forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
centernet.py
333 lines (281 loc) · 15.7 KB
/
centernet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import numpy as np
import tensorrt as trt
import torch
from sample import common
import argparse
import time
# You can set the logger severity higher to suppress messages (or lower to display more messages).
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
trt.init_libnvinfer_plugins(TRT_LOGGER, '')
PLUGIN_CREATORS = trt.get_plugin_registry().plugin_creator_list
for plugin_creator in PLUGIN_CREATORS:
if plugin_creator.name == 'DCNv2_TRT':
dcnCreator = plugin_creator
class ModelData(object):
INPUT_NAME = "data"
INPUT_SHAPE = (3, 512, 512)
OUTPUT_NAME = "prob"
DTYPE = trt.float16
class Centernet_dla34(object):
def __init__(self, weights) -> None:
super().__init__()
self.weights = weights
self.levels = [1, 1, 1, 2, 2, 1]
self.channels = [16, 32, 64, 128, 256, 512]
self.down_ratio = 4
self.last_level = 5
self.engine = self.build_engine()
def add_batchnorm_2d(self, input_tensor, parent):
gamma = self.weights[parent + '.weight'].numpy()
beta = self.weights[parent + '.bias'].numpy()
mean = self.weights[parent + '.running_mean'].numpy()
var = self.weights[parent + '.running_var'].numpy()
eps = 1e-5
scale = gamma / np.sqrt(var + eps)
shift = beta - mean * gamma / np.sqrt(var + eps)
power = np.ones_like(scale)
return self.network.add_scale(input=input_tensor.get_output(0), mode=trt.ScaleMode.CHANNEL, shift=shift, scale=scale, power=power)
def add_basic_block(self, input_tensor, out_channels, residual=None, stride=1, dilation=1, parent=''):
conv1_w = self.weights[parent + '.conv1.weight'].numpy()
conv1 = self.network.add_convolution(input=input_tensor.get_output(
0), num_output_maps=out_channels, kernel_shape=(3, 3), kernel=conv1_w)
conv1.stride = (stride, stride)
conv1.padding = (dilation, dilation)
conv1.dilation = (dilation, dilation)
bn1 = self.add_batchnorm_2d(conv1, parent + '.bn1')
ac1 = self.network.add_activation(
input=bn1.get_output(0), type=trt.ActivationType.RELU)
conv2_w = self.weights[parent + '.conv2.weight'].numpy()
conv2 = self.network.add_convolution(input=ac1.get_output(
0), num_output_maps=out_channels, kernel_shape=(3, 3), kernel=conv2_w)
conv2.padding = (dilation, dilation)
conv2.dilation = (dilation, dilation)
out = self.add_batchnorm_2d(conv2, parent + '.bn2')
if residual is None:
out = self.network.add_elementwise(input_tensor.get_output(
0), out.get_output(0), trt.ElementWiseOperation.SUM)
else:
out = self.network.add_elementwise(residual.get_output(
0), out.get_output(0), trt.ElementWiseOperation.SUM)
return self.network.add_activation(input=out.get_output(0), type=trt.ActivationType.RELU)
def add_level(self, input_tensor, out_channels, stride=1, dilation=1, parent=''):
conv1_w = self.weights[parent + '.0.weight'].numpy()
conv1 = self.network.add_convolution(input=input_tensor.get_output(
0), num_output_maps=out_channels, kernel_shape=(3, 3), kernel=conv1_w)
conv1.stride = (stride, stride)
conv1.padding = (dilation, dilation)
conv1.dilation = (dilation, dilation)
bn1 = self.add_batchnorm_2d(conv1, parent + '.1')
ac1 = self.network.add_activation(
input=bn1.get_output(0), type=trt.ActivationType.RELU)
return ac1
def add_root(self, input_tensors: list, out_channels, kernel_size=1, residual=False, parent=''):
ct = self.network.add_concatenation(
[x.get_output(0) for x in input_tensors])
conv_w = self.weights[parent + '.conv.weight'].numpy()
conv = self.network.add_convolution(input=ct.get_output(
0), num_output_maps=out_channels, kernel_shape=(1, 1), kernel=conv_w)
conv.padding = ((kernel_size - 1) // 2, (kernel_size - 1) // 2)
bn1 = self.add_batchnorm_2d(conv, parent + '.bn')
out = self.network.add_activation(
input=bn1.get_output(0), type=trt.ActivationType.RELU)
if residual:
out = self.network.add_elementwise(input_tensors[0].get_output(
0), out.get_output(0), trt.ElementWiseOperation.SUM)
return self.network.add_activation(input=out.get_output(0), type=trt.ActivationType.RELU)
def add_tree(self, input_tensor, level, out_channels, residual=None, children=None, stride=1, level_root=False, parent=''):
children = [] if children is None else children
if stride > 1:
bottom = self.network.add_pooling(input_tensor.get_output(
0), trt.PoolingType.MAX, (stride, stride))
bottom.stride = (stride, stride)
else:
bottom = input_tensor
if input_tensor.get_output(0).shape[0] != out_channels:
project_conv1_w = self.weights[parent +
'.project.0.weight'].numpy()
project_conv1 = self.network.add_convolution(input=bottom.get_output(
0), num_output_maps=out_channels, kernel_shape=(1, 1), kernel=project_conv1_w)
residual = self.add_batchnorm_2d(
project_conv1, parent + '.project.1')
else:
residual = bottom
if level_root:
children.append(bottom)
if level == 1:
tree1 = self.add_basic_block(
input_tensor, out_channels, residual, stride, parent=parent+'.tree1')
tree2 = self.add_basic_block(
tree1, out_channels, parent=parent+'.tree2')
return self.add_root([tree2, tree1]+children, out_channels, parent=parent+'.root')
else:
tree1 = self.add_tree(input_tensor, level-1, out_channels,
residual, stride=stride, parent=parent+'.tree1')
children.append(tree1)
return self.add_tree(tree1, level-1, out_channels, children=children, parent=parent+'.tree2')
def add_base(self, input_tensor, parent):
base_conv1_w = self.weights[parent+'.base_layer.0.weight'].numpy()
base_conv1 = self.network.add_convolution(
input=input_tensor, num_output_maps=self.channels[0], kernel_shape=(7, 7), kernel=base_conv1_w)
base_conv1.padding = (3, 3)
base_bn1 = self.add_batchnorm_2d(base_conv1, parent+'.base_layer.1')
base_ac1 = self.network.add_activation(
input=base_bn1.get_output(0), type=trt.ActivationType.RELU)
level0 = self.add_level(
base_ac1, self.channels[0], parent=parent+'.level0')
level1 = self.add_level(
level0, self.channels[1], 2, parent=parent+'.level1')
level2 = self.add_tree(
level1, self.levels[2], self.channels[2], stride=2, level_root=False, parent=parent+'.level2')
level3 = self.add_tree(
level2, self.levels[3], self.channels[3], stride=2, level_root=True, parent=parent+'.level3')
level4 = self.add_tree(
level3, self.levels[4], self.channels[4], stride=2, level_root=True, parent=parent+'.level4')
level5 = self.add_tree(
level4, self.levels[5], self.channels[5], stride=2, level_root=True, parent=parent+'.level5')
return [level0, level1, level2, level3, level4, level5]
def add_deform_conv(self, input_tensor, out_channels, kernel=3, stride=1, padding=1, dilation=1, deformable_group=1, parent=''):
conv_offset_mask_w = self.weights[parent +
'.conv.conv_offset_mask.weight'].numpy()
conv_offset_mask_b = self.weights[parent +
'.conv.conv_offset_mask.bias'].numpy()
conv_offset_mask = self.network.add_convolution(input=input_tensor.get_output(0),
num_output_maps=deformable_group*3*kernel*kernel,
kernel_shape=(
kernel, kernel),
kernel=conv_offset_mask_w,
bias=conv_offset_mask_b)
conv_offset_mask.stride = (stride, stride)
conv_offset_mask.padding = (padding, padding)
out_channels = trt.PluginField("out_channels", np.array(
[out_channels], dtype=np.int32), trt.PluginFieldType.INT32)
kernel = trt.PluginField("kernel", np.array(
[kernel], dtype=np.int32), trt.PluginFieldType.INT32)
deformable_group = trt.PluginField("deformable_group", np.array(
[deformable_group], dtype=np.int32), trt.PluginFieldType.INT32)
dilation = trt.PluginField("dilation", np.array(
[dilation], dtype=np.int32), trt.PluginFieldType.INT32)
padding = trt.PluginField("padding", np.array(
[padding], dtype=np.int32), trt.PluginFieldType.INT32)
stride = trt.PluginField("stride", np.array(
[stride], dtype=np.int32), trt.PluginFieldType.INT32)
weight = trt.PluginField(
"weight", self.weights[parent + '.conv.weight'].numpy(), trt.PluginFieldType.FLOAT32)
bias = trt.PluginField(
"bias", self.weights[parent + '.conv.bias'].numpy(), trt.PluginFieldType.FLOAT32)
field_collection = trt.PluginFieldCollection(
[out_channels, kernel, deformable_group, dilation, padding, stride, weight, bias])
DCN = dcnCreator.create_plugin(
name='DCNv2_TRT', field_collection=field_collection)
sigmoid_conv_offset_mask = self.network.add_activation(
input=conv_offset_mask.get_output(0), type=trt.ActivationType.SIGMOID)
dcn = self.network.add_plugin_v2(inputs=[input_tensor.get_output(
0), conv_offset_mask.get_output(0), sigmoid_conv_offset_mask.get_output(0)], plugin=DCN)
bn = self.add_batchnorm_2d(dcn, parent+'.actf.0')
return self.network.add_activation(input=bn.get_output(0), type=trt.ActivationType.RELU)
def add_ida_up(self, input_tensors, out_channels, up_f, startp, parent):
for i in range(startp + 1, len(input_tensors)):
proj = self.add_deform_conv(
input_tensors[i], out_channels, parent=parent+'.proj_%d' % (i-startp))
f = up_f[i-startp]
up_w = self.weights[parent + '.up_%d.weight' % (i-startp)].numpy()
up = self.network.add_deconvolution(
proj.get_output(0), out_channels, (f*2, f*2), up_w)
up.stride = (f, f)
up.padding = (f//2, f//2)
up.num_groups = out_channels
node = self.network.add_elementwise(
input_tensors[i-1].get_output(0), up.get_output(0), trt.ElementWiseOperation.SUM)
input_tensors[i] = self.add_deform_conv(
node, out_channels, parent=parent+'.node_%d' % (i-startp))
return input_tensors
def add_dla_up(self, input_tensors, first_level, parent):
channels = self.channels[first_level:]
scales = [2 ** i for i in range(len(self.channels[first_level:]))]
scales = np.array(scales, dtype=int)
out = [input_tensors[-1]]
for i in range(len(channels) - 1):
j = -i - 2
input_tensors = self.add_ida_up(
input_tensors, channels[j], scales[j:] // scales[j], len(input_tensors) - i - 2, parent+'.ida_%d' % i)
out.insert(0, input_tensors[-1])
scales[j + 1:] = scales[j]
channels[j + 1:] = [channels[j] for _ in channels[j + 1:]]
return out
def add_head(self, input_tensor, out_channels, head, head_conv=256, final_kernal=1):
conv1_w = self.weights[head+'.0.weight'].numpy()
conv1_b = self.weights[head+'.0.bias'].numpy()
conv1 = self.network.add_convolution(
input_tensor.get_output(0), head_conv, (3, 3), conv1_w, conv1_b)
conv1.padding = (1, 1)
ac1 = self.network.add_activation(
input=conv1.get_output(0), type=trt.ActivationType.RELU)
conv2_w = self.weights[head + '.2.weight'].numpy()
conv2_b = self.weights[head+'.2.bias'].numpy()
conv2 = self.network.add_convolution(ac1.get_output(
0), out_channels, (final_kernal, final_kernal), conv2_w, conv2_b)
return conv2
def populate_network(self):
# Configure the network layers based on the self.weights provided.
input_tensor = self.network.add_input(
name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE)
y = self.add_base(input_tensor, 'module.base')
first_level = int(np.log2(self.down_ratio))
last_level = self.last_level
dla_up = self.add_dla_up(y, first_level, 'module.dla_up')
ida_up = self.add_ida_up(dla_up[:last_level-first_level], self.channels[first_level], [
2 ** i for i in range(last_level - first_level)], 0, 'module.ida_up')
hm = self.add_head(ida_up[-1], 80, 'module.hm')
wh = self.add_head(ida_up[-1], 2, 'module.wh')
reg = self.add_head(ida_up[-1], 2, 'module.reg')
hm.get_output(0).name = 'hm'
wh.get_output(0).name = 'wh'
reg.get_output(0).name = 'reg'
self.network.mark_output(tensor=hm.get_output(0))
self.network.mark_output(tensor=wh.get_output(0))
self.network.mark_output(tensor=reg.get_output(0))
def build_engine(self):
# For more information on TRT basics, refer to the introductory samples.
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network:
self.network = network
builder.max_workspace_size = common.GiB(1)
builder.max_batch_size = 1
# Populate the network using self.weights from the PyTorch model.
self.populate_network()
# Build and return an engine.
return builder.build_cuda_engine(self.network)
def load_random_test_case(pagelocked_buffer):
# Select an image at random to be the test case.
img = np.random.randn(1, 3, 512, 512).astype(np.float32)
# Copy to the pagelocked input buffer
np.copyto(pagelocked_buffer, img.ravel())
return img
def main(args):
# Get the PyTorch weights
weights = torch.load(args.model, map_location={
'cuda:0': 'cpu'})['state_dict']
# Do inference with TensorRT.
with Centernet_dla34(weights).engine as engine:
if args.save_engine:
with open('centernet.engine', "wb") as f:
f.write(engine.serialize())
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
with engine.create_execution_context() as context:
img = load_random_test_case(pagelocked_buffer=inputs[0].host)
# For more information on performing inference, refer to the introductory samples.
# The common.do_inference function will return a list of outputs - we only have one in this case.
t = time.time()
[hm, wh, reg] = common.do_inference(
context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream, batch_size=1)
t = time.time() - t
print('output: hm:%f, wh:%f, reg:%f' %
(hm.mean(), wh.mean(), reg.mean()))
print(t)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CenterNet dla34 ctdet')
parser.add_argument('--model', '-m', type=str,
default='./ctdet_coco_dla_2x.pth', help='path of pytorch .pth')
parser.add_argument('--save_engine', '-s',
action='store_true', help='if save trt engine')
args = parser.parse_args()
main(args)