-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
117 lines (101 loc) · 3.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/python
import argparse
import json
import logging
import os
import random
import sys
import time
from pprint import pprint
import easydict
import torch
from utils import main_utils
from utils.gcn_utils import build_graph
from utils.logger_utils import Logger
from utils.main_utils import (
init_data_loader,
init_env,
init_gcn_model,
init_hydra_config,
init_model,
init_optimizer,
init_runner,
)
# main
def main():
# prepare environment
cfg = init_hydra_config()
cfg = init_env(cfg)
# build train/val data loader
train_loader, dataset_info, cfg = init_data_loader(cfg, is_train=True)
test_loader = {}
for target_name in dataset_info["target_names"]:
test_loader[target_name], _, _ = init_data_loader(
cfg,
is_train=False,
target_name=target_name,
)
# build model
if cfg.GCN_MODE:
# extract graph information
assert len(cfg.LOAD_FROM) > 0
graph_loader, _, _ = init_data_loader(cfg, is_train=True, is_graph_infer=True)
with open(os.path.join(cfg.CKPT_PATH, cfg.LOAD_FROM, "config.json"), "r") as f:
pretrained_cfg = easydict.EasyDict(json.load(f))
texts = torch.load(
os.path.join(cfg.CKPT_PATH, cfg.LOAD_FROM, "best_model.pth")
)[
"texts"
] # in order to keep the same order in vocab.
assert len(texts) == len(dataset_info["texts"])
pretrained_model = main_utils.init_model(
pretrained_cfg, texts, load_from=cfg.LOAD_FROM
)
graph_info = build_graph(
cfg,
model=pretrained_model,
train_loader=graph_loader,
)
del pretrained_model
torch.cuda.empty_cache()
# build model
model = init_gcn_model(
cfg,
pretrained_cfg,
texts=texts,
graph_info=graph_info,
)
else:
if len(cfg.LOAD_FROM) > 0:
load_from = cfg.LOAD_FROM
texts = torch.load(
os.path.join(cfg.CKPT_PATH, cfg.LOAD_FROM, "best_model.pth")
)[
"texts"
] # in order to keep the same order in vocab.
else:
load_from = None
texts = dataset_info["texts"]
assert len(texts) == len(dataset_info["texts"])
model = init_model(cfg, texts=texts, load_from=load_from)
# logger
log_path = os.path.join(cfg.LOGS_PATH, cfg.EXPR_NAME, cfg.VERSION)
logger = Logger(log_path)
# optimizer
opt = init_optimizer(cfg, model)
# train/test for N-epochs.
trainer, evaluator = init_runner(
cfg=cfg,
train_loader=train_loader,
test_loader=test_loader,
model=model,
opt=opt,
logger=logger,
)
for epoch in range(cfg.TRAIN.MAX_EPOCHS):
evaluator.test(epoch)
trainer.train(epoch)
evaluator.test(cfg.TRAIN.MAX_EPOCHS)
logging.info("Congrats! You just finished traininig.")
if __name__ == "__main__":
main()