-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_tch.py
122 lines (103 loc) · 3.6 KB
/
train_tch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import sys
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torchinfo import summary
import warnings
warnings.filterwarnings('ignore')
import config
from configs.tch_d import model as tch_d
from configs.tch_r import model as tch_r
from configs.tch_v import model as tch_v
from data_loader import data_generator
from validation import set_model, run_val
cf, device = config.get_config()
torch.manual_seed(100)
batch_size = cf.batch_size
epochs = cf.epochs
lr = cf.lr
gamma = cf.gamma
step_size = cf.step_size
early_stop = cf.early_stop
model = None
optimizer = None
scheduler = None
log = config.Logger()
def train(ep, train_loader, model_save_path):
global steps
epoch_loss = 0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):#d,t: (torch.Size([64, 1, 784]),64)
optimizer.zero_grad()
output = model(data)
loss = F.binary_cross_entropy(output, target,reduction='mean')
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_loss/=len(train_loader)
return epoch_loss
def test(test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
thresh=0.5
output_bin=(output>=thresh)*1
correct+=(output_bin&target.int()).sum()
test_loss /= len(test_loader)
return test_loss
def run_epoch(epochs, loading, model_save_path, train_loader, test_loader, lr):
if loading==True:
model.load_state_dict(torch.load(model_save_path))
log.logger.info("-------------Model Loaded------------")
best_loss=0
early_stop=cf.early_stop
for epoch in range(epochs):
train_loss=train(epoch,train_loader,model_save_path)
test_loss=test(test_loader)
log.logger.info((f"Epoch: {epoch+1} - loss: {train_loss:.10f} - test_loss: {test_loss:.10f}"))
if epoch == 0:
best_loss=test_loss
if test_loss<=best_loss:
torch.save(model.state_dict(), model_save_path)
best_loss=test_loss
log.logger.info("-------- Save Best Model! --------")
early_stop=cf.early_stop
else:
early_stop-=1
log.logger.info("Early Stop Left: {}".format(early_stop))
if early_stop == 0:
log.logger.info("-------- Early Stop! --------")
break
if __name__ == "__main__":
option = sys.argv[1]
if option == "d":
model = tch_d
elif option == "r":
model = tch_r
elif option == "v":
model = tch_v
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
file_path = sys.argv[2]
model_save_path = sys.argv[3]
TRAIN_NUM = int(sys.argv[4])
TOTAL_NUM = int(sys.argv[5])
SKIP_NUM = int(sys.argv[6])
loading=False
log_path=model_save_path+".log"
log.set_logger(log_path)
log.logger.info("%s"%file_path)
log.logger.info(summary(model))
train_loader, test_loader, test_df = data_generator(file_path,TRAIN_NUM,TOTAL_NUM,SKIP_NUM)
log.logger.info("-------------Data Proccessed------------")
run_epoch(epochs, loading, model_save_path, train_loader, test_loader, lr=cf.lr)
set_model(f"tch_{option}")
run_val(test_loader, test_df, file_path, model_save_path)