-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathContingencyTables.R
50 lines (38 loc) · 1.41 KB
/
ContingencyTables.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ContingencyTables <- function(Inf.Prob = Inf.Prob){
RSN = read.csv('SeroNeutralisation.csv', sep=';')
w= which(!is.na(RSN$SN.Chikungunya.conclusion))
RSN = RSN[w, ]
indices = match(RSN$num_indiv,Inf.Prob$num_indiv)
RSN$May.Model =Inf.Prob$mayinf[indices]
RSN$Chik.Model =Inf.Prob$chikinf[indices]
RSN$May.Lum = RSN$may_ratio>MayThreshold
RSN$Chik.Lum = RSN$chik_ratio>ChikThreshold
print('Contingency table Luminex and Seroneutralization, CHIKV:')
t=(table(RSN$Chik.Lum,RSN$SN.Chikungunya.conclusion))
print(t)
specificity = t[1]/(t[1]+t[2])
sensitivity = t[4]/(t[3]+t[4])
print(sensitivity)
print(specificity)
print('Contingency table Model and Seroneutralization, CHIKV:')
t=table(RSN$Chik.Model,RSN$SN.Chikungunya.conclusion)
print(t)
specificity = t[1]/(t[1]+t[2])
sensitivity = t[4]/(t[3]+t[4])
print(sensitivity)
print(specificity)
print('Contingency table Luminex and Seroneutralization, MAYV:')
t=(table(RSN$May.Lum,RSN$SN.Mayaro.conclusion))
print(t)
specificity = t[1]/(t[1]+t[2])
sensitivity = t[4]/(t[3]+t[4])
print(sensitivity)
print(specificity)
print('Contingency table Model and Seroneutralization, MAYV:')
t=table(RSN$May.Model,RSN$SN.Mayaro.conclusion)
print(t)
specificity = t[1]/(t[1]+t[2])
sensitivity = t[4]/(t[3]+t[4])
print(sensitivity)
print(specificity)
}