diff --git a/neurolibre.00010/10.55458.neurolibre.00010.crossref.xml b/neurolibre.00010/10.55458.neurolibre.00010.crossref.xml new file mode 100644 index 0000000..c3795bb --- /dev/null +++ b/neurolibre.00010/10.55458.neurolibre.00010.crossref.xml @@ -0,0 +1,162 @@ + + + + 20231023T171818-dc316db3f3c93e06ba8c6f417634731946752090 + 20231023171818 + + NeuroLibre Admin + admin@neurolibre.org + + Centre de Recherche de l'Institut Universitaire de Geriatrie de Montreal + + + + NeuroLibre Reproducible Preprints + + + Pierre + Bellec + https://orcid.org/0000-0002-9111-0699 + + + Saâd + Jbabdi + https://orcid.org/0000-0003-3234-5639 + + + R. Cameron + Craddock + https://orcid.org/0000-0002-4950-1303 + + + + Parcellating the parcellation issue - a proof of +concept for reproducible analyses using Neurolibre + + + 10 + 23 + 2023 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Repository archive + 10.5281/zenodo.10031956 + + + Dataset archive + 10.5281/zenodo.10031958 + + + Book archive + 10.5281/zenodo.10031954 + + + Container archive + 10.5281/zenodo.10031960 + + + GitHub technical screening + https://github.com/neurolibre/neurolibre-reviews/issues/10 + + + Executable preprint + https://preprint.neurolibre.org/10.55458/neurolibre.00010 + + + + 10.55458/neurolibre.00010 + https://neurolibre.org/papers/10.55458/neurolibre.00010 + + + https://preprint.neurolibre.org/10.55458/neurolibre.00010.pdf + + + + + + Neuroimage special issue on brain +segmentation and parcellation - editorial + Craddock + Neuroimage + 170 + 10.1016/j.neuroimage.2017.11.063 + 2018 + Craddock, R. C., Bellec, P., & +Jbabdi, S. (2018). Neuroimage special issue on brain segmentation and +parcellation - editorial. Neuroimage, 170, 1–4. +https://doi.org/10.1016/j.neuroimage.2017.11.063 + + + Scikit-learn + Kramer + Machine learning for evolution +strategies + 10.1007/978-3-319-33383-0_5 + 978-3-319-33383-0 + 2016 + Kramer, O. (2016). Scikit-learn. In +Machine learning for evolution strategies (pp. 45–53). Springer +International Publishing. +https://doi.org/10.1007/978-3-319-33383-0_5 + + + NeuroLibre : A preprint server for +full-fledged reproducible neuroscience + Karakuzu + 10.31219/osf.io/h89js + 2022 + Karakuzu, A., DuPre, E., Tetrel, L., +Bermudez, P., Boudreau, M., Chin, M., Poline, J.-B., Das, S., Bellec, +P., & Stikov, N. (2022). NeuroLibre : A preprint server for +full-fledged reproducible neuroscience. OSF Preprints. +https://doi.org/10.31219/osf.io/h89js + + + Beyond advertising: New infrastructures for +publishing integrated research objects + DuPre + PLOS Computational Biology + 1 + 18 + 10.1371/journal.pcbi.1009651 + 2022 + DuPre, E., Holdgraf, C., Karakuzu, +A., Tetrel, L., Bellec, P., Stikov, N., & Poline, J.-B. (2022). +Beyond advertising: New infrastructures for publishing integrated +research objects. PLOS Computational Biology, 18(1), e1009651. +https://doi.org/10.1371/journal.pcbi.1009651 + + + The Canadian Open Neuroscience Platform—An +open science framework for the neuroscience community + Harding + PLOS Computational Biology + 7 + 19 + 10.1371/journal.pcbi.1011230 + 2023 + Harding, R. J., Bermudez, P., +Bernier, A., Beauvais, M., Bellec, P., Hill, S., Karakuzu, A., Knoppers, +B. M., Pavlidis, P., Poline, J.-B., Roskams, J., Stikov, N., Stone, J., +Strother, S., Consortium, C., & Evans, A. C. (2023). The Canadian +Open Neuroscience Platform—An open science framework for the +neuroscience community. PLOS Computational Biology, 19(7), 1–14. +https://doi.org/10.1371/journal.pcbi.1011230 + + + + + diff --git a/neurolibre.00010/10.55458.neurolibre.00010.jats b/neurolibre.00010/10.55458.neurolibre.00010.jats new file mode 100644 index 0000000..7aba1a4 --- /dev/null +++ b/neurolibre.00010/10.55458.neurolibre.00010.jats @@ -0,0 +1,338 @@ + + +
+ + + + +NeuroLibre Reproducible Preprints +NeuroLibre + +0000-0000 + +NeuroLibre + + + +10 +10.55458/neurolibre.00010 + +Parcellating the parcellation issue - a proof of concept +for reproducible analyses using Neurolibre + + + +https://orcid.org/0000-0002-9111-0699 + +Bellec +Pierre + + + + + +https://orcid.org/0000-0003-3234-5639 + +Jbabdi +Saâd + + + + +https://orcid.org/0000-0002-4950-1303 + +Craddock +R. Cameron + + + + + +Université de Montréal, Montréal, Canada + + + + +Centre de recherche de l’université de Montréal, Montréal, +CA + + + + +University of Oxford, Oxford, UK + + + + +brainhack.org + + + + +22 +10 +2021 + +3 +34 +10 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Preprint +Jupyter Book +Reproducible article +Neuroscience + + + + + + Summary +

Back in 2017, a special issue on the topic of brain + parcellation and segmentation was published in the journal + Neuroimage. We acted as guest editors for this special issue, and + wrote an editorial + (Craddock + et al., 2018) providing an overview of all papers, sorted into + categories. The categories were generated using a data-driven + parcellation analysis, based on the words contained in the abstract of + the articles. This jupyter book will allow interested readers to + reproduce this analysis, as a proof of concept for reproducible + publications using + jupyter + books and the + Neurolibre + preprint server.

+
+ + Acknowledgements +

NeuroLibre is sponsored by the Canadian Open Neuroscience Platform + (CONP), Brain Canada, Cancer Computers, the Courtois foundation, the + Quebec Bioimaging Network, and Healthy Brains for Healthy Life.

+

+ +

NOTE: The following section in this + document repeats the narrative content exactly as found in the + corresponding + NeuroLibre Reproducible Preprint (NRP). The content was + automatically incorporated into this PDF using the NeuroLibre + publication workflow + (Karakuzu + et al., 2022) to credit the referenced resources. The + submitting author of the preprint has verified and approved the + inclusion of this section through a GitHub pull request made to the + source + repository from which this document was built. Please + note that the figures and tables have been excluded from this + (static) document. To interactively explore such outputs and + re-generate them, please visit the corresponding + NRP. + For more information on integrated research objects (e.g., NRPs) + that bundle narrative and executable content for reproducible and + transparent publications, please refer to DuPre et al. + (2022). + NeuroLibre is sponsored by the Canadian Open Neuroscience Platform + (CONP) + (Harding + et al., 2023).

+
+
+ + Text mining + + List of papers +

We first assembled the title, the name of the corresponding + author, and the abstract for all the articles into a + tabular-separated values (tsv) file, which we publicly archived on + Figshare. + We use the + Repo2Data + tool developed by the NeuroLibre team to collect these data and + include them in our reproducible computational environment.

+
+ + Word features +

For each paper, we used + scikit-learn + (Kramer, + 2016) to extract a bag of words representation for each + abstract, picking on the 300 most important terms seen across all + articles based on a term frequency-inverse document frequency + (tf-idf) + index. Following that, a special value decomposition was + used to further reduce the dimensionality of the abstracts to 10 + components. We ended up with a component matrix of dimension 38 + (articles) times 10 (abstract text components). The distribution of + each of the 38 articles across the 10 components is represented + below. Note how some articles have particular high loadings on + specific components, suggesting these may capture particular topics. + Rather than visually inspect the component loadings to group paper + ourselves, we are going to resort to an automated parcellation + (clustering) technique.

+
+ + Parcellate the papers +

Now that the content of each paper has been condensed into only + 10 (hopefully informative) numbers, we can run these features into a + trusted, classic parcellation algorithm: Ward’s agglomerative + hierarchical clustering, as implemented in the scipy library. We cut + the hierarchy to extract 7 “paper parcels”, and also use the + hierarchy to re-order the papers, such that similar papers are close + in order, as illustrated in a dendrogram representation.

+
+ + Similarity matrix +

So, to get a better feel of the similarity between papers that + was fed into the clustering procedure, we extracted the 38x38 + (papers x papers) correlation matrix across features. Papers are + re-ordered in the matrix according to the above hierarchy. Each + “paper parcel” has been indicated by a white square along the + diagonal, which represents the similarity measures between papers + falling into the same parcel.

+
+ + Word cloud +

Now, each paper of the special issue has been assigned to one and + only one out of 7 possible “paper parcel”. For each paper parcel, we + can evaluate which words contribute more to the dominant component + associated with that parcel.

+
+ + Categories +

Thanks to the word clouds, these simple data-driven categories + turned out to be fairly easily interpretable. For example, the word + cloud of the category number 4 features prominently words like + “white”, “matter” and “bundles”. If we examine the exact list of + papers included in this category, we see that it is composed of four + papers, which all considered parcels derived from white matter + bundles with diffusion imaging. We can also check the distribution + of component loadings for this category alone. As expected, there is + a certain similarity in the component loadings for these papers, in + particular along component 4:

+
+
+ + + + + + + CraddockR Cameron + BellecPierre + JbabdiSaad + + Neuroimage special issue on brain segmentation and parcellation - editorial + Neuroimage + 201804 + 170 + https://doi.org/10.1016/j.neuroimage.2017.11.063 + 10.1016/j.neuroimage.2017.11.063 + 1 + 4 + + + + + + KramerOliver + + Scikit-learn + Machine learning for evolution strategies + Springer International Publishing + Cham + 2016 + 978-3-319-33383-0 + 10.1007/978-3-319-33383-0_5 + 45 + 53 + + + + + + KarakuzuAgah + DuPreElizabeth + TetrelLoic + BermudezPatrick + BoudreauMathieu + ChinMary + PolineJean-Baptiste + DasSamir + BellecPierre + StikovNikola + + NeuroLibre : A preprint server for full-fledged reproducible neuroscience + OSF Preprints + 202204 + osf.io/h89js + 10.31219/osf.io/h89js + + + + + + DuPreElizabeth + HoldgrafChris + KarakuzuAgah + TetrelLoı̈c + BellecPierre + StikovNikola + PolineJean-Baptiste + + Beyond advertising: New infrastructures for publishing integrated research objects + PLOS Computational Biology + Public Library of Science San Francisco, CA USA + 2022 + 18 + 1 + 10.1371/journal.pcbi.1009651 + e1009651 + + + + + + + HardingRachel J. + BermudezPatrick + BernierAlexander + BeauvaisMichael + BellecPierre + HillSean + KarakuzuAgah + KnoppersBartha M. + PavlidisPaul + PolineJean-Baptiste + RoskamsJane + StikovNikola + StoneJessica + StrotherStephen + ConsortiumCONP + EvansAlan C. + + The Canadian Open Neuroscience Platform—An open science framework for the neuroscience community + PLOS Computational Biology + 202307 + 19 + 7 + 10.1371/journal.pcbi.1011230 + 10.1371/journal.pcbi.1011230 + 1 + 14 + + + + +
diff --git a/neurolibre.00010/10.55458.neurolibre.00010.pdf b/neurolibre.00010/10.55458.neurolibre.00010.pdf new file mode 100644 index 0000000..97ff9b9 Binary files /dev/null and b/neurolibre.00010/10.55458.neurolibre.00010.pdf differ