-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdescriptiveStats.m
223 lines (150 loc) · 8.21 KB
/
descriptiveStats.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
%% Clear and go to the folder for the data
clear
clc
addpath('./')
config;
cd(rawDataPath)% you should give the permission to matlab for shared folders
addpath(genpath(rawDataPath)); %I open the path where my data is
% Decide whether the file is object or face data
subjectFolders = dir(rawDataPath);
subjectFolders = subjectFolders([subjectFolders.isdir] & ~startsWith({subjectFolders.name}, '.') ...
& ~strcmp({subjectFolders.name},'Age&Gender')); % remove both hidden and demographics file
%sessionID = {}; % this one is for deciding which code I'll use - face or object
objectFiles = {}; %I will add the object files in this cell with participant numbers
faceFiles = {}; % I will add the face files here
trialDataFaces = {}; %for faces
trialDataObjects = {};%for objects
cleanTrialDataFaces = {}; %put clean face trial data
cleanTrialDataObject = {}; %put clean object trial data
% this goes through all the subjectFolders and cleans the data based on its
% subject group
for i = 1:numel(subjectFolders)
% first I open the session file that contains the info I am looking for
currentSubject = fullfile(rawDataPath,subjectFolders(i).name);
subjectFileContent = dir(currentSubject);
subjectSessionFile = fullfile(currentSubject,'sessions.csv');
sessionData = readtable(subjectSessionFile);
if sessionData.Session_Name(1) == "sessionFace"
faceFiles{i} = currentSubject;
faceFiles = faceFiles(~cellfun(@isempty, faceFiles)); % get rid of empty files
for i = 1:numel(faceFiles)
%first I open the files here and clean the hidden files
facePath = faceFiles{i}; % each facePath consist of two files:
% trial and session
% access trial data
trialPath = fullfile(facePath,"trials.csv");
currentTrial = readtable(trialPath);
%clean the trial data
Face1Block1 = rmmissing(currentTrial.RowFace1(:)); %clean the NaN values
Face2Block1 = rmmissing(currentTrial.RowFace2(:));
FaceBlock1Ratings = rmmissing(currentTrial.faceSimilarityBlock1(:));
FaceMatrix1 = [Face1Block1,Face2Block1,FaceBlock1Ratings]; % first block
FaceTable1 = array2table(FaceMatrix1, 'VariableNames', {'Face1Block1', 'Face2Block1', 'RatingsBlock1'});
Face1Block2 = rmmissing(currentTrial.RowFace1SecondBlock(:));
Face2Block2 = rmmissing(currentTrial.RowFace2SecondBlock(:));
FaceBlock2Ratings = rmmissing(currentTrial.faceSimilarityBlock2);
FaceMatrix2 = [Face1Block2,Face2Block2,FaceBlock2Ratings]; % second block
FaceTable2 = array2table(FaceMatrix2,'VariableNames',{'Face1Block2','Face2Block2','RatingsBlock2'});
cleanTrialDataFaces = horzcat(FaceTable1,FaceTable2);
% match the pairs
block1Pairs = cleanTrialDataFaces {:,1:2};
block2Pairs = cleanTrialDataFaces{:,4:5};
ratings1 = cleanTrialDataFaces{:,3};
ratings2 = cleanTrialDataFaces{:,6};
[~, idx] = ismember(block1Pairs, block2Pairs, 'rows'); %finding matching pairs
matchingRatings = [block1Pairs,ratings1,ratings2(idx)];
RatingTable = array2table(matchingRatings,'VariableNames',{'Stimulus1','Stimulus2','RatingBlock1','RatingBlock2'});
%here I also want to add subject ID.
sessionPath = fullfile(facePath,"sessions.csv");
currentSession = readtable(sessionPath);
subjectID = currentSession.Subject_Code;
totalRowNum = height(RatingTable);
subjectIDRepeat = repmat({subjectID}, totalRowNum, 1);
RatingTable = addvars(RatingTable, subjectIDRepeat, 'Before', 1, 'NewVariableNames', 'subjectNumber');
trialDataFaces{i} = RatingTable;
end
elseif sessionData.Session_Name == "sessionObject"
objectFiles{i} = currentSubject;
objectFiles = objectFiles(~cellfun(@isempty, objectFiles));
for i = 1:numel(objectFiles)
objectPath = objectFiles{i};
% access trial data
trialPath = fullfile(objectPath,"trials.csv");
currentTrial = readtable(trialPath);
%clean the trial data
Object1Block1 = rmmissing(currentTrial.RowNumStim1(:)); %clean the NaN values
Object2Block1 = rmmissing(currentTrial.RowNumStim2(:));
ObjectBlock1Ratings = rmmissing(currentTrial.ObjectSimilarityBlock1(:));
ObjectMatrix1 = [Object1Block1,Object2Block1,ObjectBlock1Ratings]; % first block
ObjectTable1 = array2table(ObjectMatrix1, 'VariableNames', {'Object1Block1', 'Object2Block1', 'RatingsBlock1'});
Object1Block2 = rmmissing(currentTrial.RowObject1SecondBlock(:));
Object2Block2 = rmmissing(currentTrial.RowObject2SecondBlock(:));
ObjectBlock2Ratings = rmmissing(currentTrial.ObjectSimilarityBlock2(:));
ObjectMatrix2 = [Object1Block2,Object2Block2,ObjectBlock2Ratings]; % second block
ObjectTable2 = array2table(ObjectMatrix2,'VariableNames',{'Object1Block2','Object2Block2','RatingsBlock2'});
cleanTrialDataObjects = horzcat(ObjectTable1,ObjectTable2);
block1Pairs = cleanTrialDataObjects {:,1:2};
block2Pairs = cleanTrialDataObjects{:,4:5};
ratings1 = cleanTrialDataObjects{:,3};
ratings2 = cleanTrialDataObjects{:,6};
[~, idx] = ismember(block1Pairs, block2Pairs, 'rows'); %finding matching pairs
matchingRatings = [block1Pairs,ratings1,ratings2(idx)];
RatingTable = array2table(matchingRatings,'VariableNames',{'Stimulus1','Stimulus2','RatingBlock1','RatingBlock2'});
%here I also want to add subject ID.
sessionPath = fullfile(objectPath,"sessions.csv");
currentSession = readtable(sessionPath);
subjectID = currentSession.Subject_Code;
totalRowNum = height(RatingTable);
subjectIDRepeat = repmat({subjectID}, totalRowNum, 1);
RatingTable = addvars(RatingTable, subjectIDRepeat, 'Before', 1, 'NewVariableNames', 'subjectNumber');
trialDataObjects{i} = RatingTable;
end
end
end
combinedFaceCells = vertcat(trialDataFaces{:});
combinedObjectCells = vertcat(trialDataObjects{:});
% I know that first participant's id is missing. This line will check
% NaN in the final version of tables and assign a the value sub-101
subjectNumberCell = (combinedObjectCells.subjectNumber);
nanIndices = cellfun(@(x) isnumeric(x) && any(isnan(x)), subjectNumberCell);
subjectNumberCell(nanIndices) = {'Sub-101'};
combinedObjectCells.subjectNumber = subjectNumberCell;
%save the file
faceRatingFile = 'FaceData.mat';
save(fullfile(processedDataPath,faceRatingFile),'combinedFaceCells');
objectRatingFile = 'ObjectData.mat';
save(fullfile(processedDataPath,objectRatingFile),'combinedObjectCells');
%% Descriptive for gender and age
clear
clc
config;
cd(demographics);
addpath(genpath(demographics));
demographics = readtable("participantDemographics_DM.xlsx");
meanAge = mean(demographics.Age);
medianAge = median(demographics.Age);
sdAge = std(demographics.Age);
youngestAge = min(demographics.Age);
oldestAge = max(demographics.Age);
% You can use tabulate function to divide the excel based on participant
% sex
tabulate(demographics.Gender);
femaleAge = demographics.Age(strcmp(demographics.Gender,'F'));
countFemale = sum((strcmp(demographics.Gender,'F')));
maleAge = demographics.Age(strcmp(demographics.Gender,'M'));
countMale = sum((strcmp(demographics.Gender,'M')));
ageTable = table({femaleAge},{maleAge},'VariableNames',{'Female Age','Male Age'});
% Plot age and sex data
% plot sex
figure;
bar([countFemale,countMale],'FaceColor',descriptiveColor);
xlabel('Sex');
ylabel('Count');
xticklabels({'Female','Male'});
title('Sex Distribution');
%plot age
figure;
histogram([demographics.Age],'FaceColor',descriptiveColor);
xlabel('Age');
ylabel('Count');
title('Age distribution');