-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathwlrn.py
203 lines (167 loc) · 4.67 KB
/
wlrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#
import torch
import torch.nn.functional as F
import math
import time
import random
#
# parse command line options
#
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('modeldef', type=str, help='a script that define the descriptor-extractor model')
parser.add_argument('tripletgen', type=str, help='a script that generates training and validation triplets')
parser.add_argument('--writepath', type=str, default=None, help='where to write the learned model weights')
parser.add_argument('--loadpath', type=str, default=None, help='path from which to load pretrained weights')
parser.add_argument('--learnrate', type=float, default=1e-4, help='RMSprop learning rate')
parser.add_argument('--batchsize', type=int, default=32, help='batch size')
parser.add_argument('--dataparallel', action='store_true', default=False, help='wrap the model into a torch.nn.DataParallel module for multi-gpu learning')
args = parser.parse_args()
#
# model
#
exec(open(args.modeldef).read())
MODEL = init()
if args.loadpath:
print('* loading pretrained weights from ' + args.loadpath)
MODEL.load_state_dict(torch.load(args.loadpath))
if args.dataparallel:
print('* using nn.DataParallel')
MODEL = torch.nn.DataParallel(MODEL)
MODEL.cuda()
def model_forward(triplet):
#
return [
MODEL.forward(triplet[0]),
MODEL.forward(triplet[1]),
MODEL.forward(triplet[2])
]
def select_hard_negatives(triplet):
#
torch.set_grad_enabled(False)
#
negs = []
for t in triplet[2]:
#
negs.append(MODEL.forward(t.float().cuda()))
negs = torch.cat(negs, 0)
#
_, inds = torch.max(torch.mm(MODEL.forward(triplet[0].float().cuda()), negs.t()), 1)
inds = inds.data.long().cpu()
#
return [triplet[0], triplet[1], torch.cat(triplet[2], 0).index_select(0, inds)]
#
# loss computation
#
thr = 0.8
beta = -math.log(1.0/0.99 - 1)/(1.0-thr)
def loss_forward(triplet):
# compute similarities and rescale them to [0, 1]
AP = torch.mm(triplet[0], triplet[1].t()).add(1).mul(0.5)
AN = torch.mm(triplet[0], triplet[2].t()).add(1).mul(0.5)
# kill all scores below `thr`
AP = F.sigmoid(AP.add(-thr).mul(beta))
AN = F.sigmoid(AN.add(-thr).mul(beta))
# compute the loss
return (1 + torch.sum(torch.max(AN, 1)[0]))/(1 + torch.sum(torch.max(AP, 1)[0]))
def compute_average_loss(triplets):
# switch to evaluation mode
torch.set_grad_enabled(False)
MODEL.eval()
#
totalloss = 0.0
for triplet in triplets:
#
if isinstance(triplet[2], list):
triplet = select_hard_negatives(triplet)
triplet = [
triplet[0].float().cuda(),
triplet[1].float().cuda(),
triplet[2].float().cuda()
]
#
descs = model_forward(triplet)
loss = loss_forward(descs)
totalloss = totalloss + loss.item()
#
return totalloss/len(triplets)
#
#
#
optimizer = torch.optim.RMSprop(MODEL.parameters(), lr=args.learnrate)
batchsize = args.batchsize
def train_with_sgd(triplets, niters):
# switch to train mode
MODEL.train()
#
for i in range(0, niters):
#
optimizer.zero_grad()
for j in range(0, batchsize):
#
triplet = triplets[ random.randint(0, len(triplets)-1) ]
if isinstance(triplet[2], list):
triplet = select_hard_negatives(triplet)
triplet = [
triplet[0].float().cuda(),
triplet[1].float().cuda(),
triplet[2].float().cuda()
]
#
torch.set_grad_enabled(True)
descs = model_forward(triplet)
loss = loss_forward(descs)
loss.div(batchsize)
loss.backward()
#
optimizer.step()
#
# initialize stuff
#
print('* tripletgen: ' + args.tripletgen)
exec(open(args.tripletgen).read())
get_trn_triplets, get_vld_triplets = init()
#
#
#
t = time.time()
vtriplets = get_vld_triplets()
t = time.time() - t
print("* " + str(len(vtriplets)) + " validation triplets generated in " + str(t) + " [s]")
t = time.time()
ebest = compute_average_loss(vtriplets)
print("* initial validation loss: " + str(ebest))
t = time.time() - t
print(" ** elapsed time: " + str(t) + " [s]")
#
nrounds = 32
for i in range(0, nrounds):
#
print("* ROUND (" + str(1+i) + ")")
#
t = time.time()
ttriplets = get_trn_triplets()
t = time.time() - t
print(" ** " + str(len(ttriplets)) + " triplets generated in " + str(t) + " [s]")
#
t = time.time()
train_with_sgd(ttriplets, 512)
t = time.time() - t
print(" ** elapsed time: " + str(t) + " [s]")
e = compute_average_loss(ttriplets)
print(" ** average loss (trn): " + str(e))
e = compute_average_loss(vtriplets)
print(" ** average loss (vld): " + str(e))
if e<ebest and args.writepath:
#
print("* saving model parameters to `" + args.writepath + "`")
MODEL.cpu()
if args.dataparallel:
torch.save(MODEL.module.state_dict(), args.writepath)
else:
torch.save(MODEL.state_dict(), args.writepath)
MODEL.cuda()
#
ebest = e
#
ttriplets = []