-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
271 lines (216 loc) · 9.22 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import os
from typing import Any, List
import equinox as eqx
import jax
import jax.numpy as jnp
import lm_eval
from jaxtyping import Array, PRNGKeyArray
from lm_eval.api.model import TemplateLM
from lm_eval.tasks import TaskManager
from tqdm import tqdm
from ReAct.data.owt import OpenWebTextDataset as OWT
from ReAct.model.baseline import GPT
from ReAct.model.react import React
from ReAct.utils.arg_parser import get_evaluation_args
from ReAct.utils.helpers import load_eqx_obj
from ReAct.utils.logger import UnifiedLogger
from ReAct.utils.sharding import get_strategy
class Evaluator:
def __init__(self, args: argparse.Namespace, key: PRNGKeyArray):
self.pad_token = 50257
self.key = key
self.args = args
dummy_dataset = OWT(split="train")
self.decode_fn = dummy_dataset.tok.decode
self.encode_fn = dummy_dataset.tok.encode
self.strategy = get_strategy(self.args.strategy)
def skeleton_model(self, is_baseline: bool) -> GPT | React:
if not is_baseline:
model = React(
n_heads=self.args.n_heads,
seqlen=self.args.seqlen,
max_iters=self.args.max_iters,
num_blocks=self.args.num_blocks,
width=self.args.width,
drop_rate=0.0,
vocab_size=self.args.num_classes,
key=self.key,
strategy=self.strategy,
)
else:
model = GPT(
n_heads=self.args.n_heads,
seqlen=self.args.seqlen,
num_blocks=self.args.num_blocks,
width=self.args.width,
drop_rate=0.0,
vocab_size=self.args.num_classes,
key=self.key,
strategy=self.strategy,
)
return model
def encode_input(self, my_input: str, obey_maxlen: bool = True) -> Array:
encoded = self.encode_fn(my_input, obey_maxlen=obey_maxlen)["input_ids"]
encoded = jnp.asarray([i for i in encoded if i != self.pad_token])
return encoded
def run_lm_evaluation(self):
model = self.skeleton_model(self.args.baseline)
model = load_eqx_obj(
self.args.checkpoint_path,
model if self.args.baseline else eqx.filter(model, eqx.is_array),
)
class MyLM(TemplateLM):
def __init__(
self,
model: eqx.Module,
encode_fn: Any,
decode_fn: Any,
args: argparse.Namespace,
):
super().__init__()
self.model = eqx.nn.inference_mode(model)
self.encode_fn = encode_fn
self.decode_fn = decode_fn
self.args = args
@property
def eot_token_id(self) -> Any:
return 50304
def tok_encode(self, string: str, **kwargs) -> list[int]:
encoded: Array = self.encode_fn(string, obey_maxlen=False)
encoded = jnp.asarray([i for i in encoded if i != self.eot_token_id])
return encoded.tolist()
def _calc_ll(
self, seq: Array, lengths: tuple[int, int], target: Array
) -> Array:
arrlen, tgtlen = lengths
pad_mask = jnp.where(seq == self.eot_token_id, 0, 1)
key = jax.random.PRNGKey(0)
def fwd(seq: Array, pad_mask: Array, key: PRNGKeyArray) -> Array:
if self.args.baseline:
logits = self.model(seq, pad_mask, False, key)
else:
logits = self.model(
seq,
self.args.max_iters,
jnp.ones_like(seq),
False,
False,
key,
)[0]
return jax.nn.log_softmax(logits, axis=-1)
probs = fwd(seq, pad_mask, key)
target_log_probs = (
probs[jnp.arange(arrlen, arrlen + tgtlen), target[:tgtlen]]
* pad_mask[:tgtlen]
)
return target_log_probs.sum()
def _loglikelihood_tokens(
self, requests: List, **kwargs
) -> list[tuple[float, bool]]:
output = []
for request in tqdm(requests):
context, target = request[-2], request[-1]
arr, target = (
jnp.asarray(context).astype(int),
jnp.asarray(target).astype(int),
)
arrlen, tgtlen = len(arr), len(target)
seq = jnp.concat([arr, target])[-self.args.seqlen :]
seq = jnp.pad(
seq,
(0, self.args.seqlen - seq.shape[0]),
constant_values=self.eot_token_id,
)
ll = self._calc_ll(seq, (arrlen, tgtlen), target)
output.append((ll.item(), 1))
return output
def loglikelihood_rolling(
self, requests, disable_tqdm: bool = False
) -> list[float]:
"""
Compute rolling log-likelihood for each request by:
1. Breaking input into appropriate chunks based on max context length
2. Computing log-likelihood for each chunk with maximum possible context
3. Ensuring each token is predicted exactly once
Args:
requests: List of request tuples containing (context,) strings
disable_tqdm: Whether to disable progress bar
Returns:
List of log-likelihood scores for each request
"""
output = []
for request in tqdm(requests, disable=disable_tqdm):
context = request.arguments[0]
# Encode full context
tokens = []
for chunk in range((len(context) // 4096) + 1):
tokens.extend(
self.tok_encode(context[chunk * 4096 : (chunk + 1) * 4096])
)
tokens = jnp.asarray(tokens)
# For longer contexts, process in chunks with maximum context
total_ll = 0.0
chunk_size = self.args.seqlen
# Process full chunks first
for i in range(len(tokens) // chunk_size + 1):
# If context fits in one window, process it directly
chunk = tokens[i * chunk_size : (i + 1) * chunk_size + 1]
if len(chunk) < self.args.seqlen:
# Pad sequence to model's expected length
seq = jnp.pad(
chunk,
(0, self.args.seqlen - len(chunk) + 1),
constant_values=self.eot_token_id,
)
# Calculate log-likelihood for the whole sequence
ll = self._calc_ll(
seq[:-1],
(0, len(chunk)),
jnp.roll(seq, -1)[:-1],
)
total_ll += ll.item()
else:
ll = self._calc_ll(
chunk[:-1],
(0, chunk_size),
jnp.roll(chunk, -1)[:-1],
)
total_ll += ll.item()
output.append(total_ll)
return output
def generate_until(self, requests, disable_tqdm: bool = False) -> list[str]:
raise NotImplementedError
lm_obj = MyLM(
model=model,
encode_fn=self.encode_input,
decode_fn=self.decode_fn,
args=self.args,
)
task_manager = TaskManager()
results = lm_eval.simple_evaluate(
model=lm_obj,
tasks=[self.args.task],
num_fewshot=None,
task_manager=task_manager,
)
return results['results'] # type: ignore
if __name__ == "__main__":
key = jax.random.PRNGKey(0)
args = get_evaluation_args()
logger = UnifiedLogger(args, level="DEBUG")
my_logger = logger.my_logger()
my_logger.warning(
"Make sure to provide the correct args per the model configuration - as it cant be autodetected!"
)
my_logger.warning("These are: max_iters| baseline | num_blocks | width | n_heads")
print(f"{'-'*50}\n")
assert args.checkpoint_path is not None, "Please provide a checkpoint path"
assert os.path.exists(
args.checkpoint_path
), "Please provide a valid checkpoint path | File does not exist"
evaluator = Evaluator(args, key)
# Run LM evaluation
eval_results = evaluator.run_lm_evaluation()
print("\nLM Evaluation Results:")
print(eval_results)