-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot_response.py
74 lines (65 loc) · 2.9 KB
/
chatbot_response.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from keras.models import load_model
from train_model import *
from recommendation import *
cosine_sim_author, cosine_sim_genre = create_mat_cos_sim()
def clean_up_sentence(sentence):
"preprocess user_request (tokenization and stemming)"
# tokenize the pattern - split words into array
sentence_words = nltk.word_tokenize(sentence)
# stem each word - create short form for word
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
def bow(sentence, words, show_details=True):
"Encoding user_request after preprocessing"
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
def predict_class(sentence):
""
# filter out predictions below a threshold
model = load_model('model_intents.h5')
p = bow(sentence, words,show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def get_response(sentence):
"chatbot response for each user request"
ints=predict_class(sentence)
if ints[0]['intent']=='Asking about the most rated books':
message=top_rated('book_rating')
return message
elif (ints[0]['intent']=='asking about similar books ') and ('author' in sentence):
message=get_recommendation_author_or_genre(find_title_content_based(sentence), cosine_sim_author)
return message
elif (ints[0]['intent']=='asking about similar books ') and ('genre' in sentence):
message=get_recommendation_author_or_genre(find_title_content_based(sentence), cosine_sim_genre)
return message
elif ints[0]['intent']=="asking about book's recommendation based on user's preference":
message = get_recommendation_collaborative(find_title_content_based(sentence), bookmat)
return message
elif ints[0]['intent']=="Asking about informations":
message = asking_about_information(find_title_content_based(sentence))
return message
else:
list_of_intents = intents['intents']
for i in list_of_intents:
if(i['tag']== ints[0]['intent']):
result = random.choice(i['responses'])
message={ "answer":[{"_type": "dialog",
"message": result}]}
return message