-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblRootFinding.hpp
624 lines (414 loc) · 14.5 KB
/
blRootFinding.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
#ifndef BL_ROOTFINDING_HPP
#define BL_ROOTFINDING_HPP
///-------------------------------------------------------------------
///
///
///
/// PURPOSE: A collection of root finding
/// methods to solve equations of
/// the type: f(x) = 0
///
/// AUTHOR: Vincenzo Barbato
///
/// NOTE: All things in this library are defined within the
/// blMathAPI namespace
///
/// LISENSE: MIT-LICENCE
/// http://www.opensource.org/licenses/mit-license.php
///
///
///
///-------------------------------------------------------------------
//-------------------------------------------------------------------
// Includes needed for this file
//-------------------------------------------------------------------
#include "blNumericFunctions.hpp"
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// NOTE: This class is defined within the blMathAPI namespace
//-------------------------------------------------------------------
namespace blMathAPI
{
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// This function implements a single step in the
// Inverse Quadratic Interpolation Method
//-------------------------------------------------------------------
template<typename blDataType>
inline blDataType& bisectionStep(const blDataType& a,
const blDataType& b,
blDataType& xnew)
{
xnew = (a + b) / blDataType(2);
return xnew;
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// This function implements a single step in the
// False Position Method
//-------------------------------------------------------------------
template<typename blDataType>
inline blDataType& falsePositionStep(blDataType a,
blDataType b,
blDataType Fa,
blDataType Fb,
blDataType& xnew)
{
xnew = (a * Fb - b * Fa) / (Fb - Fa);
return xnew;
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// This function implements a single step in the
// Secant Method
//-------------------------------------------------------------------
template<typename blDataType>
inline blDataType& secantStep(blDataType a,
blDataType b,
blDataType Fa,
blDataType Fb,
blDataType& xnew)
{
xnew = b - Fb * ( (b - a) / (Fb - Fa) );
return xnew;
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// This function implements a single step in the
// Inverse Quadratic Interpolation Method
//-------------------------------------------------------------------
template<typename blDataType>
inline blDataType& inverseQuadraticInterpolationStep(const blDataType& a,
const blDataType& b,
const blDataType& c,
const blDataType& Fa,
const blDataType& Fb,
const blDataType& Fc,
blDataType& xnew)
{
xnew = (
a * (Fb * Fc) / ((Fa - Fb)*(Fa - Fc)) +
b * (Fa * Fc) / ((Fb - Fa)*(Fb - Fc)) +
c * (Fa * Fb) / ((Fc - Fa)*(Fc - Fb))
);
return xnew;
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// Enum used to pick a bracketed method
//-------------------------------------------------------------------
enum blBracketedMethod {BL_BISECTION_METHOD,
BL_FALSE_POSITION_METHOD,
BL_SECANT_METHOD,
BL_INVERSE_QUADRATIC_INTERPOLATION_METHOD};
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// This function implements a bracketed method algorithm to
// find the root of a given function, the user can choose the
// specified bracketed method:
// -- Bisection method
// -- False Position method
// -- Secant Method
// -- Inverse Quadratic Interpolation method
//-------------------------------------------------------------------
template<typename blDataType,
typename blFunctorType>
inline blDataType bracketedMethod(blDataType a,
blDataType b,
const blFunctorType& functor,
const blDataType& TOL,
const int& maxIterations,
const blBracketedMethod& method)
{
// First we check for the specified
// bounds being the same
if(a == b)
{
return a;
}
// Here we evaluate the function at
// the specified bounds
auto Fa = functor(a);
auto Fb = functor(b);
// Now we check if there is a root
// between the specified bounds
// including the bounds themselves
if(Fa == 0)
return a;
else if(Fb == 0)
return b;
else if(Fa * Fb > 0)
{
return Fa;
}
// The return type of the functor
typedef decltype(Fa) blFunctorReturnType;
// Now we move on with the method
blDataType c = a;
auto Fc = Fa;
blDataType errorValue;
int iterations = 0;
do
{
// Find the next guess calling the
// specified bracketed method
switch(method)
{
case BL_BISECTION_METHOD:
bisectionStep(a,b,c);
break;
case BL_FALSE_POSITION_METHOD:
falsePositionStep(a,b,Fa,Fb,c);
break;
case BL_INVERSE_QUADRATIC_INTERPOLATION_METHOD:
// For this case we need 3 distinct
// initial guesses
if(Fa != Fc && Fb != Fc)
inverseQuadraticInterpolationStep(a,b,c,Fa,Fb,Fc,c);
else
secantStep(a,b,Fa,Fb,c);
break;
case BL_SECANT_METHOD:
default:
secantStep(a,b,Fa,Fb,c);
break;
}
// Evaluate the function at the
// newly found guess
Fc = functor(c);
// Assign the new bounds
if(Fc * Fa > 0)
{
a = c;
Fa = Fc;
}
else
{
b = c;
Fb = Fc;
}
// Calculate the convergence error
errorValue = blMathAPI::abs(a - b);
// Increase the count of iterations
++iterations;
}
while((iterations < maxIterations) &&
(Fc != blFunctorReturnType(0)) &&
(sign(errorValue)*errorValue > sign(TOL)*TOL));
// We return the found root
return c;
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// This function implements Brent's Method
//-------------------------------------------------------------------
template<typename blDataType,
typename blFunctorType>
inline blDataType brentsMethod(blDataType a,
blDataType b,
const blFunctorType& functor,
const blDataType& convergenceTolerance,
const int& maxIterations)
{
// First we check for the specified
// bounds being the same
if(a == b)
{
return a;
}
// Here we evaluate the function at
// the specified bounds
auto Fa = functor(a);
auto Fb = functor(b);
// Now we check if there is a root
// between the specified bounds
// including the bounds themselves
if(Fa == 0)
return a;
else if(Fb == 0)
return b;
else if(Fa * Fb > 0)
{
return Fa;
}
// The next move we'll make is sort
// a and b such that a is smaller than
// b to facilitate Brent's method algorithm
if(blMathAPI::abs(Fa) < blMathAPI::abs(Fb))
{
std::swap(a,b);
std::swap(Fa,Fb);
}
// The return type of the functor
typedef decltype(Fa) blFunctorReturnType;
// Define the zero value
blFunctorReturnType zero = blFunctorReturnType(0);
// Flag used to signal whether the bisection
// method was used last iteration step to
// find the root
bool mFlag = true;
// Bounds used to check conditions
// necessary to invoke the bisection
// method
// Intermedial variables used
// throughout the method
blDataType lim1 = a;
blDataType lim2 = a;
blDataType c = a;
blDataType s = a;
blDataType d = a;
auto Fc = Fa;
auto Fs = Fa;
blDataType absBminusA = blMathAPI::abs(b - a);
blDataType absBminusC = blMathAPI::abs(b - c);
blDataType absCminusD = blMathAPI::abs(c - d);
blDataType absD = blMathAPI::abs(d);
blDataType absSminusB = blMathAPI::abs(s - b);
auto two = blDataType(2);
auto three = blDataType(3);
auto four = blDataType(4);
// The current number of iterations
int iterations = 0;
int count = 0;
while(blMathAPI::abs(Fs) > zero &&
absBminusA > convergenceTolerance &&
iterations < maxIterations)
{
if(Fc != Fa && Fc != Fb)
{
// In this case we invoke the
// inverse quadratic interpolation
// step to find the new root
inverseQuadraticInterpolationStep(a,b,c,Fa,Fb,Fc,s);
}
else
{
// In this case we invoke the
// secand step to find the new
// root
secantStep(a,b,Fa,Fb,s);
}
// Now we check if finding the root
// is progressing nicely otherwise
// we invoke the bisection method
// to better approximate the new root
if(a < b)
{
lim1 = (three * a + b)/four;
lim2 = b;
}
else
{
lim1 = b;
lim2 = (three * a + b)/four;
}
// Calculate all the absolute signs
// needed to evaluate all the necessary
// conditions
absSminusB = blMathAPI::abs(s - b);
absBminusC = blMathAPI::abs(b - c);
absCminusD = blMathAPI::abs(c - d);
absBminusA = blMathAPI::abs(b - a);
absD = blMathAPI::abs(d);
if(s < lim1 ||
s > lim2 ||
(mFlag == true && absSminusB >= absBminusC/two) ||
(mFlag == false && absSminusB >= absCminusD/two) ||
(mFlag == true && absBminusC < convergenceTolerance) ||
(mFlag == false && absCminusD < convergenceTolerance))
{
bisectionStep(a,b,s);
mFlag = true;
++count;
}
else
{
mFlag = false;
}
Fs = functor(s);
d = c;
c = b;
Fc = Fb;
if(Fa*Fs < zero)
{
b = s;
Fb = Fs;
}
else
{
a = s;
Fa = Fs;
}
if(blMathAPI::abs(Fa) < blMathAPI::abs(Fb))
{
std::swap(a,b);
std::swap(Fa,Fb);
}
// Increase the count of iterations
++iterations;
}
// We return the found root
return s;
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// This function implements the Newton Raphson Method
//-------------------------------------------------------------------
template<typename blDataType,
typename blFunctorType,
typename blFunctorDerivativeType>
inline blDataType newtonRaphsonMethod(blDataType xi,
const blFunctorType& functor,
const blFunctorDerivativeType& functorDerivative,
const blDataType& TOL,
const int& maxIterations)
{
// The evaluated
// function and
// function
// derivative
blDataType F = functor(xi);
blDataType Fd = functorDerivative(xi);
// The new root
// value
blDataType xi_new = xi - F/Fd;
// The error
// variable
blDataType errorValue = (sign(xi_new - xi)*(xi_new - xi) / xi_new);
// The current number
// of iterations while
// we're solving for
// the root
int iterations = 0;
while((iterations < maxIterations) &&
(sign(F)*F > TOL) &&
(errorValue > TOL))
{
// Store the newly
// found root value
xi = xi_new;
// Calculate the
// new root and
// the functor
// value at the
// new root
F = functor(xi);
Fd = functorDerivative(xi);
xi_new = xi - F/Fd;
// Calculate the
// error for the
// newly calculated
// root value
errorValue = (sign(xi_new - xi)*(xi_new - xi) / xi_new);
++iterations;
}
// We return the found root
return xi_new;
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// End of the blMathAPI namespace
}
//-------------------------------------------------------------------
#endif // BL_ROOTFINDING_HPP