-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path#redo.py#
38 lines (32 loc) · 1.5 KB
/
#redo.py#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import neural_net as nn
import data_utils
import os
import numpy as np
import time
def build_and_train_nn(Xtr, Ytr, Xval, Yval, input_size = 3072, hidden_layer_size = 700, output_size = 10, learning_rate = 1, num_iters = 5000, learning_rate_decay = .8, reg =1e-3):
start_time = time.time()
our_net = nn.TwoLayerNet(input_size, hidden_layer_size, output_size)
results = our_net.train(Xtr, Ytr, Xval, Yval, learning_rate = learning_rate, reg = reg, verbose = True, num_iters = num_iters, learning_rate_decay = learning_rate_decay)
end_time = time.time()
results['time'] = end_time - start_time
return results
:def load_and_process():
Xtr, Ytr, Xte, Yte = data_utils.load_CIFAR10(os.path.join(os.getcwd(),'cifar-10-batches-py'))
Xtr, Xte = np.reshape(Xtr,(Xtr.shape[0], 3072)), np.reshape(Xte, (Xte.shape[0], 3072))
#preprocessing
feature_maxes = np.abs(Xtr).max(axis = 0)
Xtr = Xtr/feature_maxes
Xte = Xte/feature_maxes
mean_image = np.mean(Xtr, axis = 0)
Xtr -= mean_image
Xte -= mean_image
#end preprocessing
Xtr, Ytr = nn.shuffle_training_sets(Xtr,Ytr)
training_set_size = Xtr.shape[0]
Xtrain, Xval = Xtr[:int(training_set_size*.9)],Xtr[int(training_set_size*.9):]
Ytrain, Yval = Ytr[:int(training_set_size*.9)], Ytr[int(training_set_size*.9):]
return Xtrain, Ytrain, Xval, Yval, Xte, Yte
if __name__ == '__main__':
Xtr, Ytr, Xval, Yval, Xte, Yte = load_and_process()
results = build_and_train_nn(Xtr,Ytr, Xval, Yval)
print(results)