-
Notifications
You must be signed in to change notification settings - Fork 1
/
bike.jl
286 lines (228 loc) · 7.99 KB
/
bike.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
using MLJFlux, Flux, MLJ, DataFrames, CSV, StatsBase
using Plots, StatsPlots
using Dates
plotly(size = (1600, 1200))
origindata = CSV.read("data/bike-sharing/train.csv", DataFrame)
function transformDataType!(dataframe::DataFrame)
# 转换日期
datetimes = map(x -> DateTime(x, "yyyy-mm-dd HH:MM:SS"), dataframe[!, :datetime])
years = map(year, datetimes)
months = map(month, datetimes)
days = map(day, datetimes)
weekdays = map(dayofweek, datetimes)
hours = map(hour, datetimes)
dataframe[!, :year] = years
dataframe[!, :month] = months
dataframe[!, :weekday] = weekdays
dataframe[!, :day] = days
dataframe[!, :hour] = hours
# 转换季节,工作日,天气
seasonmap = Dict(1 => "Spring", 2 => "Summer", 3 => "Autumn", 4 => "Winter")
holidaymap = Dict(1 => "Workingday", 0 => "Weekday")
weathermap = Dict(1 => "Sunny", 2 => "Cloudy", 3 => "Flurry", 4 => "Heavy Snow")
dataframe[!, :season] = map(x -> seasonmap[x], dataframe[!, :season])
dataframe[!, :workingday] = map(x -> holidaymap[x], dataframe[!, :workingday])
dataframe[!, :weather] = map(x -> weathermap[x], dataframe[!, :weather])
return dataframe
end
transformDataType!(origindata)
function plotHeatmap(dataframe::DataFrame)
_schema = schema(dataframe)
columns = collect(_schema.names)
scitypes = collect(_schema.scitypes)
columns = columns[scitypes .!= Textual]
cormatrix = cor(Matrix(select(dataframe, columns)))
heatmap(string.(columns), string.(columns), cormatrix) |> display
end
plotHeatmap(origindata)
# MODULE 数据可视化
function plotYearAndCount(dataframe::DataFrame)
groupDataframe = groupby(dataframe, :year)
years = Int[]
counts = Int[]
for _dataframe in groupDataframe
year = first(_dataframe[!, :year])
count = reduce(+, _dataframe[!, :count])
push!(years, year)
push!(counts, count)
end
bar(years, counts) |> display
end
plotYearAndCount(origindata)
function plotPieOfCount(dataframe::DataFrame)
totalcount = reduce(+, dataframe[!, :count])
casualcount = reduce(+, dataframe[!, :casual])
registeredcount = reduce(+, dataframe[!, :registered])
xs = ["Casual", "Registered"]
ys = [casualcount / totalcount, registeredcount / totalcount]
pie(xs, ys) |> display
end
plotPieOfCount(origindata)
function plotTimeAndCount(dataframe::DataFrame, feature::Symbol)
features = [:hour, feature]
groupDataframe = groupby(dataframe, features)
hours = Int[]
counts = Float64[]
features = []
for _dataframe in groupDataframe
hour = first(_dataframe[!, :hour])
count = mean(_dataframe[!, :count])
_feature = first(_dataframe[!, feature])
push!(hours, hour)
push!(counts, count)
push!(features, _feature)
end
partcount = 24
p = plot()
for (_hours, _counts, labels) in Iterators.zip(Iterators.partition(hours, partcount),
Iterators.partition(counts, partcount),
Iterators.partition(features, partcount))
indexs = sortperm(_hours)
xs = _hours[indexs]
ys = _counts[indexs]
plot!(p, xs, ys, label = first(labels))
end
display(p)
end
plotTimeAndCount(origindata, :season)
plotTimeAndCount(origindata, :workingday)
plotTimeAndCount(origindata, :weather)
boxplot(origindata[!, :count]) |> display
boxplot(origindata[!, :hour], origindata[!, :count]) |> display
boxplot(origindata[!, :weekday], origindata[!, :count]) |> display
# DONE plot weather and count
boxplot(origindata[!, :weather], origindata[!, :count]) |> display
# DONE plot season and count
boxplot(origindata[!, :season], origindata[!, :count]) |> display
# TODO plot weather, season and count
# ATTENTION holy shit is this !
# MODULE 预测
function fetchTransformedTrainData(traindata::DataFrame)
function transformDateTime!(dataframe::DataFrame)
datetimes = map(x -> DateTime(x, "yyyy-mm-dd HH:MM:SS"), dataframe[!, :datetime])
years = map(year, datetimes)
months = map(month, datetimes)
days = map(day, datetimes)
weekdays = map(dayofweek, datetimes)
hours = map(hour, datetimes)
dataframe[!, :year] = years
dataframe[!, :month] = months
dataframe[!, :weekday] = weekdays
dataframe[!, :day] = days
dataframe[!, :hour] = hours
return dataframe
end
featureSelector = FeatureSelector(
features = [:datetime, :casual, :registered],
ignore = true
)
onehotEncoder = OneHotEncoder(
features = [:season, :holiday, :workingday, :weather]
)
function coerceCount!(dataframe::DataFrame)
coerce!(dataframe, Count => Continuous)
return dataframe
end
transformModel = Pipeline(
transformDateTime!,
featureSelector,
onehotEncoder,
coerceCount!
)
transformMachine = machine(transformModel, traindata)
fit!(transformMachine)
# TODO 转换 traindata testdata
transformedTrainData = MLJ.transform(transformMachine, copy(traindata))
return transformedTrainData
end
function fetchTransformedTestData(testdata::DataFrame)
function transformDateTime!(dataframe::DataFrame)
datetimes = map(x -> DateTime(x, "yyyy-mm-dd HH:MM:SS"), dataframe[!, :datetime])
years = map(year, datetimes)
months = map(month, datetimes)
days = map(day, datetimes)
weekdays = map(dayofweek, datetimes)
hours = map(hour, datetimes)
dataframe[!, :year] = years
dataframe[!, :month] = months
dataframe[!, :weekday] = weekdays
dataframe[!, :day] = days
dataframe[!, :hour] = hours
return dataframe
end
featureSelector = FeatureSelector(
features = [:datetime],
ignore = true
)
function coerceCount!(dataframe::DataFrame)
coerce!(dataframe, Count => Continuous)
return dataframe
end
transformModel = Pipeline(
transformDateTime!,
featureSelector,
onehotEncoder,
coerceCount!
)
transformMachine = machine(transformModel, testdata)
fit!(transformMachine)
transformedTestData = MLJ.transform(transformMachine, copy(testdata))
return transformedTestData
end
traindata = CSV.read("data/bike-sharing/train.csv", DataFrame)
testdata = CSV.read("data/bike-sharing/test.csv", DataFrame)
transformedTrainData = fetchTransformedTrainData(traindata)
transformedTestData = fetchTransformedTestData(testdata)
# TODO MLJFlux prediction
using MLJFlux, Flux, StableRNGs
mutable struct NetworkBuilder <: MLJFlux.Builder
n1::Int
n2::Int
n3::Int
n4::Int
end
function MLJFlux.build(model::NetworkBuilder, rng, nin, nout)
init = Flux.glorot_uniform(rng)
return Chain(
Dense(nin, model.n1, relu, init = init),
Dense(model.n1, model.n2, relu, init = init),
Dense(model.n2, model.n3, relu, init = init),
Dense(model.n3, model.n4, relu, init = init),
Dense(model.n4, nout, relu, init = init)
)
end
function predictOutput(mach::Machine, inputtest::DataFrame)
output = MLJ.predict(mach, inputtest)
outputdataframe = DataFrame()
outputdataframe[!, :datetime] = testdata[!, :datetime]
outputdataframe[!, :count] = output
CSV.write("data/bike-sharing/submissing.csv", outputdataframe)
end
# TODO make function but not global data
# TODO plot origin y and predict y
function plotPrediction(dataframe::DataFrame, output::Vector)
difference = output .- dataframe[!, :count]
plot(difference) |> display
end
# ATTENTION use function to get data, but not model
rng = StableRNG(1234)
regressor = NeuralNetworkRegressor(
lambda = 0.01,
builder = NetworkBuilder(10, 8, 6, 6),
batch_size = 5,
epochs = 600,
alpha = 0.4,
rng = rng
)
y, X = unpack(transformedTrainData, colname -> colname == :count, colname -> true)
trainrow, testrow = partition(eachindex(y), 0.7, rng = rng)
regressor = machine(regressor, X, y)
fit!(regressor, rows = trainrow)
measure = evaluate!(regressor,
resampling = CV(nfolds = 6, rng = rng),
measure = [l1, l2],
rows = testrow)
columns = names(transformedTrainData)
columns = columns[columns .!= "count"]
plotPrediction(transformedTrainData, MLJ.predict(regressor, select(transformedTrainData, columns)))
predictOutput(regressor, transformedTestData)