diff --git a/docs/source/dev/multimodal/multimodal_index.rst b/docs/source/dev/multimodal/multimodal_index.rst index d01f39284377d..c2d1b771e27e3 100644 --- a/docs/source/dev/multimodal/multimodal_index.rst +++ b/docs/source/dev/multimodal/multimodal_index.rst @@ -10,8 +10,13 @@ vLLM provides experimental support for multi-modal models through the :mod:`vllm :class:`vllm.inputs.PromptStrictInputs` accepts an additional attribute ``multi_modal_data`` which allows you to pass in multi-modal input alongside text and token prompts. +.. note:: + ``multi_modal_data`` can accept keys and values beyond the builtin ones, as long as a customized plugin is registered through + :class:`vllm.multimodal.MULTIMODAL_REGISTRY`. + By default, vLLM models do not support multi-modal inputs. To enable multi-modal support for a model, please follow :ref:`the guide for adding a new multimodal model. `. + # TODO: Add more instructions on how to do that once embeddings is in. Guides diff --git a/docs/source/models/vlm.rst b/docs/source/models/vlm.rst index f8c61018a08dc..f9e5dbea1c9df 100644 --- a/docs/source/models/vlm.rst +++ b/docs/source/models/vlm.rst @@ -8,18 +8,6 @@ vLLM provides experimental support for Vision Language Models (VLMs). This docum .. important:: We are actively iterating on VLM support. Expect breaking changes to VLM usage and development in upcoming releases without prior deprecation. -Engine Arguments ----------------- - -The following :ref:`engine arguments ` are specific to VLMs: - -.. argparse:: - :module: vllm.engine.arg_utils - :func: _vlm_engine_args_parser - :prog: -m vllm.entrypoints.openai.api_server - :nodefaultconst: - -.. important:: Currently, the support for vision language models on vLLM has the following limitations: * Only single image input is supported per text prompt. @@ -33,20 +21,17 @@ To initialize a VLM, the aforementioned arguments must be passed to the ``LLM`` .. code-block:: python - llm = LLM( - model="llava-hf/llava-1.5-7b-hf", - image_token_id=32000, - image_input_shape="1,3,336,336", - image_feature_size=576, - ) + llm = LLM(model="llava-hf/llava-1.5-7b-hf") .. important:: - Currently, you have to specify ``image_feature_size`` to support memory profiling. - To avoid OOM during runtime, you should set this to the maximum value supported by the model. - The calculation of feature size is specific to the model. For more details, please refer to - the function :code:`get__image_feature_size` inside the corresponding model file. + We have removed all vision language related CLI args in the ``0.5.1`` release. **This is a breaking change**, so please update your code to follow + the above snippet. Specifically, ``image_feature_size`` is no longer required to be specified, and internally we will construct data structures for + every model to perform profiling with. - We will remove most of the vision-specific arguments in a future release as they can be inferred from the HuggingFace configuration. + This work is still ongoing. In the meantime, we internally hardcode ``image_feature_size = 3000`` through + :meth:`MULTIMODAL_REGISTRY.get_num_input_tokens ` + for every model to be conservative in terms of GPU memory consumption. This hardcoded value will be replaced + with a more accurate profiling strategy in the future. To pass an image to the model, note the following in :class:`vllm.inputs.PromptStrictInputs`: @@ -54,19 +39,15 @@ To pass an image to the model, note the following in :class:`vllm.inputs.PromptS * ``prompt``: The prompt should follow the format that is documented on HuggingFace. * ``multi_modal_data``: This is a dictionary that follows the schema defined in :class:`vllm.multimodal.MultiModalDataDict`. -.. note:: - - ``multi_modal_data`` can accept keys and values beyond the builtin ones, as long as a customized plugin is registered through - :class:`vllm.multimodal.MULTIMODAL_REGISTRY`. - .. code-block:: python # Refer to the HuggingFace repo for the correct format to use prompt = "USER: \nWhat is the content of this image?\nASSISTANT:" # Load the image using PIL.Image - image = ... - + image = PIL.Image.open(...) + + # Single prompt inference outputs = llm.generate({ "prompt": prompt, "multi_modal_data": {"image": image}, @@ -75,6 +56,26 @@ To pass an image to the model, note the following in :class:`vllm.inputs.PromptS for o in outputs: generated_text = o.outputs[0].text print(generated_text) + + # Batch inference + image_1 = PIL.Image.open(...) + image_2 = PIL.Image.open(...) + outputs = llm.generate( + [ + { + "prompt": "USER: \nWhat is the content of this image?\nASSISTANT:", + "multi_modal_data": {"image": image_1}, + }, + { + "prompt": "USER: \nWhat's the color of this image?\nASSISTANT:", + "multi_modal_data": {"image": image_2}, + } + ] + ) + + for o in outputs: + generated_text = o.outputs[0].text + print(generated_text) A code example can be found in `examples/llava_example.py `_. @@ -99,18 +100,17 @@ Below is an example on how to launch the same ``llava-hf/llava-1.5-7b-hf`` with python -m vllm.entrypoints.openai.api_server \ --model llava-hf/llava-1.5-7b-hf \ - --image-token-id 32000 \ - --image-input-shape 1,3,336,336 \ - --image-feature-size 576 \ --chat-template template_llava.jinja .. important:: - Currently, you have to specify ``image_feature_size`` to support memory profiling. - To avoid OOM during runtime, you should set this to the maximum value supported by the model. - The calculation of feature size is specific to the model. For more details, please refer to - the function :code:`get__image_feature_size` inside the corresponding model file. - - We will remove most of the vision-specific arguments in a future release as they can be inferred from the HuggingFace configuration. + We have removed all vision language related CLI args in the ``0.5.1`` release. **This is a breaking change**, so please update your code to follow + the above snippet. Specifically, ``image_feature_size`` is no longer required to be specified, and internally we will construct data structures for + every model to perform profiling with. + + This work is still ongoing. In the meantime, we internally hardcode ``image_feature_size = 3000`` through + :meth:`MULTIMODAL_REGISTRY.get_num_input_tokens ` + for every model to be conservative in terms of GPU memory consumption. This hardcoded value will be replaced + with a more accurate profiling strategy in the future. To consume the server, you can use the OpenAI client like in the example below: diff --git a/examples/llava_example.py b/examples/llava_example.py index f5cb2a661e83f..382d153cf8355 100644 --- a/examples/llava_example.py +++ b/examples/llava_example.py @@ -10,12 +10,7 @@ def run_llava(): - llm = LLM( - model="llava-hf/llava-1.5-7b-hf", - image_token_id=32000, - image_input_shape="1,3,336,336", - image_feature_size=576, - ) + llm = LLM(model="llava-hf/llava-1.5-7b-hf") prompt = "USER: \nWhat is the content of this image?\nASSISTANT:" diff --git a/examples/llava_next_example.py b/examples/llava_next_example.py index 20d4791ffaf94..fd53a6def1a13 100644 --- a/examples/llava_next_example.py +++ b/examples/llava_next_example.py @@ -7,13 +7,7 @@ def run_llava_next(): - llm = LLM( - model="llava-hf/llava-v1.6-mistral-7b-hf", - image_token_id=32000, - image_input_shape="1,3,336,336", - # Use the maximum possible value for memory profiling - image_feature_size=2928, - ) + llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", max_model_len=4096) prompt = "[INST] \nWhat is shown in this image? [/INST]" url = "https://h2o-release.s3.amazonaws.com/h2ogpt/bigben.jpg" diff --git a/examples/openai_vision_api_client.py b/examples/openai_vision_api_client.py index fcda1345f5765..d4d9738a1f7bc 100644 --- a/examples/openai_vision_api_client.py +++ b/examples/openai_vision_api_client.py @@ -3,9 +3,6 @@ Launch the vLLM server with the following command: python -m vllm.entrypoints.openai.api_server \ --model llava-hf/llava-1.5-7b-hf \ - --image-token-id 32000 \ - --image-input-shape 1,3,336,336 \ - --image-feature-size 576 \ --chat-template template_llava.jinja """ import base64 diff --git a/examples/phi3v_example.py b/examples/phi3v_example.py index 0aabfee6ab635..b605d4c6d5350 100644 --- a/examples/phi3v_example.py +++ b/examples/phi3v_example.py @@ -14,15 +14,13 @@ def run_phi3v(): # Note: The default setting of max_num_seqs (256) and # max_model_len (128k) for this model may cause OOM. + # You may lower either to run this example on lower-end GPUs. + # In this example, we override max_num_seqs to 5 while # keeping the original context length of 128k. llm = LLM( model=model_path, trust_remote_code=True, - image_token_id=32044, - image_input_shape="1,3,1008,1344", - # Use the maximum possible value for memory profiling - image_feature_size=2653, max_num_seqs=5, ) diff --git a/tests/distributed/test_multimodal_broadcast.py b/tests/distributed/test_multimodal_broadcast.py index 9e5e5023f9782..b10c0379354ac 100644 --- a/tests/distributed/test_multimodal_broadcast.py +++ b/tests/distributed/test_multimodal_broadcast.py @@ -25,9 +25,9 @@ model = os.environ["TEST_DIST_MODEL"] if model.startswith("llava-hf/llava"): - from ..models.test_llava import model_and_vl_config, run_test + from ..models.test_llava import models, run_test elif model.startswith("microsoft/Phi-3-vision"): - from ..models.test_phi3v import model_and_vl_config, run_test + from ..models.test_phi3v import models, run_test else: raise NotImplementedError(f"Unsupported model: {model}") @@ -49,7 +49,7 @@ def test_models(hf_runner, vllm_runner, image_assets, hf_runner, vllm_runner, image_assets, - model_and_config=model_and_vl_config[0], + model=models[0], size_factors=[1.0], dtype=dtype, max_tokens=max_tokens, diff --git a/tests/entrypoints/openai/test_vision.py b/tests/entrypoints/openai/test_vision.py index 258fd0c83f782..091c09760cc2f 100644 --- a/tests/entrypoints/openai/test_vision.py +++ b/tests/entrypoints/openai/test_vision.py @@ -44,12 +44,6 @@ def server(ray_ctx): "--max-model-len", "4096", "--enforce-eager", - "--image-token-id", - "32000", - "--image-input-shape", - "1,3,336,336", - "--image-feature-size", - "576", "--chat-template", str(LLAVA_CHAT_TEMPLATE), ]) diff --git a/tests/models/test_llava.py b/tests/models/test_llava.py index 78142361aab54..2cb9c9648a52e 100644 --- a/tests/models/test_llava.py +++ b/tests/models/test_llava.py @@ -4,7 +4,6 @@ from transformers import AutoTokenizer from tests.nm_utils.utils_skip import should_skip_test_group -from vllm.config import VisionLanguageConfig from vllm.multimodal.utils import rescale_image_size from vllm.sequence import SampleLogprobs @@ -26,49 +25,27 @@ "USER: \nWhat's in this image?\nASSISTANT:", }) +IMAGE_TOKEN_ID = 32000 -def iter_llava_configs(model_name: str): - image_hw_to_feature_size = { - (336, 336): 576, - } - - for (h, w), f in image_hw_to_feature_size.items(): - input_shape = (1, 3, h, w) - yield (model_name, - VisionLanguageConfig(image_feature_size=f, - image_token_id=32000, - image_input_shape=input_shape)) - - -model_and_vl_config = [ - *iter_llava_configs("llava-hf/llava-1.5-7b-hf"), -] +models = ["llava-hf/llava-1.5-7b-hf"] def vllm_to_hf_output(vllm_output: Tuple[List[int], str, Optional[SampleLogprobs]], - vlm_config: VisionLanguageConfig, model_id: str): - """Sanitize vllm output to be comparable with hf output. - The function reduces `input_ids` from 1, 32000, 32000, ..., 32000, - x1, x2, x3 ... to 1, 32000, x1, x2, x3 ... - It also reduces `output_str` from "bla" to "bla". - """ + model: str): + """Sanitize vllm output to be comparable with hf output.""" output_ids, output_str, out_logprobs = vllm_output - image_token_id = vlm_config.image_token_id - tokenizer = AutoTokenizer.from_pretrained(model_id) - image_token_str = tokenizer.decode(image_token_id) + tokenizer = AutoTokenizer.from_pretrained(model) eos_token_id = tokenizer.eos_token_id hf_output_ids = [ token_id for idx, token_id in enumerate(output_ids) - if token_id != image_token_id or output_ids[idx - 1] != image_token_id + if token_id != IMAGE_TOKEN_ID or output_ids[idx - 1] != IMAGE_TOKEN_ID ] - hf_output_str = output_str \ - .replace(image_token_str * vlm_config.image_feature_size, "") - assert hf_output_str[0] == " " - hf_output_str = hf_output_str[1:] + assert output_str[0] == " " + hf_output_str = output_str[1:] if hf_output_ids[-1] == eos_token_id: hf_output_str = hf_output_str + tokenizer.decode(eos_token_id) @@ -79,7 +56,7 @@ def run_test( hf_runner: Type[HfRunner], vllm_runner: Type[VllmRunner], image_assets: _ImageAssets, - model_and_config: Tuple[str, VisionLanguageConfig], + model: str, *, size_factors: List[float], dtype: str, @@ -97,7 +74,6 @@ def run_test( Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ - model_id, vlm_config = model_and_config images = [asset.pil_image for asset in image_assets] inputs_per_image = [( @@ -111,12 +87,11 @@ def run_test( # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size - with vllm_runner(model_id, + with vllm_runner(model, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, - enforce_eager=True, - **vlm_config.as_cli_args_dict()) as vllm_model: + enforce_eager=True) as vllm_model: vllm_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, @@ -125,7 +100,7 @@ def run_test( for prompts, images in inputs_per_image ] - with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model: + with hf_runner(model, dtype=dtype, is_vision_model=True) as hf_model: hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, @@ -141,7 +116,7 @@ def run_test( check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=[ - vllm_to_hf_output(vllm_output, vlm_config, model_id) + vllm_to_hf_output(vllm_output, model) for vllm_output in vllm_outputs ], name_0="hf", @@ -149,7 +124,7 @@ def run_test( ) -@pytest.mark.parametrize("model_and_config", model_and_vl_config) +@pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ @@ -166,14 +141,13 @@ def run_test( @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) -def test_models(hf_runner, vllm_runner, image_assets, model_and_config, - size_factors, dtype: str, max_tokens: int, - num_logprobs: int) -> None: +def test_models(hf_runner, vllm_runner, image_assets, model, size_factors, + dtype: str, max_tokens: int, num_logprobs: int) -> None: run_test( hf_runner, vllm_runner, image_assets, - model_and_config, + model, size_factors=size_factors, dtype=dtype, max_tokens=max_tokens, diff --git a/tests/models/test_llava_next.py b/tests/models/test_llava_next.py index ef0d6ac829a25..f7a7e4b741a52 100644 --- a/tests/models/test_llava_next.py +++ b/tests/models/test_llava_next.py @@ -5,7 +5,6 @@ from transformers import AutoTokenizer from tests.nm_utils.utils_skip import should_skip_test_group -from vllm.config import VisionLanguageConfig from vllm.multimodal.utils import rescale_image_size from vllm.sequence import SampleLogprobs @@ -32,46 +31,22 @@ f"{_PREFACE} USER: \nWhat's in this image? ASSISTANT:", }) - -def iter_llava_next_configs(model_name: str): - # Need to use the max possible feature size for profile_run - image_hw_to_feature_size = { - (336, 336): 2928, - } - - for (h, w), f in image_hw_to_feature_size.items(): - input_shape = (1, 3, h, w) - yield (model_name, - VisionLanguageConfig( - image_feature_size=f, - image_token_id=32000, - image_input_shape=input_shape, - )) - - -model_and_vl_config = [ - *iter_llava_next_configs("llava-hf/llava-v1.6-vicuna-7b-hf"), -] +IMAGE_TOKEN_ID = 32000 def vllm_to_hf_output(vllm_output: Tuple[List[int], str, Optional[SampleLogprobs]], - vlm_config: VisionLanguageConfig, model_id: str): - """Sanitize vllm output to be comparable with hf output. - The function reduces `input_ids` from 1, 32000, 32000, ..., 32000, - x1, x2, x3 ... to 1, 32000, x1, x2, x3 ... - It also reduces `output_str` from "bla" to "bla". - """ + model: str): + """Sanitize vllm output to be comparable with hf output.""" output_ids, output_str, out_logprobs = vllm_output - image_token_id = vlm_config.image_token_id - tokenizer = AutoTokenizer.from_pretrained(model_id) - image_token_str = tokenizer.decode(image_token_id) + tokenizer = AutoTokenizer.from_pretrained(model) + image_token_str = tokenizer.decode(IMAGE_TOKEN_ID) eos_token_id = tokenizer.eos_token_id hf_output_ids = [ token_id for idx, token_id in enumerate(output_ids) - if token_id != image_token_id or output_ids[idx - 1] != image_token_id + if token_id != IMAGE_TOKEN_ID or output_ids[idx - 1] != IMAGE_TOKEN_ID ] hf_output_str = re.sub(fr"({image_token_str})+", "", output_str) @@ -85,7 +60,7 @@ def vllm_to_hf_output(vllm_output: Tuple[List[int], str, @pytest.mark.skip("Failing in NM Automation due to writing to file without " "permissions.") -@pytest.mark.parametrize("model_and_config", model_and_vl_config) +@pytest.mark.parametrize("model", ["llava-hf/llava-v1.6-vicuna-7b-hf"]) @pytest.mark.parametrize( "size_factors", [ @@ -102,9 +77,8 @@ def vllm_to_hf_output(vllm_output: Tuple[List[int], str, @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) -def test_models(hf_runner, vllm_runner, image_assets, model_and_config, - size_factors, dtype: str, max_tokens: int, - num_logprobs: int) -> None: +def test_models(hf_runner, vllm_runner, image_assets, model, size_factors, + dtype, max_tokens, num_logprobs) -> None: """Inference result should be the same between hf and vllm. All the image fixtures for the test is under tests/images. @@ -114,7 +88,6 @@ def test_models(hf_runner, vllm_runner, image_assets, model_and_config, Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ - model_id, vlm_config = model_and_config images = [asset.pil_image for asset in image_assets] inputs_per_image = [( @@ -123,11 +96,10 @@ def test_models(hf_runner, vllm_runner, image_assets, model_and_config, ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] # max_model_len should be greater than image_feature_size - with vllm_runner(model_id, + with vllm_runner(model, dtype=dtype, max_model_len=4096, - enforce_eager=True, - **vlm_config.as_cli_args_dict()) as vllm_model: + enforce_eager=True) as vllm_model: vllm_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, @@ -136,7 +108,7 @@ def test_models(hf_runner, vllm_runner, image_assets, model_and_config, for prompts, images in inputs_per_image ] - with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model: + with hf_runner(model, dtype=dtype, is_vision_model=True) as hf_model: hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, @@ -152,7 +124,7 @@ def test_models(hf_runner, vllm_runner, image_assets, model_and_config, check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=[ - vllm_to_hf_output(vllm_output, vlm_config, model_id) + vllm_to_hf_output(vllm_output, model) for vllm_output in vllm_outputs ], name_0="hf", diff --git a/tests/models/test_phi3v.py b/tests/models/test_phi3v.py index 6e97d4d72d871..645b87c0ca20a 100644 --- a/tests/models/test_phi3v.py +++ b/tests/models/test_phi3v.py @@ -5,7 +5,6 @@ from transformers import AutoTokenizer from tests.nm_utils.utils_skip import should_skip_test_group -from vllm.config import VisionLanguageConfig from vllm.multimodal.utils import rescale_image_size from vllm.sequence import SampleLogprobs from vllm.utils import is_cpu @@ -28,35 +27,14 @@ "<|user|>\n<|image_1|>\nWhat's in this image?<|end|>\n<|assistant|>\n", }) - -def iter_phi3v_configs(model_name: str): - # Need to use the max possible feature size for profile_run - image_hw_to_feature_size = { - (1008, 1344): 2653, - } - - for (h, w), f in image_hw_to_feature_size.items(): - input_shape = (1, 3, h, w) - yield (model_name, - VisionLanguageConfig(image_feature_size=f, - image_token_id=32044, - image_input_shape=input_shape)) - - -model_and_vl_config = [ - *iter_phi3v_configs("microsoft/Phi-3-vision-128k-instruct"), -] +models = ["microsoft/Phi-3-vision-128k-instruct"] def vllm_to_hf_output(vllm_output: Tuple[List[int], str, Optional[SampleLogprobs]], - vlm_config: VisionLanguageConfig, model_id: str): - """Sanitize vllm output to be comparable with hf output. - The function reduces `input_ids` from 1, 32000, 32000, ..., 32000, - x1, x2, x3 ... to 1, 32000, x1, x2, x3 ... - It also reduces `output_str` from "bla" to "bla". - """ - output_ids, output_str, out_logprobs = vllm_output + model: str): + """Sanitize vllm output to be comparable with hf output.""" + _, output_str, out_logprobs = vllm_output output_str_without_image = re.sub(r"(<\|image_\d+\|>)+", "", output_str) assert output_str_without_image[0] == " " @@ -65,7 +43,7 @@ def vllm_to_hf_output(vllm_output: Tuple[List[int], str, hf_output_str = output_str_without_image.replace("<|user|>", "") \ .replace("<|end|>\n<|assistant|>", " ") - tokenizer = AutoTokenizer.from_pretrained(model_id) + tokenizer = AutoTokenizer.from_pretrained(model) hf_output_ids = tokenizer.encode(output_str_without_image) assert hf_output_ids[0] == 1 hf_output_ids = hf_output_ids[1:] @@ -82,7 +60,7 @@ def run_test( hf_runner: Type[HfRunner], vllm_runner: Type[VllmRunner], image_assets: _ImageAssets, - model_and_config: Tuple[str, VisionLanguageConfig], + model: str, *, size_factors: List[float], dtype: str, @@ -100,7 +78,6 @@ def run_test( Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ - model_id, vlm_config = model_and_config images = [asset.pil_image for asset in image_assets] inputs_per_image = [( @@ -114,13 +91,13 @@ def run_test( # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size - with vllm_runner(model_id, + with vllm_runner(model, max_model_len=4096, + max_num_seqs=1, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, - enforce_eager=True, - **vlm_config.as_cli_args_dict()) as vllm_model: + enforce_eager=True) as vllm_model: vllm_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, @@ -131,7 +108,7 @@ def run_test( # use eager mode for hf runner, since phi3_v didn't work with flash_attn hf_model_kwargs = {"_attn_implementation": "eager"} - with hf_runner(model_id, dtype=dtype, + with hf_runner(model, dtype=dtype, model_kwargs=hf_model_kwargs) as hf_model: eos_token_id = hf_model.processor.tokenizer.eos_token_id hf_outputs_per_image = [ @@ -148,7 +125,7 @@ def run_test( check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=[ - vllm_to_hf_output(vllm_output, vlm_config, model_id) + vllm_to_hf_output(vllm_output, model) for vllm_output in vllm_outputs ], name_0="hf", @@ -158,7 +135,7 @@ def run_test( # Since we use _attn_implementation="eager" for hf_runner, there is more # significant numerical difference. The basic `logprobs=5` fails to pass. -@pytest.mark.parametrize("model_and_config", model_and_vl_config) +@pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ @@ -175,14 +152,13 @@ def run_test( @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [10]) -def test_models(hf_runner, vllm_runner, image_assets, model_and_config, - size_factors, dtype: str, max_tokens: int, - num_logprobs: int) -> None: +def test_models(hf_runner, vllm_runner, image_assets, model, size_factors, + dtype: str, max_tokens: int, num_logprobs: int) -> None: run_test( hf_runner, vllm_runner, image_assets, - model_and_config, + model, size_factors=size_factors, dtype=dtype, max_tokens=max_tokens, diff --git a/vllm/config.py b/vllm/config.py index 5ea582a372d39..c12d56d2bbf65 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1,8 +1,7 @@ import enum import json from dataclasses import dataclass, field, fields -from typing import (TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Tuple, - Union) +from typing import TYPE_CHECKING, ClassVar, List, Optional, Tuple, Union import torch from transformers import PretrainedConfig @@ -122,7 +121,7 @@ def __init__( disable_sliding_window: bool = False, skip_tokenizer_init: bool = False, served_model_name: Optional[Union[str, List[str]]] = None, - multimodal_config: Optional["VisionLanguageConfig"] = None, + multimodal_config: Optional["MultiModalConfig"] = None, ) -> None: self.model = model self.tokenizer = tokenizer @@ -1321,35 +1320,12 @@ def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig): raise ValueError("LoRA is not supported with chunked prefill yet.") -# TODO: To be replaced by MultiModalConfig. @dataclass -class VisionLanguageConfig: +class MultiModalConfig: """Configs the input data format and how models should run for - vision language models.""" - # The input id corresponding to image token. - image_token_id: int - # Used for running `run_prefill_max_token`. - # For models that support varying resolution, this corresponds to - # worst case scenario (biggest supported resolution). - image_input_shape: tuple - image_feature_size: int - - def as_cli_args_dict(self) -> Dict[str, Any]: - """Flatten vision language config to pure args. - - Compatible with what llm entrypoint expects. - """ - result: Dict[str, Any] = {} - for f in fields(self): - value = getattr(self, f.name) - if isinstance(value, enum.Enum): - result[f.name] = value.name.lower() - elif isinstance(value, tuple): - result[f.name] = ",".join([str(item) for item in value]) - else: - result[f.name] = value - - return result + multimodal models.""" + # TODO: Add configs to init vision tower or not. + pass _STR_DTYPE_TO_TORCH_DTYPE = { @@ -1573,7 +1549,7 @@ class EngineConfig: device_config: DeviceConfig load_config: LoadConfig lora_config: Optional[LoRAConfig] - vision_language_config: Optional[VisionLanguageConfig] + multimodal_config: Optional[MultiModalConfig] speculative_config: Optional[SpeculativeConfig] decoding_config: Optional[DecodingConfig] observability_config: Optional[ObservabilityConfig] diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 7412ff7d3cdef..bba45302a2f3c 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -8,11 +8,11 @@ from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, EngineConfig, LoadConfig, LoRAConfig, ModelConfig, - ObservabilityConfig, ParallelConfig, SchedulerConfig, - SpeculativeConfig, TokenizerPoolConfig, - VisionLanguageConfig) + MultiModalConfig, ObservabilityConfig, ParallelConfig, + SchedulerConfig, SpeculativeConfig, + TokenizerPoolConfig) from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS -from vllm.utils import FlexibleArgumentParser, str_to_int_tuple +from vllm.utils import FlexibleArgumentParser def nullable_str(val: str): @@ -82,11 +82,6 @@ class EngineArgs: model_loader_extra_config: Optional[dict] = None preemption_mode: Optional[str] = None - # Related to Vision-language models such as llava - image_token_id: Optional[int] = None - image_input_shape: Optional[str] = None - image_feature_size: Optional[int] = None - scheduler_delay_factor: float = 0.0 enable_chunked_prefill: bool = False @@ -110,27 +105,6 @@ def __post_init__(self): if self.tokenizer is None: self.tokenizer = self.model - @staticmethod - def add_cli_args_for_vlm( - parser: FlexibleArgumentParser) -> FlexibleArgumentParser: - parser.add_argument('--image-token-id', - type=int, - default=None, - help=('Input id for image token.')) - parser.add_argument( - '--image-input-shape', - type=nullable_str, - default=None, - help=('The biggest image input shape (worst for memory footprint) ' - 'given an input type. Only used for vLLM\'s profile_run.')) - parser.add_argument( - '--image-feature-size', - type=int, - default=None, - help=('The image feature size along the context dimension.')) - - return parser - @staticmethod def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: """Shared CLI arguments for vLLM engine.""" @@ -499,9 +473,6 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: ], help='Device type for vLLM execution.') - # Related to Vision-language models such as llava - parser = EngineArgs.add_cli_args_for_vlm(parser) - parser.add_argument( '--scheduler-delay-factor', type=float, @@ -663,19 +634,7 @@ def create_engine_config(self, ) -> EngineConfig: raise ValueError( "BitsAndBytes load format and QLoRA adapter only support " f"'bitsandbytes' quantization, but got {self.quantization}") - if self.image_token_id is not None: - if (not self.image_input_shape or not self.image_feature_size): - raise ValueError( - 'Specify `image_input_shape` and ' - '`image_feature_size` together with `image_token_id`.') - - vision_language_config = VisionLanguageConfig( - image_token_id=self.image_token_id, - image_input_shape=str_to_int_tuple(self.image_input_shape), - image_feature_size=self.image_feature_size, - ) - else: - vision_language_config = None + multimodal_config = MultiModalConfig() device_config = DeviceConfig(device=self.device) model_config = ModelConfig( @@ -701,7 +660,7 @@ def create_engine_config(self, ) -> EngineConfig: disable_sliding_window=self.disable_sliding_window, skip_tokenizer_init=self.skip_tokenizer_init, served_model_name=self.served_model_name, - multimodal_config=vision_language_config) + multimodal_config=multimodal_config) cache_config = CacheConfig( block_size=self.block_size, gpu_memory_utilization=self.gpu_memory_utilization, @@ -803,7 +762,7 @@ def create_engine_config(self, ) -> EngineConfig: scheduler_config=scheduler_config, device_config=device_config, lora_config=lora_config, - vision_language_config=vision_language_config, + multimodal_config=multimodal_config, speculative_config=speculative_config, load_config=load_config, decoding_config=decoding_config, @@ -847,7 +806,3 @@ def _engine_args_parser(): def _async_engine_args_parser(): return AsyncEngineArgs.add_cli_args(FlexibleArgumentParser(), async_args_only=True) - - -def _vlm_engine_args_parser(): - return EngineArgs.add_cli_args_for_vlm(FlexibleArgumentParser()) diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 1695f3b6af3fd..bb4008940de93 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -7,9 +7,9 @@ from transformers import PreTrainedTokenizer from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, LoadConfig, - LoRAConfig, ModelConfig, ObservabilityConfig, - ParallelConfig, SchedulerConfig, SpeculativeConfig, - VisionLanguageConfig) + LoRAConfig, ModelConfig, MultiModalConfig, + ObservabilityConfig, ParallelConfig, SchedulerConfig, + SpeculativeConfig) from vllm.core.scheduler import (ScheduledSequenceGroup, Scheduler, SchedulerOutputs) from vllm.engine.arg_utils import EngineArgs @@ -87,8 +87,8 @@ class LLMEngine: scheduler_config: The configuration related to the request scheduler. device_config: The configuration related to the device. lora_config (Optional): The configuration related to serving multi-LoRA. - vision_language_config (Optional): The configuration related to vision - language models. + multimodal_config (Optional): The configuration related to multimodal + models. speculative_config (Optional): The configuration related to speculative decoding. executor_class: The model executor class for managing distributed @@ -157,7 +157,7 @@ def __init__( device_config: DeviceConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], speculative_config: Optional[SpeculativeConfig], decoding_config: Optional[DecodingConfig], observability_config: Optional[ObservabilityConfig], @@ -217,7 +217,7 @@ def __init__( self.model_config = model_config self.cache_config = cache_config self.lora_config = lora_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.parallel_config = parallel_config self.scheduler_config = scheduler_config self.device_config = device_config @@ -249,7 +249,7 @@ def __init__( scheduler_config=scheduler_config, device_config=device_config, lora_config=lora_config, - vision_language_config=vision_language_config, + multimodal_config=multimodal_config, speculative_config=speculative_config, load_config=load_config, ) diff --git a/vllm/entrypoints/llm.py b/vllm/entrypoints/llm.py index 9c7a3e701248c..bac3453430d41 100644 --- a/vllm/entrypoints/llm.py +++ b/vllm/entrypoints/llm.py @@ -128,6 +128,11 @@ def __init__( ) -> None: if "disable_log_stats" not in kwargs: kwargs["disable_log_stats"] = True + removed_vision_keys = ("image_token_id", "image_feature_size", + "image_input_shape", "image_input_type") + if any(k in kwargs for k in removed_vision_keys): + raise TypeError( + "There is no need to pass vision-related arguments anymore.") engine_args = EngineArgs( model=model, tokenizer=tokenizer, diff --git a/vllm/entrypoints/openai/serving_chat.py b/vllm/entrypoints/openai/serving_chat.py index 06c82d5e882ba..415bdbbd7c455 100644 --- a/vllm/entrypoints/openai/serving_chat.py +++ b/vllm/entrypoints/openai/serving_chat.py @@ -109,23 +109,12 @@ def image_token_str(self) -> Optional[str]: "paligemma"): # These models do not use image tokens in the prompt return None + if model_type.startswith("llava"): + return self.tokenizer.decode( + self.model_config.hf_config.image_token_index) - # The default behaviour assumes that the image token is - # available to the tokenizer. - # (Suitable for LLaVA, Idefics2, DeepSeek-VL) - vlm_config = self.model_config.multimodal_config - if vlm_config is None: - raise ValueError( - "'image_url' input is not supported as the loaded " - "model is not multimodal.") - - image_token_id = vlm_config.image_token_id - if vlm_config.image_token_id is None: - raise ValueError( - "'image_url' input is not supported as the loaded " - "model does not specify an image token.") - - return self.tokenizer.decode(image_token_id) + else: + raise TypeError("Unknown model type: {model_type}") # TODO: Let user specify how to insert image tokens into prompt # (similar to chat template) diff --git a/vllm/executor/cpu_executor.py b/vllm/executor/cpu_executor.py index 6137cecd881d0..3b5621f70b92d 100644 --- a/vllm/executor/cpu_executor.py +++ b/vllm/executor/cpu_executor.py @@ -46,7 +46,7 @@ def _init_worker(self): rank=0, distributed_init_method=distributed_init_method, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, kv_cache_dtype=self.cache_config.cache_dtype, is_driver_worker=True, ) diff --git a/vllm/executor/executor_base.py b/vllm/executor/executor_base.py index 9018c329510c9..2abb29c14e205 100644 --- a/vllm/executor/executor_base.py +++ b/vllm/executor/executor_base.py @@ -3,8 +3,8 @@ from typing import List, Optional, Set, Tuple from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - SpeculativeConfig, VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig, SpeculativeConfig) from vllm.lora.request import LoRARequest from vllm.sequence import ExecuteModelRequest, SamplerOutput @@ -26,7 +26,7 @@ def __init__( device_config: DeviceConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], speculative_config: Optional[SpeculativeConfig], ) -> None: self.model_config = model_config @@ -36,7 +36,7 @@ def __init__( self.parallel_config = parallel_config self.scheduler_config = scheduler_config self.device_config = device_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.speculative_config = speculative_config self._init_executor() @@ -120,7 +120,7 @@ def __init__( device_config: DeviceConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], speculative_config: Optional[SpeculativeConfig], ) -> None: # This locks each pipeline parallel stage so multiple virtual engines @@ -132,8 +132,7 @@ def __init__( super().__init__(model_config, cache_config, parallel_config, scheduler_config, device_config, load_config, - lora_config, vision_language_config, - speculative_config) + lora_config, multimodal_config, speculative_config) @abstractmethod async def execute_model_async( diff --git a/vllm/executor/gpu_executor.py b/vllm/executor/gpu_executor.py index c2910ccdcdb7b..7d3183a428a31 100644 --- a/vllm/executor/gpu_executor.py +++ b/vllm/executor/gpu_executor.py @@ -43,7 +43,7 @@ def _get_worker_kwargs( rank=rank, distributed_init_method=distributed_init_method, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, speculative_config=self.speculative_config, is_driver_worker=(not self.parallel_config) or (rank % self.parallel_config.tensor_parallel_size == 0), diff --git a/vllm/executor/openvino_executor.py b/vllm/executor/openvino_executor.py index 8af375371f2f0..697d698b4edf7 100644 --- a/vllm/executor/openvino_executor.py +++ b/vllm/executor/openvino_executor.py @@ -47,7 +47,7 @@ def _init_worker(self): rank=0, distributed_init_method=distributed_init_method, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, kv_cache_dtype=self.cache_config.cache_dtype, is_driver_worker=True, ) diff --git a/vllm/executor/ray_xpu_executor.py b/vllm/executor/ray_xpu_executor.py index dd7c82289341e..f02d4978371a3 100644 --- a/vllm/executor/ray_xpu_executor.py +++ b/vllm/executor/ray_xpu_executor.py @@ -7,8 +7,8 @@ Tuple, Union) from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - SpeculativeConfig, VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig, SpeculativeConfig) from vllm.executor.distributed_gpu_executor import ( # yapf: disable DistributedGPUExecutor, DistributedGPUExecutorAsync) from vllm.executor.ray_utils import RayWorkerWrapper, ray @@ -43,7 +43,7 @@ def __init__( device_config: DeviceConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], speculative_config: Optional[SpeculativeConfig], ) -> None: assert device_config.device_type == "xpu" @@ -57,7 +57,7 @@ def __init__( self.parallel_config = parallel_config self.scheduler_config = scheduler_config self.device_config = device_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config placement_group = self.parallel_config.placement_group @@ -199,7 +199,7 @@ def collect_arg_helper_func(**kwargs): rank=rank, distributed_init_method=distributed_init_method, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, is_driver_worker=rank == 0, )) self._run_workers("init_worker", all_kwargs=init_worker_all_kwargs) diff --git a/vllm/executor/tpu_executor.py b/vllm/executor/tpu_executor.py index 7fe5349c987ad..6627ee6984ddb 100644 --- a/vllm/executor/tpu_executor.py +++ b/vllm/executor/tpu_executor.py @@ -50,7 +50,7 @@ def _get_worker_kwargs( local_rank=local_rank, rank=rank, distributed_init_method=distributed_init_method, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, is_driver_worker=rank == 0, ) diff --git a/vllm/executor/xpu_executor.py b/vllm/executor/xpu_executor.py index d37200bd02de3..29b246332ad55 100644 --- a/vllm/executor/xpu_executor.py +++ b/vllm/executor/xpu_executor.py @@ -3,8 +3,8 @@ import torch from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - SpeculativeConfig, VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig, SpeculativeConfig) from vllm.executor.executor_base import ExecutorAsyncBase from vllm.executor.gpu_executor import GPUExecutor from vllm.logger import init_logger @@ -26,7 +26,7 @@ def __init__( device_config: DeviceConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], speculative_config: Optional[SpeculativeConfig], ) -> None: assert device_config.device_type == "xpu" @@ -42,7 +42,7 @@ def __init__( self.parallel_config = parallel_config self.scheduler_config = scheduler_config self.device_config = device_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.speculative_config = None # Instantiate the worker and load the model to GPU. diff --git a/vllm/inputs/registry.py b/vllm/inputs/registry.py index 936909eb33f60..2c87e3d92582b 100644 --- a/vllm/inputs/registry.py +++ b/vllm/inputs/registry.py @@ -11,7 +11,7 @@ from .data import LLMInputs if TYPE_CHECKING: - from vllm.config import ModelConfig, VisionLanguageConfig + from vllm.config import ModelConfig, MultiModalConfig from vllm.multimodal import MultiModalDataDict from vllm.sequence import SequenceData @@ -30,7 +30,7 @@ class InputContext: model_config: "ModelConfig" """The configuration of the model.""" - def get_multimodal_config(self) -> "VisionLanguageConfig": + def get_multimodal_config(self) -> "MultiModalConfig": """ Get the multimodal configuration of the model. diff --git a/vllm/model_executor/model_loader/__init__.py b/vllm/model_executor/model_loader/__init__.py index e3e32d61ab04d..d10107a7f024e 100644 --- a/vllm/model_executor/model_loader/__init__.py +++ b/vllm/model_executor/model_loader/__init__.py @@ -3,8 +3,8 @@ from torch import nn from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.model_executor.model_loader.loader import (BaseModelLoader, get_model_loader) from vllm.model_executor.model_loader.utils import ( @@ -15,13 +15,13 @@ def get_model(*, model_config: ModelConfig, load_config: LoadConfig, device_config: DeviceConfig, parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], cache_config: CacheConfig) -> nn.Module: loader = get_model_loader(load_config) return loader.load_model(model_config=model_config, device_config=device_config, lora_config=lora_config, - vision_language_config=vision_language_config, + multimodal_config=multimodal_config, parallel_config=parallel_config, scheduler_config=scheduler_config, cache_config=cache_config) diff --git a/vllm/model_executor/model_loader/loader.py b/vllm/model_executor/model_loader/loader.py index 6e862584b9b5b..666216183e546 100644 --- a/vllm/model_executor/model_loader/loader.py +++ b/vllm/model_executor/model_loader/loader.py @@ -16,8 +16,8 @@ from torch import nn from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoadFormat, - LoRAConfig, ModelConfig, ParallelConfig, - SchedulerConfig, VisionLanguageConfig) + LoRAConfig, ModelConfig, MultiModalConfig, + ParallelConfig, SchedulerConfig) from vllm.envs import VLLM_USE_MODELSCOPE from vllm.logger import init_logger from vllm.model_executor.layers.quantization.base_config import ( @@ -88,7 +88,7 @@ def _get_quantization_config( def _get_model_initialization_kwargs( model_class: Type[nn.Module], lora_config: Optional[LoRAConfig], - vlm_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], ) -> Dict[str, Any]: """Get extra kwargs for model initialization.""" extra_kwargs: Dict[str, Any] = {} @@ -104,18 +104,18 @@ def _get_model_initialization_kwargs( "please open an issue on github.") if supports_vision(model_class): - if vlm_config is None: + if multimodal_config is None: raise ValueError("Provide vision related configurations " "through LLM entrypoint or engine arguments.") - extra_kwargs["vlm_config"] = vlm_config + extra_kwargs["multimodal_config"] = multimodal_config return extra_kwargs def _initialize_model(model_config: ModelConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], cache_config: CacheConfig) -> nn.Module: """Initialize a model with the given configurations.""" model_class = get_model_architecture(model_config)[0] @@ -125,7 +125,7 @@ def _initialize_model(model_config: ModelConfig, load_config: LoadConfig, cache_config=cache_config, quant_config=quant_config, **_get_model_initialization_kwargs( - model_class, lora_config, vision_language_config)) + model_class, lora_config, multimodal_config)) class BaseModelLoader(ABC): @@ -138,7 +138,7 @@ def __init__(self, load_config: LoadConfig): def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: @@ -278,14 +278,14 @@ def _xla_weights_iterator(iterator: Generator): def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, - lora_config, vision_language_config, + lora_config, multimodal_config, cache_config) model.load_weights( self._get_weights_iterator(model_config.model, @@ -318,14 +318,14 @@ def __init__(self, load_config: LoadConfig): def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, - lora_config, vision_language_config, + lora_config, multimodal_config, cache_config) # NOTE(woosuk): For accurate performance evaluation, we assign # random values to the weights. @@ -359,7 +359,7 @@ def _load_model_serialized_cpu( model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], cache_config: CacheConfig, ) -> nn.Module: """Load a serialized model with tensorizer to the CPU. @@ -372,7 +372,7 @@ def _load_model_serialized_cpu( with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, - lora_config, vision_language_config, + lora_config, multimodal_config, cache_config) model.load_weights(self._get_weights_iterator()) @@ -383,7 +383,7 @@ def _load_model_serialized( model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], cache_config: CacheConfig, ) -> nn.Module: """Load a serialized model with tensorizer. @@ -397,7 +397,7 @@ def _load_model_serialized( quant_config = _get_quantization_config( model_config, self.load_config) extra_kwargs = _get_model_initialization_kwargs( - model_class, lora_config, vision_language_config) + model_class, lora_config, multimodal_config) extra_kwargs["quant_config"] = quant_config extra_kwargs["cache_config"] = cache_config @@ -412,7 +412,7 @@ def _load_model_serialized( def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: @@ -426,12 +426,10 @@ def load_model(self, *, model_config: ModelConfig, if is_vllm_tensorized(self.tensorizer_config): return self._load_model_serialized(model_config, device_config, - lora_config, - vision_language_config, + lora_config, multimodal_config, cache_config) return self._load_model_serialized_cpu(model_config, device_config, - lora_config, - vision_language_config, + lora_config, multimodal_config, cache_config) @staticmethod @@ -514,7 +512,7 @@ def _prepare_weights(self, model_name_or_path: str, def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: @@ -528,7 +526,7 @@ def load_model(self, *, model_config: ModelConfig, with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, - lora_config, vision_language_config, + lora_config, multimodal_config, cache_config) rank = get_tensor_model_parallel_rank() pattern = os.path.join( @@ -824,14 +822,14 @@ def _load_weights(self, model_config: ModelConfig, def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, - lora_config, vision_language_config, + lora_config, multimodal_config, cache_config) self._load_weights(model_config, model) diff --git a/vllm/model_executor/models/interfaces.py b/vllm/model_executor/models/interfaces.py index cb0fc154a74d8..2697a6996f4ca 100644 --- a/vllm/model_executor/models/interfaces.py +++ b/vllm/model_executor/models/interfaces.py @@ -3,7 +3,7 @@ from typing_extensions import TypeGuard -from vllm.config import LoRAConfig, VisionLanguageConfig +from vllm.config import LoRAConfig, MultiModalConfig from vllm.logger import init_logger logger = init_logger(__name__) @@ -22,7 +22,7 @@ class SupportsVision(Protocol): MRO of your model class. """ - def __init__(self, *, vlm_config: VisionLanguageConfig) -> None: + def __init__(self, *, multimodal_config: MultiModalConfig) -> None: ... @@ -32,7 +32,7 @@ def __init__(self, *, vlm_config: VisionLanguageConfig) -> None: class _SupportsVisionType(Protocol): supports_vision: Literal[True] - def __call__(self, *, vlm_config: VisionLanguageConfig) -> None: + def __call__(self, *, multimodal_config: MultiModalConfig) -> None: ... diff --git a/vllm/model_executor/models/llava.py b/vllm/model_executor/models/llava.py index 2588d8b065510..526b080bf77b2 100644 --- a/vllm/model_executor/models/llava.py +++ b/vllm/model_executor/models/llava.py @@ -5,7 +5,7 @@ from transformers import CLIPVisionConfig, LlavaConfig from vllm.attention import AttentionMetadata -from vllm.config import CacheConfig, VisionLanguageConfig +from vllm.config import CacheConfig, MultiModalConfig from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.logits_processor import LogitsProcessor @@ -108,13 +108,13 @@ class LlavaForConditionalGeneration(nn.Module, SupportsVision): def __init__(self, config: LlavaConfig, - vlm_config: VisionLanguageConfig, + multimodal_config: MultiModalConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None) -> None: super().__init__() self.config = config - self.vlm_config = vlm_config + self.multimodal_config = multimodal_config # TODO: Optionally initializes this for supporting embeddings. self.vision_tower = CLIPVisionModel(config.vision_config) @@ -138,14 +138,13 @@ def __init__(self, self.sampler = Sampler() def _validate_image_data(self, data: torch.Tensor) -> torch.Tensor: - if list(data.shape[1:]) != list(self.vlm_config.image_input_shape[1:]): + if list(data.shape)[1:] != [ + 3, self.config.vision_config.image_size, + self.config.vision_config.image_size + ]: raise ValueError( - f"The expected image tensor shape is batch dimension plus " - f"{self.vlm_config.image_input_shape[1:]}. " - f"You supplied {data.shape}. " - f"If you are using vLLM's entrypoint, make sure your " - f"supplied image input is consistent with " - f"image_input_shape in engine args.") + "The expected image tensor shape is batch dimension plus " + "channel, height and width.") return data @@ -244,7 +243,7 @@ def forward( inputs_embeds = merge_vision_embeddings( input_ids, inputs_embeds, vision_embeddings, - self.vlm_config.image_token_id) + self.config.image_token_index) input_ids = None else: diff --git a/vllm/model_executor/models/llava_next.py b/vllm/model_executor/models/llava_next.py index 92604cdf37602..4b03a5f9f7c86 100644 --- a/vllm/model_executor/models/llava_next.py +++ b/vllm/model_executor/models/llava_next.py @@ -1,4 +1,4 @@ -from typing import Iterable, List, Literal, Optional, Tuple, TypedDict +from typing import Iterable, List, Literal, Optional, Tuple, TypedDict, Union import torch import torch.nn as nn @@ -9,7 +9,7 @@ from typing_extensions import NotRequired from vllm.attention import AttentionMetadata -from vllm.config import CacheConfig, VisionLanguageConfig +from vllm.config import CacheConfig, MultiModalConfig from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs from vllm.logger import init_logger from vllm.model_executor.layers.logits_processor import LogitsProcessor @@ -204,13 +204,13 @@ class LlavaNextForConditionalGeneration(nn.Module, SupportsVision): def __init__(self, config: LlavaNextConfig, - vlm_config: VisionLanguageConfig, + multimodal_config: MultiModalConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None) -> None: super().__init__() self.config = config - self.vlm_config = vlm_config + self.multimodal_config = multimodal_config # TODO: Optionally initializes this for supporting embeddings. self.vision_tower = CLIPVisionModel(config=config.vision_config) @@ -244,6 +244,47 @@ def _validate_image_sizes(self, data: torch.Tensor) -> torch.Tensor: return data + def _validate_pixel_values( + self, data: Union[torch.Tensor, List[torch.Tensor]] + ) -> Union[torch.Tensor, List[torch.Tensor]]: + + def _validate_shape(data: torch.Tensor): + + dim = data.dim() + height = width = self.config.vision_config.image_size + # All 4d image tensors have the same number of patches, + # so data is a 5d batch of these tensors + if dim == 5: + if list(data.shape)[2:] != [ + 3, self.config.vision_config.image_size, + self.config.vision_config.image_size + ]: + raise ValueError( + "Expected pixel value tensor in shape of: (batch size, " + f"patch number, 3, {height}, {width}), got {data.shape}" + ) + + # 4d image tensors have different number of patches, + # so data is each individual tensor. + elif dim == 4: + if list(data.shape)[1:] != [ + 3, self.config.vision_config.image_size, + self.config.vision_config.image_size + ]: + raise ValueError( + "Expected pixel value tensor in shape of: (patch " + f"number, 3, {height}, {width}), got {data.shape}") + else: + raise ValueError( + f"Invalid pixel value tensor of shape {data.shape}") + + if isinstance(data, torch.Tensor): + _validate_shape(data) + else: + [_validate_shape(d) for d in data] + + return data + def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[LlavaNextImagePixelInputs]: pixel_values = kwargs.pop("pixel_values", None) @@ -262,7 +303,7 @@ def _parse_and_validate_image_input( return LlavaNextImagePixelInputs( type="pixel_values", - data=pixel_values, + data=self._validate_pixel_values(pixel_values), image_sizes=self._validate_image_sizes(image_sizes), ) @@ -454,7 +495,7 @@ def forward( inputs_embeds = merge_vision_embeddings( input_ids, inputs_embeds, vision_embeddings, - self.vlm_config.image_token_id) + self.config.image_token_index) input_ids = None else: diff --git a/vllm/model_executor/models/phi3v.py b/vllm/model_executor/models/phi3v.py index 3d247c9ed2e64..9f12a8b2b11b1 100644 --- a/vllm/model_executor/models/phi3v.py +++ b/vllm/model_executor/models/phi3v.py @@ -15,7 +15,7 @@ # limitations under the License. import re from functools import lru_cache -from typing import Iterable, List, Literal, Optional, Tuple, TypedDict +from typing import Iterable, List, Literal, Optional, Tuple, TypedDict, Union import numpy as np import torch @@ -24,7 +24,7 @@ from transformers import CLIPVisionConfig, PretrainedConfig from vllm.attention import AttentionMetadata -from vllm.config import CacheConfig, ModelConfig, VisionLanguageConfig +from vllm.config import CacheConfig, ModelConfig, MultiModalConfig from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs from vllm.logger import init_logger from vllm.model_executor.layers.logits_processor import LogitsProcessor @@ -50,6 +50,9 @@ "model.vision_embed_tokens": "vision_embed_tokens", } +# Cannot find the following 2 numbers from hf config. +_IMAGE_TOKEN_ID = 32044 + CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(dropout=0.0, hidden_act="quick_gelu", hidden_size=1024, @@ -95,13 +98,10 @@ def get_img_features(self, class Phi3HDImageEmbedding(Phi3ImageEmbeddingBase): """Phi3 Image embedding with HD transform.""" - def __init__(self, - vision_language_config: VisionLanguageConfig, - config: PretrainedConfig, - wte=None) -> None: + def __init__(self, config: PretrainedConfig, wte=None) -> None: super().__init__(wte) - self.image_token_id = vision_language_config.image_token_id + self.image_token_id = _IMAGE_TOKEN_ID # n_embed or hidden_size hidden_size = config.n_embd if hasattr( config, 'n_embd') else config.hidden_size @@ -333,7 +333,7 @@ def dummy_data_for_phi3v(ctx: InputContext, seq_len: int): seq_data = dummy_seq_data_for_clip( CLIP_VIT_LARGE_PATCH14_336_CONFIG, seq_len, - image_token_id=32044, + image_token_id=_IMAGE_TOKEN_ID, image_feature_size_override=image_feature_size, ) mm_data = dummy_image_for_clip( @@ -370,7 +370,6 @@ def input_processor_for_phi3v(ctx: InputContext, llm_inputs: LLMInputs): return llm_inputs model_config = ctx.model_config - multimodal_config = ctx.get_multimodal_config() hf_config = ctx.get_hf_config(PretrainedConfig) image_data = multi_modal_data["image"] @@ -407,7 +406,7 @@ def input_processor_for_phi3v(ctx: InputContext, llm_inputs: LLMInputs): new_token_ids: List[int] = [] for i in range(len(prompt_token_ids) - len(image_1_token_ids) + 1): if prompt_token_ids[i:i + len(image_1_token_ids)] == image_1_token_ids: - new_token_ids.append(multimodal_config.image_token_id) + new_token_ids.append(_IMAGE_TOKEN_ID) # No need to further scan the list since we only replace once new_token_ids.extend(prompt_token_ids[i + len(image_1_token_ids):]) @@ -424,7 +423,7 @@ def input_processor_for_phi3v(ctx: InputContext, llm_inputs: LLMInputs): model_config, CLIP_VIT_LARGE_PATCH14_336_CONFIG, llm_inputs, - image_token_id=multimodal_config.image_token_id, + image_token_id=_IMAGE_TOKEN_ID, image_feature_size_override=image_feature_size, ) @@ -436,25 +435,53 @@ class Phi3VForCausalLM(nn.Module, SupportsVision): def __init__(self, config: PretrainedConfig, - vlm_config: VisionLanguageConfig, + multimodal_config: MultiModalConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None) -> None: super().__init__() self.config = config - self.vlm_config = vlm_config + self.multimodal_config = multimodal_config self.model = LlamaModel(config, cache_config, quant_config) # TODO: Optionally initializes this for supporting embeddings. self.vision_embed_tokens = Phi3HDImageEmbedding( - vlm_config, config, self.model.embed_tokens) + config, self.model.embed_tokens) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() + def _validate_image_sizes(self, data: torch.Tensor) -> torch.Tensor: + if list(data.shape[1:]) != [2]: + raise ValueError( + f"The expected image sizes shape is batch dimension plus " + f"{[2]}. You supplied {data.shape}.") + + return data + + def _validate_pixel_values( + self, data: Union[torch.Tensor, List[torch.Tensor]] + ) -> Union[torch.Tensor, List[torch.Tensor]]: + + def _validate_shape(data: torch.Tensor): + if list(data.shape)[2:] != [ + 3, CLIP_VIT_LARGE_PATCH14_336_CONFIG.image_size, + CLIP_VIT_LARGE_PATCH14_336_CONFIG.image_size + ]: + raise ValueError( + "The expected pixel value tensor shape is batch dimension " + "plus patch number, channel, height and width.") + + if isinstance(data, torch.Tensor): + _validate_shape(data) + else: + [_validate_shape(d) for d in data] + + return data + def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[Phi3VImagePixelInputs]: pixel_values = kwargs.pop("pixel_values", None) @@ -471,9 +498,10 @@ def _parse_and_validate_image_input( raise ValueError("Incorrect type of image sizes. " f"Got type: {type(image_sizes)}") - return Phi3VImagePixelInputs(type="pixel_values", - data=pixel_values, - image_sizes=image_sizes) + return Phi3VImagePixelInputs( + type="pixel_values", + data=self._validate_pixel_values(pixel_values), + image_sizes=self._validate_image_sizes(image_sizes)) def forward(self, input_ids: torch.Tensor, diff --git a/vllm/multimodal/registry.py b/vllm/multimodal/registry.py index f17b04149ede9..bd4583ef58da5 100644 --- a/vllm/multimodal/registry.py +++ b/vllm/multimodal/registry.py @@ -120,3 +120,10 @@ def create_input_mapper(self, model_config: ModelConfig): Create an input mapper (see :meth:`map_input`) for a specific model. """ return functools.partial(self.map_input, model_config) + + def get_num_input_tokens(self): + """ + Get the number of input tokens for profiling purposes. + """ + # TODO: Provide this number on a per model basis. + return 3000 diff --git a/vllm/spec_decode/draft_model_runner.py b/vllm/spec_decode/draft_model_runner.py index 1c7b8c07e89e5..6a2cfc819d8d2 100644 --- a/vllm/spec_decode/draft_model_runner.py +++ b/vllm/spec_decode/draft_model_runner.py @@ -3,8 +3,8 @@ import torch from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.logger import init_logger from vllm.sequence import (IntermediateTensors, SamplerOutput, SequenceGroupMetadata) @@ -47,7 +47,7 @@ def __init__( lora_config: Optional[LoRAConfig], kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, return_hidden_states: bool = False, ): if return_hidden_states: @@ -65,7 +65,7 @@ def __init__( lora_config=lora_config, kv_cache_dtype=kv_cache_dtype, is_driver_worker=is_driver_worker, - vision_language_config=vision_language_config, + multimodal_config=multimodal_config, return_hidden_states=return_hidden_states, ) diff --git a/vllm/worker/cpu_model_runner.py b/vllm/worker/cpu_model_runner.py index d8397ac22a583..b4277ae827c02 100644 --- a/vllm/worker/cpu_model_runner.py +++ b/vllm/worker/cpu_model_runner.py @@ -7,8 +7,8 @@ from vllm.attention import AttentionMetadata, get_attn_backend from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.logger import init_logger from vllm.model_executor import SamplingMetadata from vllm.model_executor.model_loader import get_model @@ -79,7 +79,7 @@ def __init__( cache_config: CacheConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, *args, @@ -93,7 +93,7 @@ def __init__( self.device_config = device_config self.cache_config = cache_config self.lora_config = lora_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.load_config = load_config self.is_driver_worker = is_driver_worker @@ -120,15 +120,14 @@ def __init__( self.model: nn.Module # Set after init_Model def load_model(self) -> None: - self.model = get_model( - model_config=self.model_config, - load_config=self.load_config, - device_config=self.device_config, - vision_language_config=self.vision_language_config, - lora_config=self.lora_config, - parallel_config=self.parallel_config, - scheduler_config=self.scheduler_config, - cache_config=self.cache_config) + self.model = get_model(model_config=self.model_config, + load_config=self.load_config, + device_config=self.device_config, + multimodal_config=self.multimodal_config, + lora_config=self.lora_config, + parallel_config=self.parallel_config, + scheduler_config=self.scheduler_config, + cache_config=self.cache_config) def _prepare_prompt( self, diff --git a/vllm/worker/cpu_worker.py b/vllm/worker/cpu_worker.py index 8089abd690680..92279753d3af1 100644 --- a/vllm/worker/cpu_worker.py +++ b/vllm/worker/cpu_worker.py @@ -6,8 +6,8 @@ from vllm.attention import get_attn_backend from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.distributed import (ensure_model_parallel_initialized, init_distributed_environment) from vllm.logger import init_logger @@ -131,7 +131,7 @@ def __init__( rank: int, distributed_init_method: str, lora_config: Optional[LoRAConfig] = None, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, ) -> None: @@ -145,7 +145,7 @@ def __init__( self.rank = rank self.distributed_init_method = distributed_init_method self.lora_config = lora_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.is_driver_worker = is_driver_worker if self.is_driver_worker: assert self.rank == 0, "The driver worker must have rank 0." @@ -162,7 +162,7 @@ def __init__( cache_config, load_config=self.load_config, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, kv_cache_dtype=kv_cache_dtype, is_driver_worker=is_driver_worker) # Uninitialized cache engine. Will be initialized by diff --git a/vllm/worker/embedding_model_runner.py b/vllm/worker/embedding_model_runner.py index d3a2643cb62ff..a3b31a1c0ac8a 100644 --- a/vllm/worker/embedding_model_runner.py +++ b/vllm/worker/embedding_model_runner.py @@ -4,8 +4,8 @@ import torch from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.logger import init_logger from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.pooling_params import PoolingParams @@ -40,7 +40,7 @@ def __init__( lora_config: Optional[LoRAConfig], kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, ): super().__init__(model_config, parallel_config, @@ -51,7 +51,7 @@ def __init__( lora_config=lora_config, kv_cache_dtype=kv_cache_dtype, is_driver_worker=is_driver_worker, - vision_language_config=vision_language_config) + multimodal_config=multimodal_config) @torch.inference_mode() def execute_model( diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index f44c791d824ce..9485b2623f129 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -24,8 +24,8 @@ from vllm.attention import AttentionMetadata, get_attn_backend from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.distributed import get_pp_group from vllm.distributed.parallel_state import graph_capture from vllm.inputs import INPUT_REGISTRY @@ -36,7 +36,8 @@ from vllm.model_executor import SamplingMetadata from vllm.model_executor.model_loader import get_model from vllm.model_executor.model_loader.tensorizer import TensorizerConfig -from vllm.model_executor.models.interfaces import supports_lora +from vllm.model_executor.models.interfaces import (supports_lora, + supports_vision) from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensors, MultiModalInputs) from vllm.sampling_params import SamplingParams @@ -171,7 +172,7 @@ def __init__( lora_config: Optional[LoRAConfig], kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, return_hidden_states: bool = False, ): self.model_config = model_config @@ -182,7 +183,7 @@ def __init__( self.lora_config = lora_config self.load_config = load_config self.is_driver_worker = is_driver_worker - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.return_hidden_states = return_hidden_states self.device = self.device_config.device @@ -244,7 +245,7 @@ def load_model(self) -> None: device_config=self.device_config, load_config=self.load_config, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, parallel_config=self.parallel_config, scheduler_config=self.scheduler_config, cache_config=self.cache_config, @@ -256,6 +257,9 @@ def load_model(self) -> None: if self.lora_config: assert supports_lora(self.model), "Model does not support LoRA" + assert not supports_vision( + self.model + ), "To be tested: vision language model with LoRA settings." self.lora_manager = LRUCacheWorkerLoRAManager( self.scheduler_config.max_num_seqs, @@ -804,12 +808,14 @@ def profile_run(self) -> None: # the number of seqs (batch_size) is chosen to maximize the number # of images processed. model_config = self.model_config - vlm_config = self.vision_language_config - if vlm_config: - max_num_seqs = min( - max_num_seqs, - int(max_num_batched_tokens / vlm_config.image_feature_size)) + if supports_vision(self.model): + max_num_seqs = max( + 1, + min( + max_num_seqs, + int(max_num_batched_tokens / + MULTIMODAL_REGISTRY.get_num_input_tokens()))) batch_size = 0 for group_id in range(max_num_seqs): seq_len = (max_num_batched_tokens // max_num_seqs + diff --git a/vllm/worker/openvino_model_runner.py b/vllm/worker/openvino_model_runner.py index f064048888a77..6281cec09825f 100644 --- a/vllm/worker/openvino_model_runner.py +++ b/vllm/worker/openvino_model_runner.py @@ -7,8 +7,8 @@ from vllm.attention import get_attn_backend from vllm.attention.backends.openvino import OpenVINOAttentionMetadata from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.logger import init_logger from vllm.model_executor import SamplingMetadata from vllm.model_executor.model_loader.openvino import get_model @@ -48,7 +48,7 @@ def __init__( cache_config: CacheConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, *args, @@ -60,7 +60,7 @@ def __init__( self.device_config = device_config self.cache_config = cache_config self.lora_config = lora_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.load_config = load_config self.is_driver_worker = is_driver_worker diff --git a/vllm/worker/openvino_worker.py b/vllm/worker/openvino_worker.py index 7a462ce5d0b66..8ac6f1704653c 100644 --- a/vllm/worker/openvino_worker.py +++ b/vllm/worker/openvino_worker.py @@ -7,8 +7,8 @@ from vllm.attention import get_attn_backend from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.distributed import (broadcast_tensor_dict, ensure_model_parallel_initialized, init_distributed_environment) @@ -148,7 +148,7 @@ def __init__( rank: int, distributed_init_method: str, lora_config: Optional[LoRAConfig] = None, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, kv_cache_dtype: Optional[ov.Type] = ov.Type.undefined, is_driver_worker: bool = False, ) -> None: @@ -162,7 +162,7 @@ def __init__( self.rank = rank self.distributed_init_method = distributed_init_method self.lora_config = lora_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.is_driver_worker = is_driver_worker if self.is_driver_worker: assert self.rank == 0, "The driver worker must have rank 0." @@ -180,7 +180,7 @@ def __init__( cache_config, load_config=self.load_config, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, kv_cache_dtype=kv_cache_dtype, is_driver_worker=is_driver_worker, ) diff --git a/vllm/worker/tpu_model_runner.py b/vllm/worker/tpu_model_runner.py index 4ea8e62cc1fdd..e4a96c073282e 100644 --- a/vllm/worker/tpu_model_runner.py +++ b/vllm/worker/tpu_model_runner.py @@ -8,7 +8,7 @@ from vllm.attention import AttentionMetadata, get_attn_backend from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, ModelConfig, - ParallelConfig, SchedulerConfig, VisionLanguageConfig) + MultiModalConfig, ParallelConfig, SchedulerConfig) from vllm.logger import init_logger from vllm.model_executor.model_loader import get_model from vllm.model_executor.sampling_metadata import SamplingMetadata @@ -39,7 +39,7 @@ def __init__( device_config: DeviceConfig, cache_config: CacheConfig, load_config: LoadConfig, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, is_driver_worker: bool = False, ): self.model_config = model_config @@ -48,7 +48,7 @@ def __init__( self.device_config = device_config self.cache_config = cache_config self.load_config = load_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.is_driver_worker = is_driver_worker self.block_size = self.cache_config.block_size @@ -82,7 +82,7 @@ def load_model(self) -> None: parallel_config=self.parallel_config, cache_config=self.cache_config, scheduler_config=self.scheduler_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, lora_config=None, ) xm.wait_device_ops() diff --git a/vllm/worker/tpu_worker.py b/vllm/worker/tpu_worker.py index d58c7dc994184..30725473a28b6 100644 --- a/vllm/worker/tpu_worker.py +++ b/vllm/worker/tpu_worker.py @@ -8,7 +8,7 @@ import vllm.envs as envs from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, ModelConfig, - ParallelConfig, SchedulerConfig, VisionLanguageConfig) + MultiModalConfig, ParallelConfig, SchedulerConfig) from vllm.distributed import (ensure_model_parallel_initialized, init_distributed_environment) from vllm.logger import init_logger @@ -31,7 +31,7 @@ def __init__( device_config: DeviceConfig, cache_config: CacheConfig, load_config: LoadConfig, - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], local_rank: int, rank: int, distributed_init_method: str, @@ -43,7 +43,7 @@ def __init__( self.device_config = device_config self.cache_config = cache_config self.load_config = load_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.local_rank = local_rank self.rank = rank self.distributed_init_method = distributed_init_method @@ -62,7 +62,7 @@ def __init__( device_config, cache_config, load_config, - vision_language_config, + multimodal_config, is_driver_worker=is_driver_worker) def init_device(self) -> None: diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py index b25f29f485d95..26a176be40a7e 100644 --- a/vllm/worker/worker.py +++ b/vllm/worker/worker.py @@ -7,8 +7,8 @@ import torch.distributed from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - SpeculativeConfig, VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig, SpeculativeConfig) from vllm.distributed import (ensure_model_parallel_initialized, init_distributed_environment, set_custom_all_reduce) @@ -43,7 +43,7 @@ def __init__( rank: int, distributed_init_method: str, lora_config: Optional[LoRAConfig] = None, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, speculative_config: Optional[SpeculativeConfig] = None, is_driver_worker: bool = False, model_runner_cls: Optional[Type[GPUModelRunnerBase]] = None, @@ -66,10 +66,7 @@ def __init__( # note: lazy import to avoid importing torch before initializing from vllm.utils import init_cached_hf_modules init_cached_hf_modules() - self.vision_language_config = vision_language_config - if self.vision_language_config: - assert not self.lora_config, ( - "To be tested: vision language model with LoRA settings.") + self.multimodal_config = multimodal_config # Return hidden states from target model if the draft model is an # mlp_speculator @@ -94,7 +91,7 @@ def __init__( lora_config=self.lora_config, kv_cache_dtype=self.cache_config.cache_dtype, is_driver_worker=is_driver_worker, - vision_language_config=vision_language_config, + multimodal_config=multimodal_config, **speculative_args, ) # Uninitialized cache engine. Will be initialized by diff --git a/vllm/worker/xpu_model_runner.py b/vllm/worker/xpu_model_runner.py index f4fc423280271..c3a24c89f302e 100644 --- a/vllm/worker/xpu_model_runner.py +++ b/vllm/worker/xpu_model_runner.py @@ -7,12 +7,13 @@ from vllm.attention import get_attn_backend from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig) from vllm.distributed import broadcast_tensor_dict from vllm.inputs import INPUT_REGISTRY from vllm.logger import init_logger from vllm.model_executor.model_loader import get_model +from vllm.model_executor.models.interfaces import supports_vision from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensors, MultiModalInputs) from vllm.sampling_params import SamplingParams @@ -85,7 +86,7 @@ def __init__( cache_config: CacheConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], - vision_language_config: Optional[VisionLanguageConfig], + multimodal_config: Optional[MultiModalConfig], kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, *args, @@ -97,7 +98,7 @@ def __init__( self.lora_config = lora_config self.load_config = load_config self.cache_config = cache_config - self.vision_language_config = vision_language_config + self.multimodal_config = multimodal_config self.is_driver_worker = is_driver_worker self.sliding_window = model_config.get_sliding_window() @@ -134,7 +135,7 @@ def load_model(self) -> None: device_config=self.device_config, load_config=self.load_config, lora_config=self.lora_config, - vision_language_config=self.vision_language_config, + multimodal_config=self.multimodal_config, parallel_config=self.parallel_config, scheduler_config=self.scheduler_config, cache_config=self.cache_config, @@ -165,12 +166,16 @@ def profile_run(self) -> None: # the number of seqs (batch_size) is chosen to maximize the number # of images processed. model_config = self.model_config - vlm_config = self.vision_language_config - if vlm_config: - max_num_seqs = min( - max_num_seqs, - int(max_num_batched_tokens / vlm_config.image_feature_size)) + if supports_vision(self.model): + # TODO: properly inject these numbers from MultiModalRegistry. + # Right now, just use an overly conservative number. + max_num_seqs = max( + 1, + min( + max_num_seqs, + int(max_num_batched_tokens / + MULTIMODAL_REGISTRY.get_num_input_tokens()))) for group_id in range(max_num_seqs): seq_len = (max_num_batched_tokens // max_num_seqs + diff --git a/vllm/worker/xpu_worker.py b/vllm/worker/xpu_worker.py index 7a51f2b2c729b..a946eb624a081 100644 --- a/vllm/worker/xpu_worker.py +++ b/vllm/worker/xpu_worker.py @@ -9,8 +9,8 @@ import torch.distributed from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, - ModelConfig, ParallelConfig, SchedulerConfig, - SpeculativeConfig, VisionLanguageConfig) + ModelConfig, MultiModalConfig, ParallelConfig, + SchedulerConfig, SpeculativeConfig) from vllm.distributed import (ensure_model_parallel_initialized, init_distributed_environment) from vllm.logger import init_logger @@ -45,7 +45,7 @@ def __init__( rank: int, distributed_init_method: str, lora_config: Optional[LoRAConfig] = None, - vision_language_config: Optional[VisionLanguageConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, speculative_config: Optional[SpeculativeConfig] = None, is_driver_worker: bool = False, ) -> None: @@ -66,10 +66,7 @@ def __init__( if self.is_driver_worker: assert self.rank == 0, "The driver worker must have rank 0." - self.vision_language_config = vision_language_config - if self.vision_language_config: - assert not self.lora_config, ( - "To be tested: vision language model with LoRA settings.") + self.multimodal_config = multimodal_config self.model_runner = XPUModelRunner( # type: ignore model_config, @@ -81,7 +78,7 @@ def __init__( lora_config=self.lora_config, kv_cache_dtype=self.cache_config.cache_dtype, is_driver_worker=is_driver_worker, - vision_language_config=vision_language_config, + multimodal_config=multimodal_config, ) # Uninitialized cache engine. Will be initialized by # initialize_cache.