-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathedit_content.py
executable file
·144 lines (128 loc) · 4.62 KB
/
edit_content.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import json
import numpy as np
from scipy.io.wavfile import write
import torch
import params
from model import GradTTS
from text import text_to_sequence_for_editts, cmudict
from text.symbols import symbols
from utils import intersperse, intersperse_emphases
import sys, os
sys.path.append("./hifigan/")
from env import AttrDict
from models import Generator as HiFiGAN
torch.manual_seed(1234)
HIFIGAN_CONFIG = "./checkpts/hifigan-config.json"
HIFIGAN_CHECKPT = "./checkpts/hifigan.pt"
VOLUME_MAX = 32768
SAMPLE_RATE = 22050
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-f",
"--file",
type=str,
required=True,
help="path to a file with texts to synthesize",
)
parser.add_argument(
"-c",
"--checkpoint",
type=str,
required=True,
help="path to a checkpoint of Grad-TTS",
)
parser.add_argument(
"-t",
"--timesteps",
type=int,
default=1000,
help="number of timesteps of reverse diffusion",
)
parser.add_argument(
"-s",
"--save_dir",
type=str,
default="out/content/wavs",
help="directory path to save outuputs",
)
args = parser.parse_args()
print("Initializing Grad-TTS...")
generator = GradTTS(
len(symbols) + 1,
params.n_enc_channels,
params.filter_channels,
params.filter_channels_dp,
params.n_heads,
params.n_enc_layers,
params.enc_kernel,
params.enc_dropout,
params.window_size,
params.n_feats,
params.dec_dim,
params.beta_min,
params.beta_max,
params.pe_scale,
)
generator.load_state_dict(
torch.load(args.checkpoint, map_location=lambda loc, storage: loc)
)
_ = generator.cuda().eval()
print(f"Number of parameters: {generator.nparams}")
print("Initializing HiFi-GAN...")
with open(HIFIGAN_CONFIG) as f:
h = AttrDict(json.load(f))
vocoder = HiFiGAN(h)
vocoder.load_state_dict(
torch.load(HIFIGAN_CHECKPT, map_location=lambda loc, storage: loc)["generator"]
)
_ = vocoder.cuda().eval()
vocoder.remove_weight_norm()
with open(args.file, "r", encoding="utf-8") as f:
texts = [line.strip() for line in f.readlines()]
cmu = cmudict.CMUDict("./resources/cmu_dictionary")
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with torch.no_grad():
for i, text_list in enumerate(texts):
print(f"[{i+1}/{len(texts)}] Synthesizing content-edited speech...")
text1, text2 = text_list.split('#')
sequence1, emphases1 = text_to_sequence_for_editts(text1, dictionary=cmu)
sequence2, emphases2 = text_to_sequence_for_editts(text2, dictionary=cmu)
x1 = torch.LongTensor(intersperse(sequence1, len(symbols))).cuda()[None]
x2 = torch.LongTensor(intersperse(sequence2, len(symbols))).cuda()[None]
emphases1 = intersperse_emphases(emphases1)
emphases2 = intersperse_emphases(emphases2)
x_lengths1 = torch.LongTensor([x1.shape[-1]]).cuda()
x_lengths2 = torch.LongTensor([x2.shape[-1]]).cuda()
y_dec1, y_dec2, y_dec_edit, y_dec_cat = generator.edit_content(
x1,
x2,
x_lengths1,
x_lengths2,
emphases1,
emphases2,
n_timesteps=args.timesteps,
temperature=1.5,
stoc=False,
length_scale=0.91,
)
audio1 = (
vocoder(y_dec1).cpu().squeeze().clamp(-1, 1).numpy() * VOLUME_MAX
).astype(np.int16)
audio2 = (
vocoder(y_dec2).cpu().squeeze().clamp(-1, 1).numpy() * VOLUME_MAX
).astype(np.int16)
audio_edit = (
vocoder(y_dec_edit).cpu().squeeze().clamp(-1, 1).numpy() * VOLUME_MAX
).astype(np.int16)
audio_cat = (
vocoder(y_dec_cat).cpu().squeeze().clamp(-1, 1).numpy() * VOLUME_MAX
).astype(np.int16)
write(os.path.join(args.save_dir, f"gen_{i}_gradtts-1.wav"), SAMPLE_RATE, audio1)
write(os.path.join(args.save_dir, f"gen_{i}_gradtts-2.wav"), SAMPLE_RATE, audio2)
write(os.path.join(args.save_dir, f"gen_{i}_EdiTTS.wav"), SAMPLE_RATE, audio_edit)
write(os.path.join(args.save_dir, f"gen_{i}_baseline.wav"), SAMPLE_RATE, audio_cat)
print(f"Check out {args.save_dir} folder for generated samples.")