-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathimp1.ml
214 lines (175 loc) · 4.52 KB
/
imp1.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
type bool =
| True
| False
(** val negb : bool -> bool **)
let negb = function
| True -> False
| False -> True
type nat =
| O
| S of nat
type 'a option =
| Some of 'a
| None
type sumbool =
| Left
| Right
(** val add : nat -> nat -> nat **)
let rec add n m =
match n with
| O -> m
| S p -> S (add p m)
(** val mul : nat -> nat -> nat **)
let rec mul n m =
match n with
| O -> O
| S p -> add m (mul p m)
(** val sub : nat -> nat -> nat **)
let rec sub n m =
match n with
| O -> n
| S k -> (match m with
| O -> n
| S l -> sub k l)
(** val bool_dec : bool -> bool -> sumbool **)
let bool_dec b1 b2 =
match b1 with
| True -> (match b2 with
| True -> Left
| False -> Right)
| False -> (match b2 with
| True -> Right
| False -> Left)
module Nat =
struct
(** val eqb : nat -> nat -> bool **)
let rec eqb n m =
match n with
| O -> (match m with
| O -> True
| S _ -> False)
| S n' -> (match m with
| O -> False
| S m' -> eqb n' m')
(** val leb : nat -> nat -> bool **)
let rec leb n m =
match n with
| O -> True
| S n' -> (match m with
| O -> False
| S m' -> leb n' m')
end
type ascii =
| Ascii of bool * bool * bool * bool * bool * bool * bool * bool
(** val ascii_dec : ascii -> ascii -> sumbool **)
let ascii_dec a b =
let Ascii (x, x0, x1, x2, x3, x4, x5, x6) = a in
let Ascii (b8, b9, b10, b11, b12, b13, b14, b15) = b in
(match bool_dec x b8 with
| Left ->
(match bool_dec x0 b9 with
| Left ->
(match bool_dec x1 b10 with
| Left ->
(match bool_dec x2 b11 with
| Left ->
(match bool_dec x3 b12 with
| Left ->
(match bool_dec x4 b13 with
| Left ->
(match bool_dec x5 b14 with
| Left -> bool_dec x6 b15
| Right -> Right)
| Right -> Right)
| Right -> Right)
| Right -> Right)
| Right -> Right)
| Right -> Right)
| Right -> Right)
type string =
| EmptyString
| String of ascii * string
(** val string_dec : string -> string -> sumbool **)
let rec string_dec s x =
match s with
| EmptyString -> (match x with
| EmptyString -> Left
| String (_, _) -> Right)
| String (a, s0) ->
(match x with
| EmptyString -> Right
| String (a0, s1) ->
(match ascii_dec a a0 with
| Left -> string_dec s0 s1
| Right -> Right))
(** val beq_string : string -> string -> bool **)
let beq_string x y =
match string_dec x y with
| Left -> True
| Right -> False
type 'a total_map = string -> 'a
(** val t_update : 'a1 total_map -> string -> 'a1 -> string -> 'a1 **)
let t_update m x v x' =
match beq_string x x' with
| True -> v
| False -> m x'
type state = nat total_map
type aexp =
| ANum of nat
| AId of string
| APlus of aexp * aexp
| AMinus of aexp * aexp
| AMult of aexp * aexp
type bexp =
| BTrue
| BFalse
| BEq of aexp * aexp
| BLe of aexp * aexp
| BNot of bexp
| BAnd of bexp * bexp
(** val aeval : state -> aexp -> nat **)
let rec aeval st = function
| ANum n -> n
| AId x -> st x
| APlus (a1, a2) -> add (aeval st a1) (aeval st a2)
| AMinus (a1, a2) -> sub (aeval st a1) (aeval st a2)
| AMult (a1, a2) -> mul (aeval st a1) (aeval st a2)
(** val beval : state -> bexp -> bool **)
let rec beval st = function
| BTrue -> True
| BFalse -> False
| BEq (a1, a2) -> Nat.eqb (aeval st a1) (aeval st a2)
| BLe (a1, a2) -> Nat.leb (aeval st a1) (aeval st a2)
| BNot b1 -> negb (beval st b1)
| BAnd (b1, b2) ->
(match beval st b1 with
| True -> beval st b2
| False -> False)
type com =
| CSkip
| CAss of string * aexp
| CSeq of com * com
| CIf of bexp * com * com
| CWhile of bexp * com
(** val ceval_step : state -> com -> nat -> state option **)
let rec ceval_step st c = function
| O -> None
| S i' ->
(match c with
| CSkip -> Some st
| CAss (l, a1) -> Some (t_update st l (aeval st a1))
| CSeq (c1, c2) ->
(match ceval_step st c1 i' with
| Some st' -> ceval_step st' c2 i'
| None -> None)
| CIf (b, c1, c2) ->
(match beval st b with
| True -> ceval_step st c1 i'
| False -> ceval_step st c2 i')
| CWhile (b1, c1) ->
(match beval st b1 with
| True ->
(match ceval_step st c1 i' with
| Some st' -> ceval_step st' c i'
| None -> None)
| False -> Some st))