-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathspm_BMS_gibbs.m
109 lines (92 loc) · 2.72 KB
/
spm_BMS_gibbs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function [exp_r,xp,r_samp,g_post] = spm_BMS_gibbs (lme, alpha0, Nsamp)
% Bayesian model selection for group studies using Gibbs sampling
% FORMAT [exp_r,xp,r_samp,g_post] = spm_BMS_gibbs (lme, alpha0, Nsamp)
%
% INPUT:
% lme - array of log model evidences
% rows: subjects
% columns: models (1..Nk)
% alpha0 - [1 x Nk] vector of prior model counts
% Nsamp - number of samples (default: 1e6)
%
% OUTPUT:
% exp_r - [1 x Nk] expectation of the posterior p(r|y)
% xp - exceedance probabilities
% r_samp - [Nsamp x Nk] matrix of samples from posterior
% g_post - [Ni x Nk] matrix of posterior probabilities with
% g_post(i,k) being post prob that subj i used model k
%__________________________________________________________________________
% Copyright (C) 2009-2013 Wellcome Trust Centre for Neuroimaging
% Will Penny
% $Id: spm_BMS_gibbs.m 5452 2013-04-26 14:55:35Z will $
if nargin < 3 || isempty(Nsamp)
Nsamp = 1e4;
end
Ni = size(lme,1); % number of subjects
Nk = size(lme,2); % number of models
% prior observations
%--------------------------------------------------------------------------
if nargin < 2 || isempty(alpha0)
alpha0 = ones(1,Nk);
end
alpha0 = alpha0(:)';
% Initialise; sample r from prior
r = zeros(1,Nk);
for k = 1:Nk
r(:,k) = spm_gamrnd(alpha0(k),1);
end
sr = sum(r,2);
for k = 1:Nk
r(:,k) = r(:,k)./sr;
end
% Subtract subject means
lme = lme - mean(lme,2)*ones(1,Nk);
% Ensure all log model evidence differences are now within machine range
max_val = log(realmax('double'));
max_val = max_val/Nk;
for i = 1:Ni
for k = 1:Nk
lme(i,k) = sign(lme(i,k)) * min(max_val,abs(lme(i,k)));
end
end
% Gibbs sampling
r_samp = zeros(Nsamp,Nk);
g_post = zeros(Ni,Nk);
for samp = 1:2*Nsamp
mod_vec = sparse(Ni,Nk);
% Sample m's given y, r
for i = 1:Ni
% Pick a model for this subject
u = exp(lme(i,:) + log(r)) + eps;
g = u / sum(u);
gmat(i,:) = g;
modnum = spm_multrnd(g,1);
mod_vec(i,modnum) = 1;
end
% Sample r's given y, m
beta = sum(mod_vec,1);
alpha = alpha0+beta;
for k = 1:Nk
r(:,k) = spm_gamrnd(alpha(k),1);
end
sr = sum(r,2);
for k = 1:Nk
r(:,k) = r(:,k) ./ sr;
end
% Only keep last Nsamp samples
if samp > Nsamp
r_samp(samp-Nsamp,:) = r;
g_post = g_post+gmat;
end
if mod(samp,1e4)==0
fprintf('%d samples out of %d\n',samp,2*Nsamp);
end
end
g_post = g_post/Nsamp;
% Posterior mean
exp_r = mean(r_samp,1);
% Exceedence probs
xp = zeros(1,Nk);
[y,j] = max(r_samp,[],2);
tmp = histc(j,1:Nk)';
xp = tmp / Nsamp;