-
Notifications
You must be signed in to change notification settings - Fork 9
/
SwapUtils.sol
1327 lines (1189 loc) · 45.7 KB
/
SwapUtils.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./LPToken.sol";
import "./MathUtils.sol";
/**
* @title SwapUtils library
* @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
* @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
* for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
* Admin functions should be protected within contracts using this library.
*/
library SwapUtils {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using MathUtils for uint256;
/*** EVENTS ***/
event TokenSwap(
address indexed buyer,
uint256 tokensSold,
uint256 tokensBought,
uint128 soldId,
uint128 boughtId
);
event AddLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event RemoveLiquidity(
address indexed provider,
uint256[] tokenAmounts,
uint256 lpTokenSupply
);
event RemoveLiquidityOne(
address indexed provider,
uint256 lpTokenAmount,
uint256 lpTokenSupply,
uint256 boughtId,
uint256 tokensBought
);
event RemoveLiquidityImbalance(
address indexed provider,
uint256[] tokenAmounts,
uint256[] fees,
uint256 invariant,
uint256 lpTokenSupply
);
event NewAdminFee(uint256 newAdminFee);
event NewSwapFee(uint256 newSwapFee);
event NewWithdrawFee(uint256 newWithdrawFee);
event NewDepositFee(uint256 newDepositFee);
event RampA(
uint256 oldA,
uint256 newA,
uint256 initialTime,
uint256 futureTime
);
event StopRampA(uint256 currentA, uint256 time);
struct Swap {
// variables around the ramp management of A,
// the amplification coefficient * n * (n - 1)
// see https://www.curve.fi/stableswap-paper.pdf for details
uint256 initialA;
uint256 futureA;
uint256 initialATime;
uint256 futureATime;
// fee calculation
uint256 swapFee;
uint256 adminFee;
uint256 defaultDepositFee;
uint256 defaultWithdrawFee;
address devaddr;
LPToken lpToken;
// contract references for all tokens being pooled
IERC20[] pooledTokens;
// multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
// for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
// has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
uint256[] tokenPrecisionMultipliers;
// the pool balance of each token, in the token's precision
// the contract's actual token balance might differ
uint256[] balances;
mapping(address => uint256) depositTimestamp;
mapping(address => uint256) withdrawFeeMultiplier;
}
// Struct storing variables used in calculations in the
// calculateWithdrawOneTokenDY function to avoid stack too deep errors
struct CalculateWithdrawOneTokenDYInfo {
uint256 d0;
uint256 d1;
uint256 newY;
uint256 feePerToken;
uint256 preciseA;
}
// Struct storing variables used in calculation in addLiquidity function
// to avoid stack too deep error
struct AddLiquidityInfo {
uint256 d0;
uint256 d1;
uint256 d2;
uint256 preciseA;
}
// Struct storing variables used in calculation in removeLiquidityImbalance function
// to avoid stack too deep error
struct RemoveLiquidityImbalanceInfo {
uint256 d0;
uint256 d1;
uint256 d2;
uint256 preciseA;
}
// the precision all pools tokens will be converted to
uint8 public constant POOL_PRECISION_DECIMALS = 18;
// the denominator used to calculate admin and LP fees. For example, an
// LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
uint256 private constant FEE_DENOMINATOR = 10**10;
// Max swap fee is 1% or 100bps of each swap
uint256 public constant MAX_SWAP_FEE = 10**8;
// Max adminFee is 100% of the swapFee
// adminFee does not add additional fee on top of swapFee
// Instead it takes a certain % of the swapFee. Therefore it has no impact on the
// users but only on the earnings of LPs
uint256 public constant MAX_ADMIN_FEE = 10**10;
// Max withdrawFee is 1% of the value withdrawn
// Fee will be redistributed to the LPs in the pool, rewarding
// long term providers.
uint256 public constant MAX_WITHDRAW_FEE = 10**8;
// Max depositFee is 1% of the value deposited
uint256 public constant MAX_DEPOSIT_FEE = 10**8;
// Constant value used as max loop limit
uint256 private constant MAX_LOOP_LIMIT = 256;
// Constant values used in ramping A calculations
uint256 public constant A_PRECISION = 100;
uint256 public constant MAX_A = 10**6;
uint256 private constant MAX_A_CHANGE = 2;
uint256 private constant MIN_RAMP_TIME = 14 days;
/*** VIEW & PURE FUNCTIONS ***/
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter
*/
function getA(Swap storage self) external view returns (uint256) {
return _getA(self);
}
/**
* @notice Return A, the amplification coefficient * n * (n - 1)
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter
*/
function _getA(Swap storage self) internal view returns (uint256) {
return _getAPrecise(self).div(A_PRECISION);
}
/**
* @notice Return A in its raw precision
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function getAPrecise(Swap storage self) external view returns (uint256) {
return _getAPrecise(self);
}
/**
* @notice Calculates and returns A based on the ramp settings
* @dev See the StableSwap paper for details
* @param self Swap struct to read from
* @return A parameter in its raw precision form
*/
function _getAPrecise(Swap storage self) internal view returns (uint256) {
uint256 t1 = self.futureATime; // time when ramp is finished
uint256 a1 = self.futureA; // final A value when ramp is finished
if (block.timestamp < t1) {
uint256 t0 = self.initialATime; // time when ramp is started
uint256 a0 = self.initialA; // initial A value when ramp is started
if (a1 > a0) {
// a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
return
a0.add(
a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
} else {
// a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
return
a0.sub(
a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
);
}
} else {
return a1;
}
}
/**
* @notice Retrieves the timestamp of last deposit made by the given address
* @param self Swap struct to read from
* @return timestamp of last deposit
*/
function getDepositTimestamp(Swap storage self, address user)
external
view
returns (uint256)
{
return self.depositTimestamp[user];
}
/**
* @notice Calculate the dy, the amount of selected token that user receives and
* the fee of withdrawing in one token
* @param account the address that is withdrawing
* @param tokenAmount the amount to withdraw in the pool's precision
* @param tokenIndex which token will be withdrawn
* @param self Swap struct to read from
* @return the amount of token user will receive and the associated swap fee
*/
function calculateWithdrawOneToken(
Swap storage self,
address account,
uint256 tokenAmount,
uint8 tokenIndex
) public view returns (uint256, uint256) {
uint256 dy;
uint256 newY;
(dy, newY) = calculateWithdrawOneTokenDY(self, tokenIndex, tokenAmount);
// dy_0 (without fees)
// dy, dy_0 - dy
uint256 dySwapFee =
_xp(self)[tokenIndex]
.sub(newY)
.div(self.tokenPrecisionMultipliers[tokenIndex])
.sub(dy);
dy = dy
.mul(
FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account))
)
.div(FEE_DENOMINATOR);
return (dy, dySwapFee);
}
/**
* @notice Calculate the dy of withdrawing in one token
* @param self Swap struct to read from
* @param tokenIndex which token will be withdrawn
* @param tokenAmount the amount to withdraw in the pools precision
* @return the d and the new y after withdrawing one token
*/
function calculateWithdrawOneTokenDY(
Swap storage self,
uint8 tokenIndex,
uint256 tokenAmount
) internal view returns (uint256, uint256) {
require(
tokenIndex < self.pooledTokens.length,
"Token index out of range"
);
// Get the current D, then solve the stableswap invariant
// y_i for D - tokenAmount
uint256[] memory xp = _xp(self);
CalculateWithdrawOneTokenDYInfo memory v =
CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
v.preciseA = _getAPrecise(self);
v.d0 = getD(xp, v.preciseA);
v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(self.lpToken.totalSupply()));
require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");
v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);
uint256[] memory xpReduced = new uint256[](xp.length);
v.feePerToken = _feePerToken(self);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
uint256 xpi = xp[i];
// if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
// else dxExpected = xp[i] - (xp[i] * d1 / d0)
// xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
xpReduced[i] = xpi.sub(
(
(i == tokenIndex)
? xpi.mul(v.d1).div(v.d0).sub(v.newY)
: xpi.sub(xpi.mul(v.d1).div(v.d0))
)
.mul(v.feePerToken)
.div(FEE_DENOMINATOR)
);
}
uint256 dy =
xpReduced[tokenIndex].sub(
getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
);
dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);
return (dy, v.newY);
}
/**
* @notice Calculate the price of a token in the pool with given
* precision-adjusted balances and a particular D.
*
* @dev This is accomplished via solving the invariant iteratively.
* See the StableSwap paper and Curve.fi implementation for further details.
*
* x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
* x_1**2 + b*x_1 = c
* x_1 = (x_1**2 + c) / (2*x_1 + b)
*
* @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
* @param tokenIndex Index of token we are calculating for.
* @param xp a precision-adjusted set of pool balances. Array should be
* the same cardinality as the pool.
* @param d the stableswap invariant
* @return the price of the token, in the same precision as in xp
*/
function getYD(
uint256 a,
uint8 tokenIndex,
uint256[] memory xp,
uint256 d
) internal pure returns (uint256) {
uint256 numTokens = xp.length;
require(tokenIndex < numTokens, "Token not found");
uint256 c = d;
uint256 s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < numTokens; i++) {
if (i != tokenIndex) {
s = s.add(xp[i]);
c = c.mul(d).div(xp[i].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
}
c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens));
uint256 b = s.add(d.mul(A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
* @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
* as the pool.
* @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
* See the StableSwap paper for details
* @return the invariant, at the precision of the pool
*/
function getD(uint256[] memory xp, uint256 a)
internal
pure
returns (uint256)
{
uint256 numTokens = xp.length;
uint256 s;
for (uint256 i = 0; i < numTokens; i++) {
s = s.add(xp[i]);
}
if (s == 0) {
return 0;
}
uint256 prevD;
uint256 d = s;
uint256 nA = a.mul(numTokens);
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
uint256 dP = d;
for (uint256 j = 0; j < numTokens; j++) {
dP = dP.mul(d).div(xp[j].mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// dP = dP * D * D * D * ... overflow!
}
prevD = d;
d = nA.mul(s).div(A_PRECISION).add(dP.mul(numTokens)).mul(d).div(
nA.sub(A_PRECISION).mul(d).div(A_PRECISION).add(
numTokens.add(1).mul(dP)
)
);
if (d.within1(prevD)) {
return d;
}
}
// Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
// with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
// function which does not rely on D.
revert("D does not converge");
}
/**
* @notice Get D, the StableSwap invariant, based on self Swap struct
* @param self Swap struct to read from
* @return The invariant, at the precision of the pool
*/
function getD(Swap storage self) internal view returns (uint256) {
return getD(_xp(self), _getAPrecise(self));
}
/**
* @notice Given a set of balances and precision multipliers, return the
* precision-adjusted balances.
*
* @param balances an array of token balances, in their native precisions.
* These should generally correspond with pooled tokens.
*
* @param precisionMultipliers an array of multipliers, corresponding to
* the amounts in the balances array. When multiplied together they
* should yield amounts at the pool's precision.
*
* @return an array of amounts "scaled" to the pool's precision
*/
function _xp(
uint256[] memory balances,
uint256[] memory precisionMultipliers
) internal pure returns (uint256[] memory) {
uint256 numTokens = balances.length;
require(
numTokens == precisionMultipliers.length,
"Balances must match multipliers"
);
uint256[] memory xp = new uint256[](numTokens);
for (uint256 i = 0; i < numTokens; i++) {
xp[i] = balances[i].mul(precisionMultipliers[i]);
}
return xp;
}
/**
* @notice Return the precision-adjusted balances of all tokens in the pool
* @param self Swap struct to read from
* @param balances array of balances to scale
* @return balances array "scaled" to the pool's precision, allowing
* them to be more easily compared.
*/
function _xp(Swap storage self, uint256[] memory balances)
internal
view
returns (uint256[] memory)
{
return _xp(balances, self.tokenPrecisionMultipliers);
}
/**
* @notice Return the precision-adjusted balances of all tokens in the pool
* @param self Swap struct to read from
* @return the pool balances "scaled" to the pool's precision, allowing
* them to be more easily compared.
*/
function _xp(Swap storage self) internal view returns (uint256[] memory) {
return _xp(self.balances, self.tokenPrecisionMultipliers);
}
/**
* @notice Get the virtual price, to help calculate profit
* @param self Swap struct to read from
* @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
*/
function getVirtualPrice(Swap storage self)
external
view
returns (uint256)
{
uint256 d = getD(_xp(self), _getAPrecise(self));
uint256 supply = self.lpToken.totalSupply();
if (supply > 0) {
return
d.mul(10**uint256(ERC20(self.lpToken).decimals())).div(supply);
}
return 0;
}
/**
* @notice Calculate the new balances of the tokens given the indexes of the token
* that is swapped from (FROM) and the token that is swapped to (TO).
* This function is used as a helper function to calculate how much TO token
* the user should receive on swap.
*
* @param self Swap struct to read from
* @param tokenIndexFrom index of FROM token
* @param tokenIndexTo index of TO token
* @param x the new total amount of FROM token
* @param xp balances of the tokens in the pool
* @return the amount of TO token that should remain in the pool
*/
function getY(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 x,
uint256[] memory xp
) internal view returns (uint256) {
uint256 numTokens = self.pooledTokens.length;
require(
tokenIndexFrom != tokenIndexTo,
"Can't compare token to itself"
);
require(
tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
"Tokens must be in pool"
);
uint256 a = _getAPrecise(self);
uint256 d = getD(xp, a);
uint256 c = d;
uint256 s;
uint256 nA = numTokens.mul(a);
uint256 _x;
for (uint256 i = 0; i < numTokens; i++) {
if (i == tokenIndexFrom) {
_x = x;
} else if (i != tokenIndexTo) {
_x = xp[i];
} else {
continue;
}
s = s.add(_x);
c = c.mul(d).div(_x.mul(numTokens));
// If we were to protect the division loss we would have to keep the denominator separate
// and divide at the end. However this leads to overflow with large numTokens or/and D.
// c = c * D * D * D * ... overflow!
}
c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens));
uint256 b = s.add(d.mul(A_PRECISION).div(nA));
uint256 yPrev;
uint256 y = d;
// iterative approximation
for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
yPrev = y;
y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
if (y.within1(yPrev)) {
return y;
}
}
revert("Approximation did not converge");
}
/**
* @notice Externally calculates a swap between two tokens.
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
*/
function calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) external view returns (uint256 dy) {
(dy, ) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx);
}
/**
* @notice Internally calculates a swap between two tokens.
*
* @dev The caller is expected to transfer the actual amounts (dx and dy)
* using the token contracts.
*
* @param self Swap struct to read from
* @param tokenIndexFrom the token to sell
* @param tokenIndexTo the token to buy
* @param dx the number of tokens to sell. If the token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @return dy the number of tokens the user will get
* @return dyFee the associated fee
*/
function _calculateSwap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx
) internal view returns (uint256 dy, uint256 dyFee) {
uint256[] memory xp = _xp(self);
require(
tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
"Token index out of range"
);
uint256 x =
dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]).add(
xp[tokenIndexFrom]
);
uint256 y = getY(self, tokenIndexFrom, tokenIndexTo, x, xp);
dy = xp[tokenIndexTo].sub(y).sub(1);
dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
dy = dy.sub(dyFee).div(self.tokenPrecisionMultipliers[tokenIndexTo]);
}
/**
* @notice A simple method to calculate amount of each underlying
* tokens that is returned upon burning given amount of
* LP tokens
*
* @param account the address that is removing liquidity. required for withdraw fee calculation
* @param amount the amount of LP tokens that would to be burned on
* withdrawal
* @return array of amounts of tokens user will receive
*/
function calculateRemoveLiquidity(
Swap storage self,
address account,
uint256 amount
) external view returns (uint256[] memory) {
return _calculateRemoveLiquidity(self, account, amount);
}
function _calculateRemoveLiquidity(
Swap storage self,
address account,
uint256 amount
) internal view returns (uint256[] memory) {
uint256 totalSupply = self.lpToken.totalSupply();
require(amount <= totalSupply, "Cannot exceed total supply");
uint256 feeAdjustedAmount =
amount
.mul(
FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account))
)
.div(FEE_DENOMINATOR);
uint256[] memory amounts = new uint256[](self.pooledTokens.length);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
amounts[i] = self.balances[i].mul(feeAdjustedAmount).div(
totalSupply
);
}
return amounts;
}
/**
* @notice Calculate the fee that is applied when the given user withdraws.
* Withdraw fee decays linearly over 4 weeks.
* @param user address you want to calculate withdraw fee of
* @return current withdraw fee of the user
*/
function calculateCurrentWithdrawFee(Swap storage self, address user)
public
view
returns (uint256)
{
uint256 endTime = self.depositTimestamp[user].add(4 weeks);
if (endTime > block.timestamp) {
uint256 timeLeftover = endTime.sub(block.timestamp);
return
self
.defaultWithdrawFee
.mul(self.withdrawFeeMultiplier[user])
.mul(timeLeftover)
.div(4 weeks)
.div(FEE_DENOMINATOR);
}
return 0;
}
/**
* @notice A simple method to calculate prices from deposits or
* withdrawals, excluding fees but including slippage. This is
* helpful as an input into the various "min" parameters on calls
* to fight front-running
*
* @dev This shouldn't be used outside frontends for user estimates.
*
* @param self Swap struct to read from
* @param account address of the account depositing or withdrawing tokens
* @param amounts an array of token amounts to deposit or withdrawal,
* corresponding to pooledTokens. The amount should be in each
* pooled token's native precision. If a token charges a fee on transfers,
* use the amount that gets transferred after the fee.
* @param deposit whether this is a deposit or a withdrawal
* @return if deposit was true, total amount of lp token that will be minted and if
* deposit was false, total amount of lp token that will be burned
*/
function calculateTokenAmount(
Swap storage self,
address account,
uint256[] calldata amounts,
bool deposit
) external view returns (uint256) {
uint256 numTokens = self.pooledTokens.length;
uint256 a = _getAPrecise(self);
uint256 d0 = getD(_xp(self, self.balances), a);
uint256[] memory balances1 = self.balances;
for (uint256 i = 0; i < numTokens; i++) {
if (deposit) {
balances1[i] = balances1[i].add(amounts[i]);
} else {
balances1[i] = balances1[i].sub(
amounts[i],
"Cannot withdraw more than available"
);
}
}
uint256 d1 = getD(_xp(self, balances1), a);
uint256 totalSupply = self.lpToken.totalSupply();
if (deposit) {
return d1.sub(d0).mul(totalSupply).div(d0);
} else {
return
d0.sub(d1).mul(totalSupply).div(d0).mul(FEE_DENOMINATOR).div(
FEE_DENOMINATOR.sub(
calculateCurrentWithdrawFee(self, account)
)
);
}
}
/**
* @notice return accumulated amount of admin fees of the token with given index
* @param self Swap struct to read from
* @param index Index of the pooled token
* @return admin balance in the token's precision
*/
function getAdminBalance(Swap storage self, uint256 index)
external
view
returns (uint256)
{
require(index < self.pooledTokens.length, "Token index out of range");
return
self.pooledTokens[index].balanceOf(address(this)).sub(
self.balances[index]
);
}
/**
* @notice internal helper function to calculate fee per token multiplier used in
* swap fee calculations
* @param self Swap struct to read from
*/
function _feePerToken(Swap storage self) internal view returns (uint256) {
return
self.swapFee.mul(self.pooledTokens.length).div(
self.pooledTokens.length.sub(1).mul(4)
);
}
/*** STATE MODIFYING FUNCTIONS ***/
/**
* @notice swap two tokens in the pool
* @param self Swap struct to read from and write to
* @param tokenIndexFrom the token the user wants to sell
* @param tokenIndexTo the token the user wants to buy
* @param dx the amount of tokens the user wants to sell
* @param minDy the min amount the user would like to receive, or revert.
* @return amount of token user received on swap
*/
function swap(
Swap storage self,
uint8 tokenIndexFrom,
uint8 tokenIndexTo,
uint256 dx,
uint256 minDy
) external returns (uint256) {
require(
dx <= self.pooledTokens[tokenIndexFrom].balanceOf(msg.sender),
"Cannot swap more than you own"
);
// Transfer tokens first to see if a fee was charged on transfer
uint256 beforeBalance =
self.pooledTokens[tokenIndexFrom].balanceOf(address(this));
self.pooledTokens[tokenIndexFrom].safeTransferFrom(
msg.sender,
address(this),
dx
);
// Use the actual transferred amount for AMM math
uint256 transferredDx =
self.pooledTokens[tokenIndexFrom].balanceOf(address(this)).sub(
beforeBalance
);
(uint256 dy, uint256 dyFee) =
_calculateSwap(self, tokenIndexFrom, tokenIndexTo, transferredDx);
require(dy >= minDy, "Swap didn't result in min tokens");
uint256 dyAdminFee =
dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
self.tokenPrecisionMultipliers[tokenIndexTo]
);
self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add(
transferredDx
);
self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub(
dyAdminFee
);
self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);
emit TokenSwap(
msg.sender,
transferredDx,
dy,
tokenIndexFrom,
tokenIndexTo
);
return dy;
}
/**
* @notice Add liquidity to the pool
* @param self Swap struct to read from and write to
* @param amounts the amounts of each token to add, in their native precision
* @param minToMint the minimum LP tokens adding this amount of liquidity
* should mint, otherwise revert. Handy for front-running mitigation
* @return amount of LP token user received
*/
function addLiquidity(
Swap storage self,
uint256[] memory amounts,
uint256 minToMint
) external returns (uint256) {
require(
amounts.length == self.pooledTokens.length,
"Amounts must match pooled tokens"
);
uint256[] memory fees = new uint256[](self.pooledTokens.length);
uint256 lpTotalSupply = self.lpToken.totalSupply();
// current state
AddLiquidityInfo memory v = AddLiquidityInfo(0, 0, 0, 0);
if (lpTotalSupply != 0) {
v.d0 = getD(self);
}
uint256[] memory newBalances = self.balances;
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
require(
lpTotalSupply != 0 || amounts[i] > 0,
"Must supply all tokens in pool"
);
// Transfer tokens first to see if a fee was charged on transfer
if (amounts[i] != 0) {
uint256 beforeBalance =
self.pooledTokens[i].balanceOf(address(this));
self.pooledTokens[i].safeTransferFrom(
msg.sender,
address(this),
amounts[i]
);
// Update the amounts[] with actual transfer amount
amounts[i] = self.pooledTokens[i].balanceOf(address(this)).sub(
beforeBalance
);
}
newBalances[i] = self.balances[i].add(amounts[i]);
}
// invariant after change
v.preciseA = _getAPrecise(self);
v.d1 = getD(_xp(self, newBalances), v.preciseA);
require(v.d1 > v.d0, "D should increase");
// updated to reflect fees and calculate the user's LP tokens
v.d2 = v.d1;
if (lpTotalSupply != 0) {
uint256 feePerToken = _feePerToken(self);
for (uint256 i = 0; i < self.pooledTokens.length; i++) {
uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
fees[i] = feePerToken
.mul(idealBalance.difference(newBalances[i]))
.div(FEE_DENOMINATOR);
self.balances[i] = newBalances[i].sub(
fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
);
newBalances[i] = newBalances[i].sub(fees[i]);
}
v.d2 = getD(_xp(self, newBalances), v.preciseA);
} else {
// the initial depositor doesn't pay fees
self.balances = newBalances;
}
uint256 toMint;
uint256 toMintFee;
uint256 toMintUser;
if (lpTotalSupply == 0) {
toMint = v.d1;
} else {
toMint = v.d2.sub(v.d0).mul(lpTotalSupply).div(v.d0);
}
require(toMint >= minToMint, "Couldn't mint min requested");
// if deposit fee is none, mint full amount
if (self.defaultDepositFee == 0) {
self.lpToken.mint(msg.sender, toMint);
} else {
// mint the user's LP tokens minus the deposit fee
toMintFee = toMint.mul(self.defaultDepositFee).div(FEE_DENOMINATOR);
toMintUser = toMint.sub(toMintFee);
self.lpToken.mint(self.devaddr, toMintFee);
self.lpToken.mint(msg.sender, toMintUser);
}
emit AddLiquidity(
msg.sender,
amounts,
fees,
v.d1,
lpTotalSupply + toMint
);
return toMint;
}
/**
* @notice Update the withdraw fee for `user`. If the user is currently
* not providing liquidity in the pool, sets to default value. If not, recalculate
* the starting withdraw fee based on the last deposit's time & amount relative
* to the new deposit.
*
* @param self Swap struct to read from and write to
* @param user address of the user depositing tokens
* @param toMint amount of pool tokens to be minted
*/
function updateUserWithdrawFee(
Swap storage self,
address user,
uint256 toMint
) external {
_updateUserWithdrawFee(self, user, toMint);
}
function _updateUserWithdrawFee(
Swap storage self,
address user,
uint256 toMint
) internal {
// If token is transferred to address 0 (or burned), don't update the fee.
if (user == address(0)) {
return;
}
if (self.defaultWithdrawFee == 0) {
// If current fee is set to 0%, set multiplier to FEE_DENOMINATOR
self.withdrawFeeMultiplier[user] = FEE_DENOMINATOR;
} else {
// Otherwise, calculate appropriate discount based on last deposit amount
uint256 currentFee = calculateCurrentWithdrawFee(self, user);
uint256 currentBalance = self.lpToken.balanceOf(user);