-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathrun_solver.py
103 lines (88 loc) · 3.39 KB
/
run_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import random
import math
import numpy as np
import yaml
from argparse import ArgumentParser
from timeit import default_timer
import torch
from train_utils.datasets import NSLoader
from train_utils.losses import LpLoss
from solver.kolmogorov_flow import KolmogorovFlow2d
def solve(a,
res_x,
res_t,
end,
Re,
n=4,
delta_t=1e-3):
'''
Given initial condition a, solve for u in time interval [0, end]
Args:
a: initial condition, res_x by res_x tensor
res_x: resolution in space
res_t: record step in time
end: end of the time interval
Re: Reynolds number
n: forcing number
Returns:
tensor of shape (res_x, res_x, res_t)
'''
dt = end / res_t
solver = KolmogorovFlow2d(a, Re, n)
sol = torch.zeros((res_x, res_x, res_t + 1), device=a.device)
sol[:, :, 0] = a
for j in range(res_t):
solver.advance(dt, delta_t=delta_t)
sol[:, :, 1 + j] = solver.vorticity().squeeze(0)
return sol
if __name__ == '__main__':
torch.backends.cudnn.benchmark = True
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
parser = ArgumentParser(description='Basic paser')
parser.add_argument('--config_path', type=str, help='Path to the configuration file')
parser.add_argument('--deltat', type=float, default=1e-3, help='delta T')
args = parser.parse_args()
config_file = args.config_path
with open(config_file, 'r') as stream:
config = yaml.load(stream, yaml.FullLoader)
data_config = config['data']
loader = NSLoader(datapath1=data_config['datapath'],
nx=data_config['nx'], nt=data_config['nt'],
sub=data_config['sub'], sub_t=data_config['sub_t'],
N=data_config['total_num'],
t_interval=data_config['time_interval'])
a_loader = loader.make_loader(data_config['n_sample'],
batch_size=config['train']['batchsize'],
start=data_config['offset'],
train=data_config['shuffle'])
print(f'Solver starts on device: {device}')
myloss = LpLoss(size_average=True)
test_err = []
time_cost = []
# run solver
for _, u in a_loader:
u = u[0].to(device)
torch.cuda.synchronize()
t1 = default_timer()
pred = solve(u[:, :, 0],
res_x=loader.S,
res_t=loader.T - 1,
end=data_config['time_interval'],
Re=data_config['Re'],
n=4,
delta_t=args.deltat)
torch.cuda.synchronize()
t2 = default_timer()
# report test error
test_l2 = myloss(pred, u)
test_err.append(test_l2.item())
print(f'Test l2: {test_l2.item()}')
time_cost.append(t2 - t1)
test_err = np.array(test_err)
time_cost = np.array(time_cost)
idx = data_config['offset']
n_sample = data_config['n_sample']
print(f'Test instance: {idx} to {idx+n_sample}; \n'
f'Time cost = mean: {time_cost.mean()}s; std_err: {time_cost.std(ddof=1) / math.sqrt(len(a_loader))}s; \n'
f'Solver resolution: {loader.S} x {loader.S} x {loader.T}; \n'
f'Test L2 error = mean: {test_err.mean()}; std_err: {test_err.std(ddof=1) / math.sqrt(len(a_loader))}')