diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index c6d31b837c55d..02a80640ac3f8 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -343,7 +343,6 @@ steps: commands: - pytest -v -s models/decoder_only/language -m 'core_model or quant_model' - pytest -v -s models/embedding/language -m core_model - - pytest -v -s models/embedding/vision_language -m core_model - label: Language Models Test (Extended) # 50min optional: true @@ -355,7 +354,6 @@ steps: commands: - pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model' - pytest -v -s models/embedding/language -m 'not core_model' - - pytest -v -s models/embedding/vision_language -m 'not core_model' - label: Multi-Modal Models Test (Standard) # 26min #mirror_hardwares: [amd] @@ -368,6 +366,7 @@ steps: commands: - pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model' - pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model' + - pytest -v -s models/embedding/vision_language -m core_model - pytest -v -s models/encoder_decoder/language -m core_model - pytest -v -s models/encoder_decoder/vision_language -m core_model @@ -385,6 +384,7 @@ steps: # https://github.com/huggingface/transformers/issues/34307 - pytest -v -s models/decoder_only/vision_language/test_phi3v.py - pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model' + - pytest -v -s models/embedding/vision_language -m 'not core_model' - pytest -v -s models/encoder_decoder/language -m 'not core_model' - pytest -v -s models/encoder_decoder/vision_language -m 'not core_model' diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 7b7a83f20871b..f571b8bf6735e 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -357,7 +357,7 @@ Text Embedding - ✅︎ * - :code:`Qwen2Model`, :code:`Qwen2ForCausalLM` - Qwen2-based - - :code:`ssmits/Qwen2-7B-Instruct-embed-base`, :code:`Alibaba-NLP/gte-Qwen2-7B-instruct` (see note), etc. + - :code:`ssmits/Qwen2-7B-Instruct-embed-base` (see note), :code:`Alibaba-NLP/gte-Qwen2-7B-instruct` (see note), etc. - ✅︎ - ✅︎ * - :code:`RobertaModel`, :code:`RobertaForMaskedLM` @@ -378,6 +378,10 @@ Text Embedding .. tip:: You can override the model's pooling method by passing :code:`--override-pooler-config`. +.. note:: + :code:`ssmits/Qwen2-7B-Instruct-embed-base` has an improperly defined Sentence Transformers config. + You should manually set mean pooling by passing :code:`--override-pooler-config '{"pooling_type": "MEAN"}'`. + .. note:: Unlike base Qwen2, :code:`Alibaba-NLP/gte-Qwen2-7B-instruct` uses bi-directional attention. You can set :code:`--hf-overrides '{"is_causal": false}'` to change the attention mask accordingly. @@ -397,12 +401,21 @@ Reward Modeling - Example HF Models - :ref:`LoRA ` - :ref:`PP ` + * - :code:`LlamaForCausalLM` + - Llama-based + - :code:`peiyi9979/math-shepherd-mistral-7b-prm`, etc. + - ✅︎ + - ✅︎ * - :code:`Qwen2ForRewardModel` - Qwen2-based - :code:`Qwen/Qwen2.5-Math-RM-72B`, etc. - ✅︎ - ✅︎ +.. important:: + For process-supervised reward models such as :code:`peiyi9979/math-shepherd-mistral-7b-prm`, the pooling config should be set explicitly, + e.g.: :code:`--override-pooler-config '{"pooling_type": "STEP", "step_tag_id": 123, "returned_token_ids": [456, 789]}'`. + .. note:: As an interim measure, these models are supported in both offline and online inference via Embeddings API. diff --git a/tests/conftest.py b/tests/conftest.py index d56942d8912af..36f1d477fab59 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -263,7 +263,6 @@ def __init__( dtype: str = "half", *, model_kwargs: Optional[Dict[str, Any]] = None, - is_embedding_model: bool = False, is_sentence_transformer: bool = False, is_cross_encoder: bool = False, skip_tokenizer_init: bool = False, diff --git a/tests/models/embedding/language/test_embedding.py b/tests/models/embedding/language/test_embedding.py index 36b1e5887981c..5ef8540265d14 100644 --- a/tests/models/embedding/language/test_embedding.py +++ b/tests/models/embedding/language/test_embedding.py @@ -4,6 +4,8 @@ """ import pytest +from vllm.config import PoolerConfig + from ..utils import check_embeddings_close @@ -33,6 +35,9 @@ def test_models( dtype: str, ) -> None: vllm_extra_kwargs = {} + if model == "ssmits/Qwen2-7B-Instruct-embed-base": + vllm_extra_kwargs["override_pooler_config"] = \ + PoolerConfig(pooling_type="MEAN") if model == "Alibaba-NLP/gte-Qwen2-7B-instruct": vllm_extra_kwargs["hf_overrides"] = {"is_causal": False} diff --git a/tests/models/test_registry.py b/tests/models/test_registry.py index 289ea66b5ebc5..1886b1f9898ad 100644 --- a/tests/models/test_registry.py +++ b/tests/models/test_registry.py @@ -6,11 +6,8 @@ from vllm.model_executor.models import (is_embedding_model, is_text_generation_model, supports_multimodal) -# yapf conflicts with isort for this block -# yapf: disable -from vllm.model_executor.models.registry import (_CROSS_ENCODER_MODELS, - _EMBEDDING_MODELS, - _MULTIMODAL_MODELS, +from vllm.model_executor.models.adapters import as_embedding_model +from vllm.model_executor.models.registry import (_MULTIMODAL_MODELS, _SPECULATIVE_DECODING_MODELS, _TEXT_GENERATION_MODELS, ModelRegistry) @@ -26,18 +23,18 @@ def test_registry_imports(model_arch): model_cls, _ = ModelRegistry.resolve_model_cls(model_arch) if model_arch in _SPECULATIVE_DECODING_MODELS: - pass # Ignore these models which do not have a unified format - else: - assert is_text_generation_model(model_cls) is ( - model_arch in _TEXT_GENERATION_MODELS - or model_arch in _MULTIMODAL_MODELS) - - embedding_models = {**_EMBEDDING_MODELS, **_CROSS_ENCODER_MODELS} - assert is_embedding_model(model_cls) is (model_arch - in embedding_models) - - assert supports_multimodal(model_cls) is (model_arch - in _MULTIMODAL_MODELS) + return # Ignore these models which do not have a unified format + + if (model_arch in _TEXT_GENERATION_MODELS + or model_arch in _MULTIMODAL_MODELS): + assert is_text_generation_model(model_cls) + + # All vLLM models should be convertible to an embedding model + embed_model = as_embedding_model(model_cls) + assert is_embedding_model(embed_model) + + if model_arch in _MULTIMODAL_MODELS: + assert supports_multimodal(model_cls) @fork_new_process_for_each_test diff --git a/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_gemma_embedding.py b/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_gemma_embedding.py index 21958b1640204..d676eacffb056 100644 --- a/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_gemma_embedding.py +++ b/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_gemma_embedding.py @@ -1,13 +1,34 @@ -from typing import List, Optional, Union +from typing import Iterable, List, Optional, Tuple, Union import torch +import torch.nn as nn from vllm.attention import AttentionMetadata -from vllm.model_executor.models.gemma2 import Gemma2EmbeddingModel -from vllm.sequence import IntermediateTensors +from vllm.config import VllmConfig +from vllm.model_executor.layers.pooler import Pooler, PoolingType +from vllm.model_executor.models.gemma2 import Gemma2Model +from vllm.model_executor.models.utils import WeightsMapper, maybe_prefix +from vllm.model_executor.pooling_metadata import PoolingMetadata +from vllm.sequence import IntermediateTensors, PoolerOutput -class MyGemma2Embedding(Gemma2EmbeddingModel): +class MyGemma2Embedding(nn.Module): + + def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): + super().__init__() + + self.model = Gemma2Model(vllm_config=vllm_config, + prefix=maybe_prefix(prefix, "model")) + + self._pooler = Pooler.from_config_with_defaults( + vllm_config.model_config.pooler_config, + pooling_type=PoolingType.LAST, + normalize=True, + softmax=False, + ) + + self.make_empty_intermediate_tensors = ( + self.model.make_empty_intermediate_tensors) def forward( self, @@ -18,7 +39,7 @@ def forward( intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: - hidden_states = super().forward( + hidden_states = self.model( input_ids, positions, kv_caches, @@ -32,3 +53,17 @@ def forward( # Return all-zero embeddings return torch.zeros_like(hidden_states) + + def pooler( + self, + hidden_states: torch.Tensor, + pooling_metadata: PoolingMetadata, + ) -> Optional[PoolerOutput]: + return self._pooler(hidden_states, pooling_metadata) + + def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): + hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""}) + weights = hf_to_vllm_mapper.apply(weights) + weights = ((name, data) for name, data in weights + if not name.startswith("lm_head.")) + return self.model.load_weights(weights) diff --git a/tests/test_config.py b/tests/test_config.py index 3cf90297ce177..45b0b938af215 100644 --- a/tests/test_config.py +++ b/tests/test_config.py @@ -26,8 +26,7 @@ def test_auto_task(model_id, expected_task): @pytest.mark.parametrize(("model_id", "bad_task"), [ - ("facebook/opt-125m", "embedding"), - ("intfloat/e5-mistral-7b-instruct", "generate"), + ("Qwen/Qwen2.5-Math-RM-72B", "generate"), ]) def test_incorrect_task(model_id, bad_task): with pytest.raises(ValueError, match=r"does not support the .* task"): diff --git a/vllm/config.py b/vllm/config.py index b1e5b412fec8f..51b8cf24803ab 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -370,6 +370,31 @@ def _resolve_task( selected_task = next(iter(supported_tasks_lst)) if len(supported_tasks) > 1: + suffix_to_preferred_task: List[Tuple[str, _Task]] = [ + # Hardcode the models that are exceptions + ("AquilaModel", "generate"), + ("ChatGLMModel", "generate"), + # Other models follow this pattern + ("ForCausalLM", "generate"), + ("ForConditionalGeneration", "generate"), + ("ChatModel", "generate"), + ("LMHeadModel", "generate"), + ("EmbeddingModel", "embedding"), + ("RewardModel", "embedding"), + ("ForSequenceClassification", "embedding"), + ] + info, arch = ModelRegistry.inspect_model_cls(architectures) + + for suffix, pref_task in suffix_to_preferred_task: + if arch.endswith(suffix) and pref_task in supported_tasks: + selected_task = pref_task + break + else: + if (arch.endswith("Model") + and info.architecture.endswith("ForCausalLM") + and "embedding" in supported_tasks): + selected_task = "embedding" + logger.info( "This model supports multiple tasks: %s. " "Defaulting to '%s'.", supported_tasks, selected_task) diff --git a/vllm/inputs/registry.py b/vllm/inputs/registry.py index 68b4756331e6d..85ab4355cc2e4 100644 --- a/vllm/inputs/registry.py +++ b/vllm/inputs/registry.py @@ -11,8 +11,8 @@ from vllm.logger import init_logger from vllm.transformers_utils.processor import cached_get_processor from vllm.transformers_utils.tokenizer import AnyTokenizer -from vllm.utils import (get_allowed_kwarg_only_overrides, print_warning_once, - resolve_mm_processor_kwargs) +from vllm.utils import (ClassRegistry, get_allowed_kwarg_only_overrides, + print_warning_once, resolve_mm_processor_kwargs) from .data import ProcessorInputs, SingletonInputs from .parse import is_encoder_decoder_inputs @@ -136,12 +136,12 @@ class InputRegistry: """ def __init__(self) -> None: - self._dummy_factories_by_model_type: Dict[Type[nn.Module], - DummyDataFactory] = {} - self._dummy_encoder_factories_by_model_type: Dict[ - Type[nn.Module], DummyDataFactory] = {} - self._input_processors_by_model_type: Dict[Type[nn.Module], - InputProcessor] = {} + self._dummy_factories_by_model_type = \ + ClassRegistry[nn.Module, DummyDataFactory]() + self._dummy_encoder_factories_by_model_type = \ + ClassRegistry[nn.Module, DummyDataFactory]() + self._input_processors_by_model_type = \ + ClassRegistry[nn.Module, InputProcessor]() def _default_dummy_data_factory( self, diff --git a/vllm/model_executor/layers/pooler.py b/vllm/model_executor/layers/pooler.py index f9437b4112ceb..e0d42e30ebef3 100644 --- a/vllm/model_executor/layers/pooler.py +++ b/vllm/model_executor/layers/pooler.py @@ -60,9 +60,7 @@ def from_config_with_defaults( softmax: bool, step_tag_id: Optional[int] = None, returned_token_ids: Optional[List[int]] = None, - ) -> Optional["Pooler"]: - if pooler_config is None: - return None + ) -> "Pooler": return cls( pooling_type=PoolingType[pooler_config.pooling_type] if pooler_config.pooling_type is not None else pooling_type, diff --git a/vllm/model_executor/model_loader/loader.py b/vllm/model_executor/model_loader/loader.py index 37c2d789030b6..0e12bc5691538 100644 --- a/vllm/model_executor/model_loader/loader.py +++ b/vllm/model_executor/model_loader/loader.py @@ -9,6 +9,7 @@ import json import math import os +import warnings from abc import ABC, abstractmethod from contextlib import contextmanager from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, cast @@ -97,22 +98,31 @@ def device_loading_context(module: torch.nn.Module, logger = init_logger(__name__) -def _initialize_model(vllm_config: VllmConfig, prefix: str = "") -> nn.Module: +def _initialize_model( + vllm_config: VllmConfig, + *, + prefix: str = "", + architectures: Optional[list[str]] = None, +) -> nn.Module: """Initialize a model with the given configurations.""" model_config = vllm_config.model_config - model_class, _ = get_model_architecture(model_config) + model_class, _ = get_model_architecture(model_config, + architectures=architectures) + signatures = inspect.signature(model_class.__init__) all_params = [param.name for param in signatures.parameters.values()] if "vllm_config" in all_params and "prefix" in all_params: # new-style model class with set_current_vllm_config(vllm_config): return model_class(vllm_config=vllm_config, prefix=prefix) + msg = ("vLLM model class should accept `vllm_config` and `prefix` as " "input arguments. Possibly you have an old-style model class" " registered from out of tree and it is used for new vLLM version. " "Check https://docs.vllm.ai/en/latest/design/arch_overview.html " "for the design and update the model class accordingly.") - logger.warning(msg) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + logger.warning( "Trying to guess the arguments for old-style model class %s", model_class, @@ -356,7 +366,7 @@ def load_model(self, vllm_config: VllmConfig) -> nn.Module: weights_to_load = {name for name, _ in model.named_parameters()} loaded_weights = model.load_weights( self._get_all_weights(model_config, model)) - # We only enable strict check for non-quantiized models + # We only enable strict check for non-quantized models # that have loaded weights tracking currently. if model_config.quantization is None and loaded_weights is not None: weights_not_loaded = weights_to_load - loaded_weights diff --git a/vllm/model_executor/model_loader/utils.py b/vllm/model_executor/model_loader/utils.py index b95c0b7cd0612..864dd04e79921 100644 --- a/vllm/model_executor/model_loader/utils.py +++ b/vllm/model_executor/model_loader/utils.py @@ -1,12 +1,13 @@ """Utilities for selecting and loading models.""" import contextlib -from typing import Tuple, Type +from typing import Optional, Tuple, Type import torch from torch import nn from vllm.config import ModelConfig from vllm.model_executor.models import ModelRegistry +from vllm.model_executor.models.adapters import as_embedding_model @contextlib.contextmanager @@ -19,8 +20,13 @@ def set_default_torch_dtype(dtype: torch.dtype): def get_model_architecture( - model_config: ModelConfig) -> Tuple[Type[nn.Module], str]: - architectures = getattr(model_config.hf_config, "architectures", []) + model_config: ModelConfig, + *, + architectures: Optional[list[str]] = None, +) -> Tuple[Type[nn.Module], str]: + if architectures is None: + architectures = getattr(model_config.hf_config, "architectures", []) + # Special handling for quantized Mixtral. # FIXME(woosuk): This is a temporary hack. mixtral_supported = [ @@ -32,7 +38,11 @@ def get_model_architecture( and "MixtralForCausalLM" in architectures): architectures = ["QuantMixtralForCausalLM"] - return ModelRegistry.resolve_model_cls(architectures) + model_cls, arch = ModelRegistry.resolve_model_cls(architectures) + if model_config.task == "embedding": + model_cls = as_embedding_model(model_cls) + + return model_cls, arch def get_architecture_class_name(model_config: ModelConfig) -> str: diff --git a/vllm/model_executor/models/adapters.py b/vllm/model_executor/models/adapters.py new file mode 100644 index 0000000000000..360433a07c5b8 --- /dev/null +++ b/vllm/model_executor/models/adapters.py @@ -0,0 +1,98 @@ +from collections.abc import Iterable +from typing import Any, TypeVar + +import torch +import torch.nn as nn + +from .interfaces_base import VllmModelForEmbedding, is_embedding_model + +_T = TypeVar("_T", bound=type[nn.Module]) + + +def as_embedding_model(cls: _T) -> _T: + """Subclass an existing vLLM model to support embeddings.""" + # Avoid modifying existing embedding models + if is_embedding_model(cls): + return cls + + # Lazy import + from vllm.config import VllmConfig + from vllm.model_executor.layers.pooler import (Pooler, PoolerOutput, + PoolingType) + from vllm.model_executor.pooling_metadata import PoolingMetadata + + from .utils import AutoWeightsLoader, WeightsMapper + + class ModelForEmbedding(cls, VllmModelForEmbedding): + + def __init__( + self, + *, + vllm_config: "VllmConfig", + prefix: str = "", + **kwargs: Any, + ) -> None: + super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs) + + # These are not used in embedding models + for attr in ("lm_head", "logits_processor"): + if hasattr(self, attr): + delattr(self, attr) + + pooler_config = vllm_config.model_config.pooler_config + assert pooler_config is not None + + # If the model already defines a pooler instance, don't overwrite it + if not getattr(self, "_pooler", None): + self._pooler = Pooler.from_config_with_defaults( + pooler_config, + pooling_type=PoolingType.LAST, + normalize=True, + softmax=False, + ) + + def pooler( + self, + hidden_states: torch.Tensor, + pooling_metadata: PoolingMetadata, + ) -> PoolerOutput: + return self._pooler(hidden_states, pooling_metadata) + + def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): + # TODO: Support uninitialized params tracking + + # We have deleted this attribute, so don't load it + weights = ((name, data) for name, data in weights + if not name.startswith("lm_head.")) + + # If `*ForCausalLM` defines `load_weights` on the inner model + # and there are no other inner modules with parameters, + # we support loading from both `*Model` and `*ForCausalLM` + if hasattr(self, "model") and hasattr(self.model, "load_weights"): + # Whether only `self.model` contains parameters + model_is_only_param = all( + name == "model" or next(child.parameters(), None) is None + for name, child in self.named_children()) + + if model_is_only_param: + mapper = WeightsMapper(orig_to_new_prefix={"model.": ""}) + weights = mapper.apply(weights) + + self.model.load_weights(weights) + return + + # For most other models + if hasattr(cls, "load_weights"): + cls.load_weights(self, weights) # type: ignore + # Fallback + else: + loader = AutoWeightsLoader(self) + loader.load_weights(weights) + + ModelForEmbedding.__name__ = cls.__name__ \ + .removesuffix("ForCausalLM") \ + .removesuffix("ForConditionalGeneration") \ + .removesuffix("ChatModel") \ + .removesuffix("LMHeadModel") + "ForEmbedding" + + return ModelForEmbedding # type: ignore diff --git a/vllm/model_executor/models/blip2.py b/vllm/model_executor/models/blip2.py index d2592016aff34..76b8505ee1c2a 100644 --- a/vllm/model_executor/models/blip2.py +++ b/vllm/model_executor/models/blip2.py @@ -512,9 +512,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): ) self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) diff --git a/vllm/model_executor/models/gemma2.py b/vllm/model_executor/models/gemma2.py index d35fcb012e166..4664aa53ea092 100644 --- a/vllm/model_executor/models/gemma2.py +++ b/vllm/model_executor/models/gemma2.py @@ -30,19 +30,17 @@ QKVParallelLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor -from vllm.model_executor.layers.pooler import Pooler, PoolingType from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader -from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.sequence import IntermediateTensors, PoolerOutput +from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP -from .utils import (AutoWeightsLoader, WeightsMapper, extract_layer_index, +from .utils import (AutoWeightsLoader, extract_layer_index, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) @@ -455,55 +453,3 @@ def load_weights(self, weights: Iterable[Tuple[str, if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights) - - -class Gemma2EmbeddingModel(nn.Module, SupportsPP): - """ - A model that uses Gemma2 with additional embedding functionalities. - - This class encapsulates the Gemma2Model and provides an interface for - embedding operations and customized pooling functions. - - Attributes: - model: An instance of Gemma2Model used for forward operations. - _pooler: An instance of Pooler used for pooling operations. - """ - - def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): - super().__init__() - - self.model = Gemma2Model(vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "model")) - self._pooler = Pooler.from_config_with_defaults( - vllm_config.model_config.pooler_config, - pooling_type=PoolingType.LAST, - normalize=True, - softmax=False) - self.make_empty_intermediate_tensors = ( - self.model.make_empty_intermediate_tensors) - - def forward( - self, - input_ids: Optional[torch.Tensor], - positions: torch.Tensor, - kv_caches: List[torch.Tensor], - attn_metadata: AttentionMetadata, - intermediate_tensors: Optional[IntermediateTensors] = None, - inputs_embeds: Optional[torch.Tensor] = None, - ) -> Union[torch.Tensor, IntermediateTensors]: - return self.model(input_ids, positions, kv_caches, attn_metadata, - intermediate_tensors, inputs_embeds) - - def pooler( - self, - hidden_states: torch.Tensor, - pooling_metadata: PoolingMetadata, - ) -> Optional[PoolerOutput]: - return self._pooler(hidden_states, pooling_metadata) - - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): - hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""}) - weights = hf_to_vllm_mapper.apply(weights) - weights = ((name, data) for name, data in weights - if not name.startswith("lm_head.")) - self.model.load_weights(weights) diff --git a/vllm/model_executor/models/internvl.py b/vllm/model_executor/models/internvl.py index b1c0065afbf30..86aab38032450 100644 --- a/vllm/model_executor/models/internvl.py +++ b/vllm/model_executor/models/internvl.py @@ -474,9 +474,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: ) self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) self.mlp1 = self._init_mlp1(config) diff --git a/vllm/model_executor/models/llama.py b/vllm/model_executor/models/llama.py index ff0ab011a9158..31dfb235ae877 100644 --- a/vllm/model_executor/models/llama.py +++ b/vllm/model_executor/models/llama.py @@ -37,7 +37,6 @@ QKVParallelLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor -from vllm.model_executor.layers.pooler import Pooler, PoolingType from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( get_compressed_tensors_cache_scale) @@ -47,14 +46,13 @@ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name) -from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.platforms import current_platform -from vllm.sequence import IntermediateTensors, PoolerOutput +from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP -from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper, - extract_layer_index, is_pp_missing_parameter, +from .utils import (AutoWeightsLoader, PPMissingLayer, extract_layer_index, + is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) @@ -511,11 +509,12 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config - pooler_config = vllm_config.model_config.pooler_config self.config = config self.lora_config = lora_config - self.model = self._init_model(vllm_config=vllm_config, prefix=prefix) + self.model = self._init_model(vllm_config=vllm_config, + prefix=maybe_prefix(prefix, "model")) + if get_pp_group().is_last_rank: self.unpadded_vocab_size = config.vocab_size if lora_config: @@ -544,13 +543,9 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.sampler = get_sampler() else: self.lm_head = PPMissingLayer() + self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) - self._pooler = Pooler.from_config_with_defaults( - pooler_config, - pooling_type=PoolingType.STEP, - normalize=False, - softmax=False) def _init_model(self, vllm_config: VllmConfig, prefix: str = ""): return LlamaModel(vllm_config=vllm_config, prefix=prefix) @@ -581,14 +576,6 @@ def compute_logits( sampling_metadata) return logits - def pooler( - self, - hidden_states: torch.Tensor, - pooling_metadata: PoolingMetadata, - ) -> Optional[PoolerOutput]: - logits = self.compute_logits(hidden_states, None) - return self._pooler(logits, pooling_metadata) - def sample(self, logits: torch.Tensor, sampling_metadata: SamplingMetadata) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) @@ -639,78 +626,3 @@ def permute(w: torch.Tensor, n_heads: int): name = name.replace(item, mapping[item]) return name, loaded_weight - - -class LlamaEmbeddingModel(nn.Module, SupportsLoRA, SupportsPP): - """ - A model that uses Llama with additional embedding functionalities. - - This class encapsulates the LlamaModel and provides an interface for - embedding operations and customized pooling functions. - - Attributes: - model: An instance of LlamaModel used for forward operations. - _pooler: An instance of Pooler used for pooling operations. - """ - packed_modules_mapping = { - "qkv_proj": ["q_proj", "k_proj", "v_proj"], - "gate_up_proj": ["gate_proj", "up_proj"] - } - - # LoRA specific attributes - supported_lora_modules = [ - "qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens" - ] - embedding_modules = { - "embed_tokens": "input_embeddings", - } - embedding_padding_modules = [] - - def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): - super().__init__() - - pooler_config = vllm_config.model_config.pooler_config - - self.model = LlamaModel(vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "model")) - self._pooler = Pooler.from_config_with_defaults( - pooler_config, - pooling_type=PoolingType.LAST, - normalize=True, - softmax=False) - self.make_empty_intermediate_tensors = ( - self.model.make_empty_intermediate_tensors) - - def forward( - self, - input_ids: Optional[torch.Tensor], - positions: torch.Tensor, - kv_caches: List[torch.Tensor], - attn_metadata: AttentionMetadata, - intermediate_tensors: Optional[IntermediateTensors] = None, - inputs_embeds: Optional[torch.Tensor] = None, - ) -> Union[torch.Tensor, IntermediateTensors]: - return self.model(input_ids, positions, kv_caches, attn_metadata, - intermediate_tensors, inputs_embeds) - - def pooler( - self, - hidden_states: torch.Tensor, - pooling_metadata: PoolingMetadata, - ) -> Optional[PoolerOutput]: - return self._pooler(hidden_states, pooling_metadata) - - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): - hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""}) - weights = hf_to_vllm_mapper.apply(weights) - weights = ((name, data) for name, data in weights - if not name.startswith("lm_head.")) - self.model.load_weights(weights) - - def load_kv_cache_scales(self, quantization_param_path: str) -> None: - self.model.load_kv_cache_scales(quantization_param_path) - - # LRUCacheWorkerLoRAManager instantiation requires model config. - @property - def config(self): - return self.model.config diff --git a/vllm/model_executor/models/llava.py b/vllm/model_executor/models/llava.py index e7757b3c7d405..7fd4b32774798 100644 --- a/vllm/model_executor/models/llava.py +++ b/vllm/model_executor/models/llava.py @@ -319,9 +319,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: projector_hidden_act=config.projector_hidden_act) self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) diff --git a/vllm/model_executor/models/llava_next.py b/vllm/model_executor/models/llava_next.py index e113f5862830d..a39f2f4124d05 100644 --- a/vllm/model_executor/models/llava_next.py +++ b/vllm/model_executor/models/llava_next.py @@ -14,13 +14,11 @@ from vllm.config import VllmConfig from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, InputContext) -from vllm.model_executor.layers.pooler import Pooler, PoolingType from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler -from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import NestedTensors -from vllm.sequence import IntermediateTensors, PoolerOutput +from vllm.sequence import IntermediateTensors from vllm.utils import is_list_of from .clip import (CLIPVisionModel, dummy_image_for_clip, @@ -286,7 +284,6 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config - pooler_config = vllm_config.model_config.pooler_config multimodal_config = vllm_config.model_config.multimodal_config vision_feature_layer = config.vision_feature_layer @@ -321,17 +318,11 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: projector_hidden_act=config.projector_hidden_act) self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) - - # The same model class supports both language generation and embedding - # because the architecture name is the same - self._pooler = Pooler.from_config_with_defaults( - pooler_config, - pooling_type=PoolingType.LAST, - normalize=True, - softmax=False) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) + self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) @@ -678,13 +669,6 @@ def sample( ) -> Optional[SamplerOutput]: return self.language_model.sample(logits, sampling_metadata) - def pooler( - self, - hidden_states: torch.Tensor, - pooling_metadata: PoolingMetadata, - ) -> Optional[PoolerOutput]: - return self._pooler(hidden_states, pooling_metadata) - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: loader = AutoWeightsLoader(self) diff --git a/vllm/model_executor/models/llava_next_video.py b/vllm/model_executor/models/llava_next_video.py index b130791808924..0de9d8c5ea572 100644 --- a/vllm/model_executor/models/llava_next_video.py +++ b/vllm/model_executor/models/llava_next_video.py @@ -275,9 +275,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: text_hidden_size=config.text_config.hidden_size, projector_hidden_act=config.projector_hidden_act) self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) self.make_empty_intermediate_tensors = ( self.language_model.model.make_empty_intermediate_tensors) diff --git a/vllm/model_executor/models/llava_onevision.py b/vllm/model_executor/models/llava_onevision.py index 3166737d61582..0bebc1c745e2b 100644 --- a/vllm/model_executor/models/llava_onevision.py +++ b/vllm/model_executor/models/llava_onevision.py @@ -422,9 +422,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: prefix=maybe_prefix(prefix, "vision_tower")) self.multi_modal_projector = LlavaOnevisionMultiModalProjector(config) self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) self.image_newline = nn.Parameter( torch.empty(config.text_config.hidden_size)) diff --git a/vllm/model_executor/models/paligemma.py b/vllm/model_executor/models/paligemma.py index 2e5b6bee784e7..253e689e50a3b 100644 --- a/vllm/model_executor/models/paligemma.py +++ b/vllm/model_executor/models/paligemma.py @@ -151,9 +151,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.quant_config = quant_config config.text_config.architectures = ["GemmaForCausalLM"] self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) logit_scale = getattr(config, "logit_scale", 1.0) self.language_model.logits_processor.scale *= logit_scale diff --git a/vllm/model_executor/models/phi3v.py b/vllm/model_executor/models/phi3v.py index 4cb874a13e0c1..eef23029a2aca 100644 --- a/vllm/model_executor/models/phi3v.py +++ b/vllm/model_executor/models/phi3v.py @@ -29,24 +29,22 @@ from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, InputContext, token_inputs) from vllm.logger import init_logger -from vllm.model_executor.layers.pooler import Pooler, PoolingType from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) from vllm.model_executor.models.clip import CLIPVisionModel -from vllm.model_executor.models.llama import LlamaForCausalLM -from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import NestedTensors, PlaceholderRange from vllm.multimodal.utils import cached_get_tokenizer, repeat_and_pad_token -from vllm.sequence import IntermediateTensors, PoolerOutput +from vllm.sequence import IntermediateTensors from vllm.utils import is_list_of from .clip import dummy_image_for_clip, dummy_seq_data_for_clip from .interfaces import SupportsMultiModal, SupportsPP -from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, maybe_prefix, +from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, + init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings) logger = init_logger(__name__) @@ -536,7 +534,6 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config - pooler_config = vllm_config.model_config.pooler_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config @@ -556,18 +553,17 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): quant_config, prefix=maybe_prefix(prefix, "model.vision_embed_tokens")) - # The prefix is empty intentionally because default prefix of - # LlamaForCausalLM is "model" - self.language_model = LlamaForCausalLM(vllm_config=vllm_config, - prefix="") - - # The same model class supports both language generation and embedding - # because the architecture name is the same - self._pooler = Pooler.from_config_with_defaults( - pooler_config, - pooling_type=PoolingType.LAST, - normalize=True, - softmax=False) + self.language_model = init_vllm_registered_model( + vllm_config=vllm_config, + # The prefix is empty intentionally because default prefix of + # LlamaForCausalLM is "model" + prefix="", + # We don't directly initialize vLLM's LlamaForCausalLM so we + # can automatically apply embedding wrapper if this model is + # initialized as an embedding model + architectures=["LlamaForCausalLM"], + ) + self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) @@ -739,13 +735,6 @@ def sample( ) -> Optional[SamplerOutput]: return self.language_model.sample(logits, sampling_metadata) - def pooler( - self, - hidden_states: torch.Tensor, - pooling_metadata: PoolingMetadata, - ) -> Optional[PoolerOutput]: - return self._pooler(hidden_states, pooling_metadata) - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: hf_to_vllm_mapper = WeightsMapper( diff --git a/vllm/model_executor/models/pixtral.py b/vllm/model_executor/models/pixtral.py index 45171c1a04b17..215727cadd954 100644 --- a/vllm/model_executor/models/pixtral.py +++ b/vllm/model_executor/models/pixtral.py @@ -172,9 +172,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): # init MistralForCausalLM self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) self.vision_encoder = VisionTransformer(self.vision_args) self.vision_language_adapter = VisionLanguageAdapter( diff --git a/vllm/model_executor/models/qwen2.py b/vllm/model_executor/models/qwen2.py index 87943e53d861c..7d4cc4b69e614 100644 --- a/vllm/model_executor/models/qwen2.py +++ b/vllm/model_executor/models/qwen2.py @@ -31,6 +31,7 @@ from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size +from vllm.logger import init_logger from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, @@ -55,6 +56,8 @@ make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) +logger = init_logger(__name__) + class Qwen2MLP(nn.Module): @@ -433,7 +436,6 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config - pooler_config = vllm_config.model_config.pooler_config self.config = config self.lora_config = lora_config @@ -454,14 +456,6 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = get_sampler() - # The same model class supports both language generation and embedding - # because the architecture name is the same - self._pooler = Pooler.from_config_with_defaults( - pooler_config, - pooling_type=PoolingType.LAST, - normalize=True, - softmax=False) - self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) @@ -499,13 +493,6 @@ def sample( next_tokens = self.sampler(logits, sampling_metadata) return next_tokens - def pooler( - self, - hidden_states: torch.Tensor, - pooling_metadata: PoolingMetadata, - ) -> Optional[PoolerOutput]: - return self._pooler(hidden_states, pooling_metadata) - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: loader = AutoWeightsLoader( @@ -553,6 +540,15 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.model = Qwen2Model(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) + # TODO: Replace this model class with for_embedding(Qwen2ForCausalLM), + # after changing the default pooling method + if pooler_config.pooling_type is None: + logger.warning( + "This embedding model will default to last-token pooling in " + "an upcoming version. To avoid breaking changes, you should " + "pass `--override-pooler-config '{\"pooling_type\": \"MEAN\"}'`" + " explicitly.") + self._pooler = Pooler.from_config_with_defaults( pooler_config, pooling_type=PoolingType.MEAN, diff --git a/vllm/model_executor/models/qwen2_vl.py b/vllm/model_executor/models/qwen2_vl.py index 7956a98b21569..27175dbae7483 100644 --- a/vllm/model_executor/models/qwen2_vl.py +++ b/vllm/model_executor/models/qwen2_vl.py @@ -50,7 +50,6 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor -from vllm.model_executor.layers.pooler import Pooler, PoolingType from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.quantization.gptq import GPTQConfig from vllm.model_executor.layers.quantization.gptq_marlin import ( @@ -59,14 +58,13 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.models.qwen2 import Qwen2Model -from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.image import cached_get_image_processor from vllm.multimodal.inputs import (MultiModalData, MultiModalDataDict, MultiModalKwargs, NestedTensors) from vllm.multimodal.utils import cached_get_tokenizer from vllm.platforms import _Backend -from vllm.sequence import IntermediateTensors, PoolerOutput, SequenceData +from vllm.sequence import IntermediateTensors, SequenceData from vllm.transformers_utils.config import uses_mrope from vllm.transformers_utils.processor import cached_get_processor @@ -1070,7 +1068,6 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config - pooler_config = vllm_config.model_config.pooler_config multimodal_config = vllm_config.model_config.multimodal_config assert not cache_config.enable_prefix_caching, \ "Qwen2-VL currently does not support prefix caching" @@ -1102,11 +1099,7 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = get_sampler() - self._pooler = Pooler.from_config_with_defaults( - pooler_config, - pooling_type=PoolingType.LAST, - normalize=True, - softmax=False) + self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size)) @@ -1361,13 +1354,6 @@ def sample( next_tokens = self.sampler(logits, sampling_metadata) return next_tokens - def pooler( - self, - hidden_states: torch.Tensor, - pooling_metadata: PoolingMetadata, - ) -> Optional[PoolerOutput]: - return self._pooler(hidden_states, pooling_metadata) - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: stacked_params_mapping = [ diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index c400c7d59828c..7d2bfce9ba264 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -20,6 +20,7 @@ from vllm.logger import init_logger from vllm.platforms import current_platform +from .adapters import as_embedding_model from .interfaces import (has_inner_state, is_attention_free, supports_cross_encoding, supports_multimodal, supports_pp) @@ -107,15 +108,15 @@ "RobertaForMaskedLM": ("roberta", "RobertaEmbeddingModel"), "XLMRobertaModel": ("roberta", "RobertaEmbeddingModel"), "DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"), - "Gemma2Model": ("gemma2", "Gemma2EmbeddingModel"), + "Gemma2Model": ("gemma2", "Gemma2ForCausalLM"), "GlmForCausalLM": ("glm", "GlmForCausalLM"), - "LlamaModel": ("llama", "LlamaEmbeddingModel"), + "LlamaModel": ("llama", "LlamaForCausalLM"), **{ # Multiple models share the same architecture, so we include them all k: (mod, arch) for k, (mod, arch) in _TEXT_GENERATION_MODELS.items() if arch == "LlamaForCausalLM" }, - "MistralModel": ("llama", "LlamaEmbeddingModel"), + "MistralModel": ("llama", "LlamaForCausalLM"), "Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"), "Qwen2Model": ("qwen2", "Qwen2EmbeddingModel"), "Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"), @@ -125,7 +126,7 @@ # [Multimodal] "LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # noqa: E501 "Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"), - "Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration") # noqa: E501, + "Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501 } _CROSS_ENCODER_MODELS = { @@ -208,6 +209,7 @@ @dataclass(frozen=True) class _ModelInfo: + architecture: str is_text_generation_model: bool is_embedding_model: bool supports_cross_encoding: bool @@ -218,9 +220,19 @@ class _ModelInfo: @staticmethod def from_model_cls(model: Type[nn.Module]) -> "_ModelInfo": + is_embedding_model_ = is_embedding_model(model) + if not is_embedding_model_: + try: + as_embedding_model(model) + except Exception: + pass + else: + is_embedding_model_ = True + return _ModelInfo( + architecture=model.__name__, is_text_generation_model=is_text_generation_model(model), - is_embedding_model=is_embedding_model(model), + is_embedding_model=is_embedding_model_, supports_cross_encoding=supports_cross_encoding(model), supports_multimodal=supports_multimodal(model), supports_pp=supports_pp(model), @@ -399,13 +411,13 @@ def _normalize_archs( def inspect_model_cls( self, architectures: Union[str, List[str]], - ) -> _ModelInfo: + ) -> Tuple[_ModelInfo, str]: architectures = self._normalize_archs(architectures) for arch in architectures: model_info = self._try_inspect_model_cls(arch) if model_info is not None: - return model_info + return (model_info, arch) return self._raise_for_unsupported(architectures) @@ -426,39 +438,50 @@ def is_text_generation_model( self, architectures: Union[str, List[str]], ) -> bool: - return self.inspect_model_cls(architectures).is_text_generation_model + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.is_text_generation_model def is_embedding_model( self, architectures: Union[str, List[str]], ) -> bool: - return self.inspect_model_cls(architectures).is_embedding_model + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.is_embedding_model def is_cross_encoder_model( self, architectures: Union[str, List[str]], ) -> bool: - return self.inspect_model_cls(architectures).supports_cross_encoding + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.supports_cross_encoding def is_multimodal_model( self, architectures: Union[str, List[str]], ) -> bool: - return self.inspect_model_cls(architectures).supports_multimodal + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.supports_multimodal def is_pp_supported_model( self, architectures: Union[str, List[str]], ) -> bool: - return self.inspect_model_cls(architectures).supports_pp + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.supports_pp - def model_has_inner_state(self, architectures: Union[str, - List[str]]) -> bool: - return self.inspect_model_cls(architectures).has_inner_state + def model_has_inner_state( + self, + architectures: Union[str, List[str]], + ) -> bool: + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.has_inner_state - def is_attention_free_model(self, architectures: Union[str, - List[str]]) -> bool: - return self.inspect_model_cls(architectures).is_attention_free + def is_attention_free_model( + self, + architectures: Union[str, List[str]], + ) -> bool: + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.is_attention_free ModelRegistry = _ModelRegistry({ diff --git a/vllm/model_executor/models/ultravox.py b/vllm/model_executor/models/ultravox.py index b61deccde45b7..ea1e5401d42c0 100644 --- a/vllm/model_executor/models/ultravox.py +++ b/vllm/model_executor/models/ultravox.py @@ -360,9 +360,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): )) self.multi_modal_projector = UltravoxProjector(config) self.language_model = init_vllm_registered_model( - config.text_config, vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "language_model")) + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + ) if config.text_model_id is not None: # this prefix is not for initialization, but for loading weights # note the trailing dot diff --git a/vllm/model_executor/models/utils.py b/vllm/model_executor/models/utils.py index a6b40a233439b..7a1e1f9bf2be4 100644 --- a/vllm/model_executor/models/utils.py +++ b/vllm/model_executor/models/utils.py @@ -173,8 +173,15 @@ def _load_module( module_load_weights = getattr(module, "load_weights", None) if callable(module_load_weights): loaded_params = module_load_weights(weights) - yield from map(lambda x: self._get_qualname(base_prefix, x), - loaded_params) + if loaded_params is None: + logger.warning( + "Unable to collect loaded parameters " + "for module %s", module) + else: + yield from map( + lambda x: self._get_qualname(base_prefix, x), + loaded_params, + ) child_modules = dict(module.named_children()) child_params = dict(module.named_parameters(recurse=False)) @@ -232,17 +239,24 @@ def load_weights( def init_vllm_registered_model( - hf_config: PretrainedConfig, vllm_config: VllmConfig, + *, prefix: str = "", + hf_config: Optional[PretrainedConfig] = None, + architectures: Optional[list[str]] = None, ) -> nn.Module: """ Helper function to initialize an inner model registered to vLLM, based on the arguments passed to the outer vLLM model. """ from vllm.model_executor.model_loader.loader import _initialize_model - vllm_config = vllm_config.with_hf_config(hf_config) - return _initialize_model(vllm_config, prefix) + + if hf_config is not None: + vllm_config = vllm_config.with_hf_config(hf_config) + + return _initialize_model(vllm_config=vllm_config, + prefix=prefix, + architectures=architectures) @overload diff --git a/vllm/multimodal/base.py b/vllm/multimodal/base.py index 6eec660e42ac4..bbb8fb4bc1cd1 100644 --- a/vllm/multimodal/base.py +++ b/vllm/multimodal/base.py @@ -7,7 +7,7 @@ from vllm.inputs import InputContext from vllm.logger import init_logger -from vllm.utils import (get_allowed_kwarg_only_overrides, +from vllm.utils import (ClassRegistry, get_allowed_kwarg_only_overrides, resolve_mm_processor_kwargs) if TYPE_CHECKING: @@ -54,8 +54,8 @@ class MultiModalPlugin(ABC): """ def __init__(self) -> None: - self._input_mappers: Dict[Type[nn.Module], MultiModalInputMapper] = {} - self._max_mm_tokens: Dict[Type[nn.Module], MultiModalTokensCalc] = {} + self._input_mappers = ClassRegistry[nn.Module, MultiModalInputMapper]() + self._max_mm_tokens = ClassRegistry[nn.Module, MultiModalTokensCalc]() @abstractmethod def get_data_key(self) -> str: diff --git a/vllm/multimodal/registry.py b/vllm/multimodal/registry.py index b992442d3b314..b73daee98bd80 100644 --- a/vllm/multimodal/registry.py +++ b/vllm/multimodal/registry.py @@ -9,6 +9,7 @@ from vllm.inputs import InputProcessingContext from vllm.logger import init_logger from vllm.transformers_utils.tokenizer import AnyTokenizer +from vllm.utils import ClassRegistry from .audio import AudioPlugin from .base import MultiModalInputMapper, MultiModalPlugin, MultiModalTokensCalc @@ -62,8 +63,8 @@ def __init__( plugins: Sequence[MultiModalPlugin] = DEFAULT_PLUGINS) -> None: self._plugins = {p.get_data_key(): p for p in plugins} - self._processor_factories: Dict[Type[nn.Module], - MultiModalProcessorFactory] = {} + self._processor_factories = ClassRegistry[nn.Module, + MultiModalProcessorFactory]() # This is used for non-multimodal models self._disabled_limits_per_plugin = {k: 0 for k in self._plugins} diff --git a/vllm/utils.py b/vllm/utils.py index 6f7a6f8c54e47..0165a22582e7b 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -20,7 +20,7 @@ import warnings import weakref from asyncio import FIRST_COMPLETED, AbstractEventLoop, Future, Task -from collections import defaultdict +from collections import UserDict, defaultdict from collections.abc import Iterable, Mapping from functools import lru_cache, partial, wraps from platform import uname @@ -1517,13 +1517,13 @@ def value(self): # Adapted from: https://stackoverflow.com/a/47212782/5082708 -class LazyDict(Mapping, Generic[T]): +class LazyDict(Mapping[str, T], Generic[T]): def __init__(self, factory: Dict[str, Callable[[], T]]): self._factory = factory self._dict: Dict[str, T] = {} - def __getitem__(self, key) -> T: + def __getitem__(self, key: str) -> T: if key not in self._dict: if key not in self._factory: raise KeyError(key) @@ -1540,6 +1540,22 @@ def __len__(self): return len(self._factory) +class ClassRegistry(UserDict[type[T], _V]): + + def __getitem__(self, key: type[T]) -> _V: + for cls in key.mro(): + if cls in self.data: + return self.data[cls] + + raise KeyError(key) + + def __contains__(self, key: object) -> bool: + if not isinstance(key, type): + return False + + return any(cls in self.data for cls in key.mro()) + + def weak_ref_tensor(tensor: torch.Tensor) -> torch.Tensor: """ Create a weak reference to a tensor.