-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathutils.py
182 lines (152 loc) · 6.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
""" utils.py
"""
import os
import torch
import numpy as np
import torchvision
import torchvision.transforms as transforms
import torchvision.utils as vutils
import time
def adjust_dyn_range(x, drange_in, drange_out):
if not drange_in == drange_out:
scale = float(drange_out[1]-drange_out[0])/float(drange_in[1]-drange_in[0])
bias = drange_out[0]-drange_in[0]*scale
x = x.mul(scale).add(bias)
return x
def resize(x, size):
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Scale(size),
transforms.ToTensor(),
])
return transform(x)
def make_image_grid(x, ngrid):
x = x.clone().cpu()
if pow(ngrid,2) < x.size(0):
grid = make_grid(x[:ngrid*ngrid], nrow=ngrid, padding=0, normalize=True, scale_each=False)
else:
grid = torch.FloatTensor(ngrid*ngrid, x.size(1), x.size(2), x.size(3)).fill_(1)
grid[:x.size(0)].copy_(x)
grid = make_grid(grid, nrow=ngrid, padding=0, normalize=True, scale_each=False)
return grid
def save_image_single(x, path, imsize=512):
from PIL import Image
grid = make_image_grid(x, 1)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy()
im = Image.fromarray(ndarr)
im = im.resize((imsize,imsize), Image.NEAREST)
im.save(path)
def save_image_grid(x, path, imsize=512, ngrid=4):
from PIL import Image
grid = make_image_grid(x, ngrid)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy()
im = Image.fromarray(ndarr)
im = im.resize((imsize,imsize), Image.NEAREST)
im.save(path)
def load_model(net, path):
net.load_state_dict(torch.load(path))
def save_model(net, path):
torch.save(net.state_dict(), path)
def make_summary(writer, key, value, step):
if hasattr(value, '__len__'):
for idx, img in enumerate(value):
summary = tf.Summary()
sio = BytesIO()
scipy.misc.toimage(img).save(sio, format='png')
image_summary = tf.Summary.Image(encoded_image_string=sio.getvalue())
summary.value.add(tag="{}/{}".format(key, idx), image=image_summary)
writer.add_summary(summary, global_step=step)
else:
summary = tf.Summary(value=[tf.Summary.Value(tag=key, simple_value=value)])
writer.add_summary(summary, global_step=step)
def mkdir(path):
if os.name == 'nt':
os.system('mkdir {}'.format(path.replace('/', '\\')))
else:
os.system('mkdir -r {}'.format(path))
import torch
import math
irange = range
def make_grid(tensor, nrow=8, padding=2,
normalize=False, range=None, scale_each=False, pad_value=0):
"""Make a grid of images.
Args:
tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
or a list of images all of the same size.
nrow (int, optional): Number of images displayed in each row of the grid.
The Final grid size is (B / nrow, nrow). Default is 8.
padding (int, optional): amount of padding. Default is 2.
normalize (bool, optional): If True, shift the image to the range (0, 1),
by subtracting the minimum and dividing by the maximum pixel value.
range (tuple, optional): tuple (min, max) where min and max are numbers,
then these numbers are used to normalize the image. By default, min and max
are computed from the tensor.
scale_each (bool, optional): If True, scale each image in the batch of
images separately rather than the (min, max) over all images.
pad_value (float, optional): Value for the padded pixels.
Example:
See this notebook `here <https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a91>`_
"""
if not (torch.is_tensor(tensor) or
(isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError('tensor or list of tensors expected, got {}'.format(type(tensor)))
# if list of tensors, convert to a 4D mini-batch Tensor
if isinstance(tensor, list):
tensor = torch.stack(tensor, dim=0)
if tensor.dim() == 2: # single image H x W
tensor = tensor.view(1, tensor.size(0), tensor.size(1))
if tensor.dim() == 3: # single image
if tensor.size(0) == 1: # if single-channel, convert to 3-channel
tensor = torch.cat((tensor, tensor, tensor), 0)
return tensor
if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images
tensor = torch.cat((tensor, tensor, tensor), 1)
if normalize is True:
tensor = tensor.clone() # avoid modifying tensor in-place
if range is not None:
assert isinstance(range, tuple), \
"range has to be a tuple (min, max) if specified. min and max are numbers"
def norm_ip(img, min, max):
img.clamp_(min=min, max=max)
img.add_(-min).div_(max - min)
def norm_range(t, range):
if range is not None:
norm_ip(t, range[0], range[1])
else:
norm_ip(t, t.min(), t.max())
if scale_each is True:
for t in tensor: # loop over mini-batch dimension
norm_range(t, range)
else:
norm_range(tensor, range)
# make the mini-batch of images into a grid
nmaps = tensor.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
grid = tensor.new(3, height * ymaps + padding, width * xmaps + padding).fill_(pad_value)
k = 0
for y in irange(ymaps):
for x in irange(xmaps):
if k >= nmaps:
break
grid.narrow(1, y * height + padding, height - padding)\
.narrow(2, x * width + padding, width - padding)\
.copy_(tensor[k])
k = k + 1
return grid
def save_image(tensor, filename, nrow=8, padding=2,
normalize=False, range=None, scale_each=False, pad_value=0):
"""Save a given Tensor into an image file.
Args:
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling ``make_grid``.
**kwargs: Other arguments are documented in ``make_grid``.
"""
from PIL import Image
tensor = tensor.cpu()
grid = make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value,
normalize=normalize, range=range, scale_each=scale_each)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy()
im = Image.fromarray(ndarr)
im.save(filename)