From 7783a14e48e4628b9b92a26e023586e3ecc78926 Mon Sep 17 00:00:00 2001 From: Simon Mo Date: Tue, 29 Oct 2024 15:19:02 -0700 Subject: [PATCH] [Docs] Add notes about Snowflake Meetup (#9814) Signed-off-by: simon-mo Signed-off-by: Tyler Michael Smith --- README.md | 14 ++++++++++++-- 1 file changed, 12 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 0836d872358fb..8c8d6eb291cea 100644 --- a/README.md +++ b/README.md @@ -13,9 +13,19 @@ Easy, fast, and cheap LLM serving for everyone | Documentation | Blog | Paper | Discord | Twitter/X | Developer Slack |

+--- + +**vLLM x Snowfkale Meetup (Wednesday, November 13th, 5:30-8PM PT) at Snowfkale HQ, San Mateo** + +We are excited to announce the last in-person vLLM meetup of the year! +Join the vLLM developers and engineers from Snowflake AI Research to chat about the latest LLM inference optimizations and your 2025 vLLM wishlist! +Register [here](https://lu.ma/h0qvrajz) and be a part of the event! + +--- + *Latest News* 🔥 -- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there! +- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there! - [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/sessioncatalog?tab.day=20241001&search.sessiontracks=1719251906298001uzJ2) from other vLLM contributors and users! - [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing). - [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing). @@ -42,7 +52,7 @@ vLLM is fast with: - Speculative decoding - Chunked prefill -**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script. +**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script. vLLM is flexible and easy to use with: