-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTestModule.py
262 lines (239 loc) · 15 KB
/
TestModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from ContinuousGreedy import multilinear_relaxation
from helpers import save, load
from ProblemInstances import InfluenceMaximization, FacilityLocation, derive
from time import time
import argparse
import logging
import numpy as np
import os
import pickle
import sys
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Test Module for ...',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--problem', type=str, help='If the problem instance is created before, provide it here to save'
' time instead of recreating it.')
parser.add_argument('--problemType', default='DR', type=str, help='Type of the problem instance',
choices=['DR', 'QS', 'FL', 'IM'])
parser.add_argument('--input', default='datasets/epinions_20', type=str,
help='Data input for the InfluenceMaximization problem')
parser.add_argument('--partitions', default=None,
help='Partitions input for the InfluenceMaximization problem')
parser.add_argument('--testMode', default=False, type=bool, help='Tests the quality of the estimations from '
'different aspects')
parser.add_argument('--rewardsInput', default="datasets/DR_rewards0", help='Input file that stores rewards')
parser.add_argument('--partitionsInput', default="datasets/DR_givenPartitions0", help='Input file that stores partitions')
parser.add_argument('--typesInput', default="datasets/DR_types0",
help='Input file that stores targeted partitions of the ground set')
parser.add_argument('--constraints', default=3, type=int,
help='Number of constraints for each partition')
parser.add_argument('--estimator', default='sampler', type=str, help='Type of the estimator',
choices=['polynomial', 'sampler', 'samplerWithDependencies'])
parser.add_argument('--stochasticORdeterministic', default='stochastic', type=str, help='Type of the function',
choices=['stochastic', 'deterministic'])
parser.add_argument('--iterations', default=100, type=int,
help='Number of iterations used in the Frank-Wolfe algorithm')
parser.add_argument('--degree', default=1, type=int, help='Degree of the polynomial estimator')
parser.add_argument('--center', default=0.5, type=float,
help='The point around which Taylor approximation is calculated')
parser.add_argument('--samples', default=500, type=int,
help='Number of samples used to calculate the sampler estimator')
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
if args.problem is not None:
newProblem = load(args.problem)
args.problemType = args.problem.split("_")[0].split("/")[-1]
args.input = args.problem.split("_")[1] + "_" + args.problem.split("_")[2] + "_" + args.problem.split("_")[3]
args.constraints = int(args.problem.split("_")[-1])
else:
if args.problemType == 'DR':
rewards = load(args.rewardsInput)
givenPartitions = load(args.partitionsInput)
types = load(args.typesInput)
k_list = load(args.constraints)
newProblem = DiversityReward(rewards, givenPartitions, types, k_list)
elif args.problemType == 'QS':
pass
elif args.problemType == 'FL':
logging.info('Loading movie ratings...')
bipartite_graph = load(args.input)
target_partitions = load(args.partitions)
k_list = dict.fromkeys(target_partitions.keys(), 0)
k_list['Drama'] = args.constraints
k_list['Comedy'] = args.constraints
logging.info('...done. Defining a FacilityLocation Problem...')
newProblem = FacilityLocation(bipartite_graph, k_list, target_partitions)
logging.info('...done. %d seeds will be selected from each partition.' % args.constraints)
elif args.problemType == 'IM':
logging.info('Loading cascades...')
graphs = load(args.input)
if args.partitions is not None:
target_partitions = load(args.partitions)
k_list = dict.fromkeys(target_partitions.keys(), args.constraints)
else:
target_partitions = None
k_list = args.constraints
logging.info('...done. Just loaded %d cascades.' % (len(graphs)))
logging.info('Defining an InfluenceMaximization problem...')
newProblem = InfluenceMaximization(graphs, k_list, target_partitions)
logging.info('...done. %d seeds will be selected from each partition.' % args.constraints)
elif args.problemType == 'ALTIM':
logging.info('Loading cascades...')
graphs = load(args.input)
if args.partitions is not None:
target_partitions = load(args.partitions)
k_list = dict.fromkeys(target_partitions.keys(), args.constraints)
else:
target_partitions = None
k_list = args.constraints
logging.info('...done. Just loaded %d cascades.' % (len(graphs)))
logging.info('Defining an AltInfluenceMaximization problem...')
newProblem = AltInfluenceMaximization(graphs, k_list, target_partitions)
logging.info('...done. %d seeds will be selected from each partition.' % args.constraints)
problem_dir = "problems/"
if not os.path.exists(problem_dir):
os.makedirs(problem_dir)
save(problem_dir + args.problemType + "_" + args.input.split("/")[-1] + "_k_" + str(args.constraints),
newProblem)
directory_output = "results/continuous_greedy/" + args.problemType + "/" + args.input.split("/")[-1] + "/k_" \
+ str(args.constraints) + "_" + str(args.iterations) + "_FW" + "/"
if not os.path.exists(directory_output):
os.makedirs(directory_output)
logging.info('...output directory is created...')
output = directory_output + args.stochasticORdeterministic + args.estimator
if args.testMode is True:
sys.stderr.write("\nConvergence checker is activated.")
fixed_point = 0.5
directory_output = "results/convergence_test/" + args.problem + "/y" + str(fixed_point).strip('.') + "/"
if not os.path.exists(directory_output):
os.makedirs(directory_output)
y = dict.fromkeys(newProblem.groundSet, fixed_point)
# if os.path.exists("random_y"):
# y = load("random_y")
# else:
# y = dict(zip(newProblem.groundSet, np.random.rand(newProblem.problemSize).tolist()))
# print(y)
# save("random_y", y)
# out = multilinear_relaxation(newProblem.utility_function, y)
# sys.stderr.write("multilinear relaxation is: " + str() + '\n')
if args.estimator == 'polynomial':
output = directory_output + args.estimator + "_" + str(args.degree)
start = time()
poly_grad, poly_estimation = newProblem.get_polynomial_estimator(args.center, args.degree).estimate(y)
elapsed_time = time() - start
sys.stderr.write("estimated grad is: " + str(poly_grad) + '\n')
sys.stderr.write("estimated value of the function is: " + str(poly_estimation) + '\n')
# if os.path.exists(output):
# poly_results = load(output)
# poly_results.append((elapsed_time, args.degree, poly_estimation, out))
# else:
# poly_results = [(elapsed_time, args.degree, poly_estimation, out)]
poly_results = [elapsed_time, args.degree, poly_estimation]
save(output, poly_results)
else: # args.estimator == 'sampler':
output = directory_output + args.estimator + "_" + str(args.samples)
start = time()
sampler_grad, sampler_estimation = newProblem.get_sampler_estimator(args.samples).estimate(y)
elapsed_time = time() - start
sys.stderr.write("estimated value of the function is: " + str(sampler_estimation) + '\n')
# if os.path.exists(output):
# sampler_results = load(output)
# sampler_results.append((elapsed_time, args.samples, sampler_estimation, out))
# else:
# sampler_results = [(elapsed_time, args.samples, sampler_estimation, out)]
sampler_results = [elapsed_time, args.samples, sampler_estimation]
save(output, sampler_results)
# if args.estimator == 'samplerWithDependencies':
# sampler_output = directory_output + args.estimator + '_1_graph_y_rand2' + '_samp_with_dep_estimation'
# start = time()
# sampler_grad, sampler_estimation = newProblem.get_sampler_estimator(args.samples, newProblem.dependencies)\
# .estimate(y)
# elapsed_time = time() - start
# sys.stderr.write("estimated value of the function is: " + str(sampler_estimation) + '\n')
# if os.path.exists(sampler_output):
# sampler_results = load(sampler_output)
# sampler_results.append((elapsed_time, args.samples, sampler_estimation, out))
# else:
# sampler_results = [(elapsed_time, args.samples, sampler_estimation, out)]
# save(sampler_output, sampler_results)
else:
if args.estimator == 'polynomial' and args.stochasticORdeterministic == 'deterministic':
logging.info('Initiating the Continuous Greedy algorithm using Polynomial Estimator...')
sys.stderr.write('output directory is:' + output)
output += "_degree_" + str(args.degree) + "_around_" + str(args.center).replace(".", "")
output_backup = output + '_backup'
estimator = newProblem.get_polynomial_estimator(args.center, args.degree)
y, track, bases = newProblem.get_continuous_greedy(estimator, int(args.iterations),
backup_file=output_backup)
print(output)
results = []
for key in track:
# results.append((key, track[key][0], track[key][1],
# multilinear_relaxation(newProblem.utility_function, track[key][1]), args.estimator,
# args.degree, args.center))
results.append((key, track[key][0], track[key][1],
newProblem.objective_func(track[key][1]), args.estimator,
args.degree, args.center, bases))
# results = [track, newProblem.utility_function, args.estimator, args.degree, args.center]
if args.estimator == 'polynomial' and args.stochasticORdeterministic == 'stochastic':
logging.info('Initiating the Continuous Greedy algorithm using Polynomial Estimator...')
sys.stderr.write('output directory is:' + output)
output += "_degree_" + str(args.degree) + "_around_" + str(args.center).replace(".", "")
output_backup = output + '_backup'
estimator = newProblem.get_stochastic_polynomial_estimator(args.center, args.degree)
y, track, bases = newProblem.get_continuous_greedy(estimator, int(args.iterations),
backup_file=output_backup)
print(output)
results = []
for key in track:
# results.append((key, track[key][0], track[key][1],
# multilinear_relaxation(newProblem.utility_function, track[key][1]), args.estimator,
# args.degree, args.center))
results.append((key, track[key][0], track[key][1],
newProblem.objective_func(track[key][1]), args.estimator,
args.degree, args.center, bases))
# results = [track, newProblem.utility_function, args.estimator, args.degree, args.center]
if args.estimator == 'sampler' and args.stochasticORdeterministic == 'deterministic':
logging.info('Initiating the Continuous Greedy algorithm using Sampler Estimator...')
output += "_" + str(args.samples) + "_samples"
output_backup = output + '_backup'
estimator = newProblem.get_sampler_estimator(args.samples)
y, track, bases = newProblem.get_continuous_greedy(estimator, args.iterations,
backup_file=output_backup)
print(output)
results = []
for key in track:
results.append((key, track[key][0], track[key][1],
newProblem.objective_func(track[key][1]), args.estimator,
args.samples, bases))
if args.estimator == 'sampler' and args.stochasticORdeterministic == 'stochastic':
logging.info('Initiating the Continuous Greedy algorithm using Sampler Estimator...')
output += "_" + str(args.samples) + "_samples"
output_backup = output + '_backup'
estimator = newProblem.get_stochastic_sampler_estimator(args.samples)
y, track, bases = newProblem.get_continuous_greedy(estimator, args.iterations,
backup_file=output_backup)
print(output)
results = []
for key in track:
results.append((key, track[key][0], track[key][1],
newProblem.objective_func(track[key][1]), args.estimator,
args.samples, bases))
if args.estimator == 'samplerWithDependencies':
logging.info('Initiating the Continuous Greedy algorithm using Sampler Estimator with Dependencies...')
output += "_" + str(args.samples) + "_samples"
output_backup = output + '_backup'
y, track, bases = newProblem.sampler_continuous_greedy(args.samples, args.iterations,
dependencies=newProblem.dependencies,
backup_file=output_backup)
# sys.stderr.write("objective is: " + str(newProblem.utility_function(y)) + '\n')
print(output)
results = []
for key in track:
# results.append((key, track[key][0], track[key][1],
# multilinear_relaxation(newProblem.utility_function, track[key][1]), args.estimator,
# args.samples))
results.append((key, track[key][0], track[key][1],
newProblem.utility_function(track[key][1]), args.estimator,
args.samples, bases))
save(output, results)