-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathattribute_predictor.py
194 lines (156 loc) · 6.01 KB
/
attribute_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
""" This File contanins the main training code for attribute predictor network"""
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import pickle
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from dataset_builder import HelenData,UtkData
from network_model_predictor import attribute_predictor
parser = argparse.ArgumentParser(description='PyTorch WideResNet Training')
parser.add_argument('--epochs', default=120, type=int,
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=1, type=int,
help='mini-batch size (default: 1)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--nesterov', default=True, type=bool, help='nesterov momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-8, type=float,
help='weight decay (default: 5e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('--ngpu', default=1, type=int,
help='total number of gpus (default: 1)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='whether to use standard augmentation (default: True)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--tensorboard',
help='Log progress to TensorBoard', action='store_true')
parser.set_defaults(augment=True)
def main():
global args
args = parser.parse_args()
kwargs = {'num_workers': 1, 'pin_memory': True}
"""dataset_train = HelenData('/home/bansa01/taleb/SmithCVPR2013_dataset_resized/','names.txt')
train_loader = DataLoader(dataset_train, batch_size=1,
shuffle=True, **kwargs)"""
dataset_test = UtkData('/home/bansa01/taleb/crop_part1/','/home/bansa01/taleb/', 'label.txt')
train_loader = DataLoader(dataset_train, batch_size=1,
shuffle=True, **kwargs)
model = attribute_predictor()
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
model = model.cuda()
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum, nesterov = args.nesterov,
weight_decay=args.weight_decay)
for epoch in range(args.start_epoch, args.epochs):
train(train_loader, model, criterion, optimizer,epoch)
def train(train_loader, model, criterion, optimizer, epoch):
"""Train for one epoch on the training set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.train()
end = time.time()
for i, (input, target, img) in enumerate(train_loader):
target = target.cuda(async=True)
input = input.float()
input = input.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input_var,img)
loss = criterion(output, target_var)
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
"""
def validate(val_loader, model, criterion, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(async=True)
input = input.cuda()
with torch.no_grad():
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input_var)
loss = criterion(output, target_var)
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
print('Validate * Prec@1 {top1.avg:.3f}'.format(top1=top1))
"""
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count =0
def update(self, val, n=1):
self.val = val
self.sum += val*n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()