Skip to content

Latest commit

 

History

History
378 lines (257 loc) · 11.4 KB

File metadata and controls

378 lines (257 loc) · 11.4 KB
title author header-includes abstract
Abstract Algebra by Pinter, Chapter 29
Amir Taaki
- \usepackage{mathrsfs} - \usepackage{mathtools} - \usepackage{extpfeil} - \DeclareMathOperator\ker{ker} - \DeclareMathOperator\ord{ord} - \DeclareMathOperator\gcd{gcd} - \DeclareMathOperator\lcm{lcm} - \DeclareMathOperator\char{char} - \DeclareMathOperator\max{max} - \DeclareMathOperator\ran{ran} - \DeclareMathOperator\deg{deg} - \DeclareMathOperator\dim{dim} - \newcommand{\mod}[1]{\ (\mathrm{mod}\ #1)} - \newcommand{\repr}[1]{\overline{#1}} - \newcommand{\leg}[2]{\left(\frac{#1}{#2}\right)} - \let\vec\mathbf
Chapter 29 on Degress of Field Extensions

A. Examples of Finite Extensions

Q1

$x^2 + 2$ has root $i\sqrt{s}$

$$[\mathbb{Q}(i\sqrt{2}) : \mathbb{Q}] = 2$$ $$\mathbb{Q}(i\sqrt{2}) = { a + bi \sqrt{2} }$$

Q2

$$x = 2 + 3i$$ $$(x - 2)^2 = -9$$ $$x^2 - 4x + 13 = 0$$ $${a, bi}$$

Q3

$$a = \sqrt{1 + \sqrt[3]{2}}$$ $$a^2 + 1 = \sqrt[3]{2}$$ $$a^2 + 1 \in \mathbb{Q}(a) \implies \sqrt[3]{2} \in \mathbb{Q}(a)$$ $$x = \sqrt[3]{2}$$ $$\therefore x^3 - 2 = 0$$ $$[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3$$ Basis for $\mathbb{Q}(\sqrt[3]{2})$ is ${ 1, 2^{\frac{1}{3}}, 2^{\frac{1}{3}}}$ $$a^2 + (1 - \sqrt[3]{2}) = 0$$ $$\sqrt[3]{2} \in \mathbb{Q}(a) \implies \mathbb{Q}(a) = \mathbb{Q}(a, \sqrt[3]{2})$$ $$[\mathbb{Q}(a): \mathbb{Q}(\sqrt[3]{2})] = 2$$ Basis for $\mathbb{Q}(a)$ over $\mathbb{Q}(\sqrt[3]{2})$ is ${1, a}$. Thus basis for $\mathbb{Q}(a)$ over $\mathbb{Q}$ is the products: $${1, 2^{1/3}, 2^{2/3}, a, 2^{1/3}a, 2^{2/3}a }$$

Q4

$$a = \sqrt{2} + \sqrt[3]{4}$$ $$(a - \sqrt[3]{4})^2 = 2$$ $$a^2 - 2 \sqrt[3]{4} + 4^{2/3} - 2 = 0$$ $$a^2 = 2 + 2 \cdot 4^{1/3} - 4^{2/3}$$ $$a^2 \in \mathbb{Q}(\sqrt{2} + \sqrt[3]{4}) \implies 4^{1/3} \in \mathbb{Q}(\sqrt{2} + \sqrt[3]{4})$$ $$x = \sqrt[3]{4}$$ $$\therefore x^3 - 4 = 0$$ $$[\mathbb{Q}(4^{\frac{1}{3}}): \mathbb{Q}] = 3$$ Basis is ${1, 4^{\frac{1}{3}}, 4^{\frac{2}{3}}}$. From earlier $a^2 = 2 + 2 \cdot 4^{\frac{1}{3}} - 4^{\frac{2}{3}}$ so $[\mathbb{Q}(\sqrt{2} + \sqrt[3]{4}):\mathbb{Q}(4^{\frac{1}{3}})] = 2$.

Note that $4^{\frac{1}{3}} \notin \mathbb{Q}(2^{\frac{1}{2}})$, otherwise $4^{1/3} = a + b2^{\frac{1}{2}}$ which is impossible, since squaring both sides would lead to a contradiction. So $\mathbb{Q}(2^{\frac{1}{2}}) = \mathbb{Q}(2^{\frac{1}{2}}, 4^{\frac{1}{3}})$/

Basis for $\mathbb{Q}(2^{\frac{1}{2}} + 4^{\frac{1}{3}})$

$${1, 4^{\frac{1}{3}}, 4^{\frac{2}{3}}, 2^{\frac{1}{2}}, 4^{\frac{1}{3}}2^{\frac{1}{2}}, 4^{\frac{2}{3}}2^{\frac{1}{2}}}$$

Q5

$$x^2 - 5 = 0 \implies [\mathbb{Q}(\sqrt{5}): \mathbb{Q}] = 2$$

Let $\sqrt{7} \in \mathbb{Q}(\sqrt{5})$, then $$\sqrt{7} = a + b \sqrt{5} : a, b \in \mathbb{Q}$$ Squaring both sides we have $$7 = a^2 + 2ab \sqrt{5} + 5b^2$$ This is a contradiction since re-arranging terms would mean $\sqrt{5} \in \mathbb{Q}$ and hence a rational number for $a, b \neq 0$.

If $b = 0$, then $\sqrt{7} = a$ which is rational and if $a = 0$ then $\sqrt{7} = b \sqrt{5}$ or $\sqrt{7} \cdot \sqrt{5} = 5b$, again a contradiction. $$\implies \sqrt{7} \notin \mathbb{Q}(\sqrt{5})$$ $$x^2 - 7 = 0 \implies [\mathbb{Q}(\sqrt{7}): \mathbb{Q}] = 2$$ $$\implies \mathbb{Q}(\sqrt{5}, \sqrt{7}) = {a + b\sqrt{5} + c\sqrt{7} + d\sqrt{35} : a, b, c, d \in \mathbb{Q}}$$

Q6

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) = {a \sqrt{2} + b \sqrt{3} + c \sqrt{5} + d \sqrt{6} + e\sqrt{10} + f \sqrt{15}: a, b, c, d, e, f \in \mathbb{Q} }$$

Q7

$\pi$ is algebraic meands it is the root of some polynomial in the field. Of degree 3 means the polynomial has degree 3 which is also the degree of the field.

Suppose $\pi \in \mathbb{Q}(\pi^3)$, then $$\pi = a + b \pi^3$$ but this is impossible since $\pi$ is transcendental over $\mathbb{Q}$ and $\pi \neq \pi^3$.

This $\pi$ is algebraic over $\mathbb{Q}(\pi^3)$ with $$x^3 - \pi^3 = 0$$

$$\mathbb{Q}(\pi) = \mathbb{Q}(\pi^3, \pi)$$ $$x^3 - \pi^3 \in \mathbb{Q}(\pi^3)[x]$$

B. Further Examples of Finite Extensions

Q1

$$\sqrt{a} + \sqrt{b} \in F$$ $$a + 2 \sqrt{a} \sqrt{b} + b \in F$$ $$\char F \neq 2 \implies 2 \sqrt{a} \sqrt{b} \neq 0$$ $$\implies 2 \sqrt{a} \sqrt{b} \in F \implies \sqrt{a} \sqrt{b} \in F$$

$$\sqrt{ab} (\sqrt{a} + \sqrt{b}) = a \sqrt{b} + b \sqrt{a} \in F$$ $$b(\sqrt{a} + \sqrt{b}) = b \sqrt{b} + b \sqrt{a} \in F$$ $$(a \sqrt{b} + b \sqrt{a}) - (b \sqrt{b} + b \sqrt{b}) = (a - b) \sqrt{b} \in F$$ $$\implies \sqrt{b} \in F$$

Likewise for $\sqrt{a}$.

$$\sqrt{a} + \sqrt{b} \in F(\sqrt{a}, \sqrt{b})$$ $$\sqrt{a}, \sqrt{b} \in F(\sqrt{a} + \sqrt{b})$$ $$\implies F(\sqrt{a}, \sqrt{b}) = F(\sqrt{a} + \sqrt{b})$$

Q2

$$F(\sqrt{a}) = { x + y \sqrt{a} : x, y \in F }$$ $$\sqrt{b} \in F(\sqrt{a})$$ $$\sqrt{b} = x + y \sqrt{a}$$ $$b = x^2 + 2xy \sqrt{a} + y^2 a$$

which implies $\sqrt{a}$ is rational, a contradiction.

$$\sqrt{b} \notin F(\sqrt{a})$$ \begin{align*} \implies [F(\sqrt{a}, \sqrt{b}): F] &= [F(\sqrt{a}, \sqrt{b}):F(\sqrt{a})][F(\sqrt{a}): F] \ &= [F(\sqrt{b}):F][F(\sqrt{a}:F] \ &= 4 \end{align*}

Q3

Use sage.

Q4

$$a + b = 7$$ $$a = 7 - b$$ $$(a - b)^2 = (7 - 2b)^2 = 9$$ $$7 - 2b = \pm 3$$ $$2b = 10, 4$$ $$b = 5, 2$$ $$a = 2, 5$$ $$\mathbb{Q}(\sqrt{2}, \sqrt{5})$$ $${1, \sqrt{2}, \sqrt{5}}$$

C. Finite Extensions of Finite Fields

Q1

$$a(x) = p(x)q(x) + r(x)$$ where $r(x) = 0$ or $\deg r(x) < \deg b(x)$ $$\forall a(x) \in F[x], a(x) = p(x)q(x) + r(x)$$ $$\implies \langle p(x) \rangle + a(x) = \langle p(x) \rangle + r(x)$$ $\deg r(x) < n$ and $F[x] / \langle p(x) \rangle \cong F(c)$

Q2

$p(x) = x^2 + x + 1$ is irreducible because $p(0) = 1$ and $p(1) = 1$.

Quotient field formed by $p(x)$ consists of all 1 degree polynomials of the form $a_0 + a_1 x$, where $a_i \in \mathbb{Z}_2$.

There is a $c$ st $p(c) = 0$, and $$\mathbb{Z}_2(c) \cong \mathbb{Z}_2[x] / \langle p(x) \rangle$$

\begin{align*} p(c) &= c^2 + c + 1 = 0 \ \implies c^2 &= c + 1 \end{align*}

\noindent\begin{tabular}{c | c c c c c} + & 0 & 1 & c & c + 1 \ \cline{1-5} 0 & 0 & 1 & c & c + 1 \ 1 & 1 & 0 & c + 1 & c \ c & c & c + 1 & 0 & 1 \ c + 1 & c + 1 & c & 1 & 0 \ \end{tabular}

\noindent\begin{tabular}{c | c c c c c} $\times$ & 0 & 1 & c & c + 1 \ \cline{1-5} 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & c & c + 1 \ c & 0 & c & c + 1 & 1 \ c + 1 & c + 1 & c & 1 & c \ \end{tabular}

Q3

$$p(x) = x^3 + x^2 + 1$$ $p(0) = 1, p(1) = 1 \implies p(x)$ is irreducible and has no roots in $\mathbb{Z}_2$. $\deg p(x) = 3 \implies B = { 1, x, x^2 }$

Let there be a $c$ such that $p(c) = $, then $\mathbb{Z}_2(c) \cong \mathbb{Z}_2[x] / \langle p(x) \rangle$.

Q4

$a$ is algebraic over $F$ of degree $n$ $$\implies F(a) = { a_0 + \cdots + a_{n - 1} x^{n - 1} : a_i \in F }$$ There are q possible values for $a_0, a_1, \dots, a_{n - 1}$ each and so $|{(a_0, \dots, a_{n - 1}) : a_i \in F }| = q^n$ $$\implies |F(a)| = q^n$$

Q5

Let $p(x) = x^2 - k$ where $k \in \mathbb{Z}_p$ then if $p(x)$ is reducible then $c^2 = k$.

From 23H, let $h : \mathbb{Z}_p^* \rightarrow \mathbb{Z}_p^*$ be defined by $h(\repr{a}) = \repr{a}^2$, then the range of $h$ has $(p - 1) / 2$ and so is non-injective and non-surjective.

This means there exists $k \in \mathbb{Z}_p$, such that there is no $c \in \mathbb{Z}_p : c^2 = k$, and so $p(x) = x^2 - k$ has no roots in $\mathbb{Z}_p$.

D. Degrees of Extensions

Q1

$K$ forms an extension field over $F$ with basis of dimension 1 $\iff K = F$.

Q2

$L \subset K \implies \dim L < \dim K$.

Dimensions cannot be the same or that would imply they are the same.

So $L$ divides the order of $K$.

$$[K : F] = [K : L][L : F]$$

But $[K : F]$ is prime so $L$ cannot exist.

Q3

$$a \in K - F \implies [F(a):F] \leq [K : F]$$

But there are subfields of $K$ except $F$ since the extension order is prime so $K = F(a)$.

Q4

a

$$F(a, b) = (F(a))(b)$$ \begin{align*} [F(a, b): F] &= [F(a, b): F(a)][F(a): F] \ &= [F(a, b): F(a)] \cdot m \end{align*} However $[F(b):F] = n$ so $[F(a, b):F] = [F(a, b):F(b)][F(b): F] = n$ Thus $[F(a, b)] = mx = ny$ and $\gcd(m, n) = 1 \implies [F(a, b):F] = mn$.

b

$$K \subseteq F(a), F(b) : K = F(a) \cap F(b)$$ $$[F(a):F] = [F(a):K][K:F]$$ $$[F(b):F] = [F(b):K][K:F]$$

$$\frac{m}{n} = \frac{[F(a):K]}{[F(b):K]}$$

Since $\gcd(m, n) = 1$, $m$ and $n$ share no divisors, and so they cannot be reduced.

But $[F(a): F] = m$ and $[F(b): F] = n$ so this means $[F(a): K] = m, [F(b) : K] = n$ and since $[F(a): F] = m$, so $K = F$.

Q5

The extension is finite and algebraic, so any $a \in F(a)$ forms a subfield of $F(a)$.

But $F(a)$ has no subfields so $F(a^n) = F(a)$.

Q6

$$p(a) = 0 \implies L = F(a) \subseteq K$$ $$\implies \deg p(x) = [L:F]$$ But, \begin{align*} [K : F] &= [K : L][L : F] \ &= [K : L] \cdot \deg p(x) \end{align*} $$\deg p(x) | [K : F]$$

E. Short Questions Relating to Degrees of Extensions

Q1

$$\frac{1}{a} \in F(a) \textrm{ and } a \in F(\frac{1}{a}) \implies F(a) = F(\frac{1}{a})$$

$p(x)$ is the minimum polynomial for $a$, then substitute $a + c$ or $ac$ and the degree of the polynomial doesn't change.

Q2

$$p(x) = x - a, \deg p(x) = 1$$

Q3

If $c \in \mathbb{Q}$, then $\deg p(x) = 1$, thus $$\deg p(x) > 1 \implies c \notin \mathbb{Q}$$

Q4

$$b(c) = x^2 - \frac{m}{n} = 0$$ $$p \mid m, p^2 \nmid m \implies b(x) \textrm{ is irreducible}$$ $$\implies \sqrt{m/n} \notin \mathbb{Q}$$

Q5

$$b(x) = x^q - \frac{m}{n}$$ and Eisenstein's criteria still holds.

Q6

$F(a)$ is a finite extension of $F$, and $F(a, b)$ is a finite extension of $F(a)$.

$(r \cdot s)(x) = r(x)s(x)$, $(r\cdot s)(a) = 0$ and $(r \cdot s)(b) = 0$, so $F(a, b)$ is a finite extension of $F$ since the degree of $r \cdot s$ is finite.

F. Further Properties of Degrees of Extensions

Q1

$K$ is a finite extension of $F$, so all elements of $K$ are also algebraic over $F$. So all algebraic extensions of $K$ are also finite algebraic extensions of $F$.

$$[K(a): F] = [K(a): K][K : F]$$

Q2

$$[K(a):F] = [K(b): F(b)][F(b): F]$$ $$\implies [F(b): F] \mid [K(b):F]$$

Q3

$$p(x) = a_0 + \cdots + a_{n - 1} x^{n - 1}, a_i \in F$$ $p(b) = 0$ over $F$. Let minimum polynomial of $K$ be $q(x)$ then $$p(x) = s(x)q(x) + r(x)$$ therefore minimum polynomial for $b$ over $K$ is $r(x)$ and $\deg r(x) \leq \deg p(x)$ $$\implies [K(b): K] \leq [F(b) : F]$$

Q4

$$[K(b):K] \leq [F(b): F]$$ $$[K(b):F] = [K(b):K][K:F]$$ $$[K(b):F] = [K(b):F(b)][F(b):F]$$ $$\implies [K(b):K][K:F] = [K(b):F(b)][F(b):F]$$ But $[K(b):K] \leq [F(b):F]$ $$\implies [K:F] \geq [K(b):F(b)]$$

Q5

The degree of the minimum polynomial does not divide the degree of $p(x)$, so when applying polynomial long division there will be a remainder left over, which $p(x)$ itself. So $p(x)$ is not divided by $q(x)$.

G. Fields of Algebraic Elements: Algebraic Numbers

Q1

$F(a, b)$ is algebraic extension, and $a + b, a - b, ab, a / b \in F(a, b)$

Q2

Every element of the set forms a closed field over $F$, so the set is a subfield of $K$ which contains $F$.

Q3

All the coefficients belong to $\mathbb{A}$ which are algebraic over $\mathbb{Q}$ and hence form a finite extension of $\mathbb{Q}$.

Q4

$\mathbb{Q}_1(c)$ is a finite extension of $\mathbb{Q}_1$ and $\mathbb{Q}_1$ is a finite extension of $\mathbb{Q} \implies \mathbb{Q}_1(c)$ is a finite extension of $\mathbb{Q}$.

Q5

$c$ is the root of a finite polynomial whose coefficients are in finite extensions of $\mathbb{Q}$, and so $c$ forms a finite extension over $\mathbb{Q} \implies c \in \mathbb{A}$.