ $$f(a + (-a)) = f(a) + f(-a) = f(0) = 0 = f(a) - f(a)$$ $$\implies f(-a) = -f(a)$$

Q4

Prove $f$ is injective iff its kernel is equal to ${ 0 }$.

$$f(x) = f(y) \iff f(y - x) = 0 \iff y - x \in K$$

Let $x \in K$

$\implies f(x) = 0$

$\implies f(x) = f(0) \qquad \text{[since $f(0) = 0$]}$

$\implies x = 0 \qquad \text{[since $f$ is injective]}$

It follow $K = { 0 }$

Thus $f$ is injective $\implies K = { 0 }$

Now suppose $K = { 0 }$. Then

$f(x) = f(y)$

$\implies f(x) - f(y) = 0$

$\implies f(x - y) = 0$

$\implies x - y \in K$

$\implies x - y = 0 \qquad \text{[since $K = { 0 }$]}$

$\implies x = y$

Hence $f$ is injective.

Thus $K = { 0 } \implies f$ is injective.

Hence $f$ is injective $\iff K = { 0 }$

Q5

If $B$ is an integral domain, then either $f(1) = 1$ or $f(1) = 0$. If $f(1) = 0$ then $f(x) = 0$ for every $x \in A$. If $f(1) = 1$, the image of every invertible element of $A$ is an invertible element of $B$.

Integral domain has the cancellation property such that $ab = ac \implies b = c$.

$$f(1) = f(1 \cdot 1) = f(1)f(1)$$ $$f(1) = f(1)f(1)$$ $f(1) = 0 \text{ or } 1$$

If $f(1) = 0$ then $\forall a \in A$, $f(a) = f(1 \cdot a) = f(1) f(a) = 0$

If $f(1) = 1$ and $\exists x, y \in A$ such that $xy = 1$

$$f(xy) = f(x)f(y) \text{ where } f(y) = (f(x))^{-1}$$

Q6

Any homomorphic image of a commutative ring is a commutative ring. Any homomorphic image of a field is a field.

Let $a, b \in A$, then $f(a)f(b) = f(b)f(a)$ because $f(ab) = f(ba)$.

If $A$ is a field, then $\forall x \in A$, $\exists x^{-1} \in A$. So by the last exercise, $f(x^{-1}) = (f(x))^{-1}$ and so the inverse of $f(x)$ is a member of $B$. $$ (f(x))^{-1} \in B$$

Q7

If the domain $A$ of the homomorphism $f$ is a field, and if the range of $f$ has more than one element, then $f$ is injective.

Since $A$ is a field, the kernel of $A$ is either ${0}$ or $A$ itself.

But the range of $f$ is more than one element, so the kernel of $A$ cannot be $A$ and must be ${0}$.

Since the kernel of $f$ is ${0}$, then $f$ is injective.

G. Examples of Isomorphisms

Q1

$$a \oplus b = a + b + 1$$ $$a \otimes b = ab + a + b$$

Addition

\begin{align*} f(a + b) &= a + b - 1 \ f(a) \oplus f(b) &= (a - 1) + (b - 1) - 1 \ &= a + b - 1 \end{align*}

Multiplication

\begin{align*} f(ab) &= ab - 1 \ f(a) \otimes f(b) &= (a - 1)(b - 1) + (a - 1) + (b - 1) \ &= ab - b - a + 1 + a + b - 1 - 1 \ &= ab - 1 \end{align*}

Q2

$$\mathcal{J} = { \begin{pmatrix} a & b\\ -b & a \end{pmatrix} : a, b \in \mathbb{R} }$$ $$f: \mathbb{C} \rightarrow \mathcal{J}$$ $$f(a + bi) = \begin{pmatrix} a & b\\ -b & a \end{pmatrix}$$ $$a + bi = c + di \implies f(a + bi) = f(c + di)$$

Addition

\begin{align*} f((a + bi) + (c + di)) &= \begin{pmatrix} a + c & b + d\ -(b + d) & a + c \end{pmatrix} \ f(a + bi) + f(c + di) &= \begin{pmatrix} a + c & b + d\ -(b + d) & a + c \end{pmatrix} \ \end{align*}

Multiplication

\begin{align*} f((a + bi)(c + di)) &= f((ac - bd) + (ad + bc)i) \ &= \begin{pmatrix} a + c & b + d\ -(b + d) & a + c \end{pmatrix} \ f(a + bi)f(c + di) &= \begin{pmatrix} a & b\ -b & a \end{pmatrix} \begin{pmatrix} c & d\ -d & c \end{pmatrix} \ &= \begin{pmatrix} a + c & b + d\ -(b + d) & a + c \end{pmatrix} \ \end{align*}

Q3

$$A = {(x, x) : x \in \mathbb{Z}}$$ $\forall x, y \in \mathbb{Z}, (x, x) \in A, (y, y) \in A, (x + y, x + y) \in A \text{ and } (xy, xy) \in A$

Thus $A$ is a subring of $\mathbb{Z} \times \mathbb{Z}$

The homomorphism $f: \mathbb{Z} \rightarrow A$ by $f(x) = (x, x)$ is isomorphic because it is one to one $$f(x) = f(y) \implies x = y$$ and onto $$\forall (x, x) \in A, \exists x \in \mathbb{Z} \text{ such that } f(x) = (x, x)$$

Thus $${(x, x): x \in \mathbb{Z}} \cong \mathbb{Z}$$

Q4

Addition and negatives trivially remain inside the set. $$ \begin{pmatrix} 0 & 0\ 0 & x \end{pmatrix} \begin{pmatrix} 0 & 0\ 0 & y \end{pmatrix}

\begin{pmatrix} 0 & 0\ 0 & xy \end{pmatrix} $$ Hence the set is a subring. $$A = { \begin{pmatrix} 0 & 0\ 0 & x \end{pmatrix} : x \in \mathbb{R}}$$ Define $f: \mathbb{R} \rightarrow A$ by $f(x) = \begin{pmatrix} 0 & 0\ 0 & x \end{pmatrix}$, then $f$ is an homomorphism from $\mathbb{R}$ to $A$.

Hence $A \cong \mathbb{R}$

Q5

$$f : k \mathbb{Z} \rightarrow l \mathbb{Z}$$ $$f(k) = ln \text{ for some } n \neq 0$$

\begin{align*} f(k^2) &= l^2 n^2 \ &= f(k \cdot k) = f(k + \cdots + k) = k f(k) \ &= kln \ k &= ln \end{align*}

But $k \neq l$, so $ln$ does not generate $l \mathbb{Z}$ and $f$ is not an isomorphism.

H. Further Properties of Ideals

Q1

If $J \cap K = { 0 }$, then $jk = 0$ for every $j \in J$ and $k \in K$.

$J$ and $K$ are ideals, so for every $j \in J$ and $k \in K$, then $jk \in J$ and $jk \in K$, so $jk \in J \cap K$.

Q2

For any $a \in A$, $I_a = { ax + j + k : x \in A, j \in J, k \in K }$ is an ideal of $A$.

$\forall i \in I_a$, and $b \in A$, then $bi = b(ax + j + k) = a(bx) + bj + bk \in I_a$ since $J$ and $K$ are ideals and $bx \in A$.

Q3

The radical of $J$ is the set $\rad J = { a \in A : a^n \in J \text{ for some } n \in \mathbb{Z} }$. For any ideal $J$, $\rad J$ is an ideal of $A$.

$$a^n \in J \qquad b^m \in J$$ $$(a + b)^{n + m} \in J \qquad \text{[see 17m3]}$$

$x \in A$ and $a \in \rad J$ then $(xa)^n = x^n a^n \in J$, so $xa \in \rad J$.

$a, b \in \rad J$, then $(a + b)^{m + n} \in J$ and so $a + b \in \rad J$.

Q4

For any $a \in A$, ${ x \in A : ax = 0 }$ is an ideal (called the annihilator of $a$).

Furthermore, ${ x \in A : ax = 0 \text{ for every } a \in A }$ is an ideal (called the annihilating ideal of $A$). If $A$ is a ring with unity, its annihilating ideal is equal to ${ 0 }$.

Let $b \in A$, then $bx \in Ann(a)$ because $ax = 0$ so $b(ax) = bxa = 0$.

Let $x, y \in Ann(a)$ then $a(x + y) = 0$ so $x + y \in Ann(a)$.

$$I = { x \in A : ax = 0 \text{ for every } a \in A }$$

If $A$ is a ring with unity then $a = 1 \implies x = 0$ so $I = { 0 }$.

Q5

Show that ${0}$ and $A$ are ideals of $A$. (They are trivial ideals; every other ideal of $A$ is a proper ideal.) A proper $J$ of $A$ is called maximal if it is not strictly contained in any strictly larger proper ideal: that is if $J \subseteq K$, where $K$ is an ideal containing some element not in $J$, then necessarily $K = A$.

Show the following is an example of a maximal ideal: in $\mathcal{F}(\mathbb{R})$, the ideal $J = { f : f(0) = 0 }$.

$$g \in K \qquad g(0) \neq 0 \qquad g \notin J$$

$$ h(x) = g(x) - g(0) \in J$$ $$h(x) - g(x) \in K$$

Continuous function with a nonzero value is invertible.

$h(x) - g(x) = -g(0) \in K$ but $g(0) \neq 0$ so $-1/g(0) \in A$.

But since $K$ is an ideal, that is $$g(0) \cdot 1 / g(0) \in K$$ but this equals $1$, and $1 \in K$ so $K = A$ and is maximal.

I. Further Properties of Homomorphisms

Q1

If $f: A \rightarrow B$ is a homomorphism from $A$ onto $B$ with kernel $K$, and $J$ is an ideal of $A$ such that $K \subseteq J$, then $f(J)$ is an ideal of B$.

$f$ is onto $\exists x: f(x) = y$ so it's an ideal. Closed under addition and negatives and absorbs products.

See also here

Q2

If $f : A \rightarrow B$ is a homomorphism from $A$ onto $B$, and $B$ is a field, then the kernel of $f$ is a maximal ideal.

The kernel $K$ is a subset of the ideal for $A$. As shown above $f(J)$ is an ideal of $B$, which by D6 can only be ${0}$ or $B$ itself. Since the homomorphism is onto, then $f(A)$ maps to $B$, but $A$ is a trivial ideal of $A$. Thus $K$, the kernel of $f$ is the proper ideal for $A$ which maps to ${0}$ in $B$.

Q3

There are no nontrivial homomorphisms from $\mathbb{Z}$ to $\mathbb{Z}$.

$$f(1) = f(1 \cdot 1) = f(1) \cdot f(1)$$ $$f(1) = 1 \text{ or } f(1) = 0$$ $$f(n) = f(1 + \cdots + 1) = f(1) + \cdots + f(1) = nf(1)$$

So $f(n) = n$ or $f(n) = 0$

See also here and here

Q4

If $n$ is a multiple of $m$, then $\mathbb{Z}_m$ is a homomorphic image of $\mathbb{Z}_n$.

$f: \mathbb{Z}_n \rightarrow \mathbb{Z}_m$$ by $f(a) = a (\mod m)$ obeys the homomorphic properties.

See also here

Q5

If $n$ is odd, there is an injective homomorphism from $\mathbb{Z}2$ into $\mathbb{Z}{2n}$.

$$f(x) = nx$$

Above homomorphism is injective since $f(0) = 0$ and $f(1) = n$.

J. A Ring of Endomorphisms

Q1

$$\pi_a(x) = ax$$ $$\pi_a(x + y) = a(x + y) = ax + ay = \pi_a(x) + \pi_a(y)$$

Q2

$$\pi_a(x) = \pi_a(y) \implies x = y$$

$a$ is not a divisor of zero $\implies \forall x \in A, ax \neq 0$, thus ring $A$ has cancellation property $$\pi_a(x) = \pi_a(y) = ax = ay \implies x = y$$

Q3

If $a$ is invertible then $\forall y \in A$, $y = a(a^{-1}y)$ so $x = a^{-1}y$, $f(x) = y$, thus $\pi_a$ is surjective.

Q4

$$\mathcal{A} = { \pi_a : a \in A }$$ $$\pi_a + \pi_b = \pi_a(x) + \pi_b(x)$$ $$\pi_a\pi_b = \pi_a \cdot \pi_b$$

  1. Addition is abelian
  2. Multiplication is associative: $(\pi_a \cdot \pi_b \cdot \pi_c)(x) = (abc)x = a(bcx) = \pi_a((\pi_b \cdot \pi_c)(x))$
  3. Distributive over addition

Q5

$$\phi: A \rightarrow \mathcal{A} \text{ given by } \phi(a) = \pi_a$$ As shown above this is homomorphic.

Q6

$$\phi(a) = \phi(b) \implies \pi_a = \pi_b$$ $$\pi_a(1) = \pi_b(1) \implies a = b$$

$\forall \pi_a \in \mathcal{A}, \exists a \in A : \pi_a = \phi(a)$ by definition.

If $a$ has no divisors of zero, then to show injective property, note that $$ax = bx \implies a = b$$ $$\pi_a = pi_b \implies \pi_a(x) = ax = \pi_b(x) = bx \implies a = b$$

From the cancellation property since it has no divisors of zero.