diff --git a/neurolibre.00010/10.55458.neurolibre.00010.crossref.xml b/neurolibre.00010/10.55458.neurolibre.00010.crossref.xml deleted file mode 100644 index b0a7227..0000000 --- a/neurolibre.00010/10.55458.neurolibre.00010.crossref.xml +++ /dev/null @@ -1,162 +0,0 @@ - - - - 20231023T164200-dc316db3f3c93e06ba8c6f417634731946752090 - 20231023164200 - - NeuroLibre Admin - admin@neurolibre.org - - Centre de Recherche de l'Institut Universitaire de Geriatrie de Montreal - - - - NeuroLibre Reproducible Preprints - - - Pierre - Bellec - https://orcid.org/0000-0002-9111-0699 - - - Saâd - Jbabdi - https://orcid.org/0000-0003-3234-5639 - - - R. Cameron - Craddock - https://orcid.org/0000-0002-4950-1303 - - - - Parcellating the parcellation issue - a proof of -concept for reproducible analyses using Neurolibre - - - 10 - 23 - 2023 - - - http://creativecommons.org/licenses/by/4.0/ - http://creativecommons.org/licenses/by/4.0/ - http://creativecommons.org/licenses/by/4.0/ - - - - Repository archive - 10.5281/zenodo.10031956 - - - Dataset archive - 10.5281/zenodo.10031958 - - - Book archive - 10.5281/zenodo.10031954 - - - Container archive - 10.5281/zenodo.10031960 - - - GitHub technical screening - https://github.com/neurolibre/neurolibre-reviews/issues/10 - - - Executable preprint - https://preprint.neurolibre.org/10.55458/neurolibre.00010 - - - - 10.55458/neurolibre.00010 - https://neurolibre.org/papers/10.55458/neurolibre.00010 - - - https://preprint.neurolibre.org/10.55458/neurolibre.00010.pdf - - - - - - Neuroimage special issue on brain -segmentation and parcellation - editorial - Craddock - Neuroimage - 170 - 10.1016/j.neuroimage.2017.11.063 - 2018 - Craddock, R. C., Bellec, P., & -Jbabdi, S. (2018). Neuroimage special issue on brain segmentation and -parcellation - editorial. Neuroimage, 170, 1–4. -https://doi.org/10.1016/j.neuroimage.2017.11.063 - - - Scikit-learn - Kramer - Machine learning for evolution -strategies - 10.1007/978-3-319-33383-0_5 - 978-3-319-33383-0 - 2016 - Kramer, O. (2016). Scikit-learn. In -Machine learning for evolution strategies (pp. 45–53). Springer -International Publishing. -https://doi.org/10.1007/978-3-319-33383-0_5 - - - NeuroLibre : A preprint server for -full-fledged reproducible neuroscience - Karakuzu - 10.31219/osf.io/h89js - 2022 - Karakuzu, A., DuPre, E., Tetrel, L., -Bermudez, P., Boudreau, M., Chin, M., Poline, J.-B., Das, S., Bellec, -P., & Stikov, N. (2022). NeuroLibre : A preprint server for -full-fledged reproducible neuroscience. OSF Preprints. -https://doi.org/10.31219/osf.io/h89js - - - Beyond advertising: New infrastructures for -publishing integrated research objects - DuPre - PLOS Computational Biology - 1 - 18 - 10.1371/journal.pcbi.1009651 - 2022 - DuPre, E., Holdgraf, C., Karakuzu, -A., Tetrel, L., Bellec, P., Stikov, N., & Poline, J.-B. (2022). -Beyond advertising: New infrastructures for publishing integrated -research objects. PLOS Computational Biology, 18(1), e1009651. -https://doi.org/10.1371/journal.pcbi.1009651 - - - The Canadian Open Neuroscience Platform—An -open science framework for the neuroscience community - Harding - PLOS Computational Biology - 7 - 19 - 10.1371/journal.pcbi.1011230 - 2023 - Harding, R. J., Bermudez, P., -Bernier, A., Beauvais, M., Bellec, P., Hill, S., Karakuzu, A., Knoppers, -B. M., Pavlidis, P., Poline, J.-B., Roskams, J., Stikov, N., Stone, J., -Strother, S., Consortium, C., & Evans, A. C. (2023). The Canadian -Open Neuroscience Platform—An open science framework for the -neuroscience community. PLOS Computational Biology, 19(7), 1–14. -https://doi.org/10.1371/journal.pcbi.1011230 - - - - - diff --git a/neurolibre.00010/10.55458.neurolibre.00010.jats b/neurolibre.00010/10.55458.neurolibre.00010.jats deleted file mode 100644 index 7aba1a4..0000000 --- a/neurolibre.00010/10.55458.neurolibre.00010.jats +++ /dev/null @@ -1,338 +0,0 @@ - - -
- - - - -NeuroLibre Reproducible Preprints -NeuroLibre - -0000-0000 - -NeuroLibre - - - -10 -10.55458/neurolibre.00010 - -Parcellating the parcellation issue - a proof of concept -for reproducible analyses using Neurolibre - - - -https://orcid.org/0000-0002-9111-0699 - -Bellec -Pierre - - - - - -https://orcid.org/0000-0003-3234-5639 - -Jbabdi -Saâd - - - - -https://orcid.org/0000-0002-4950-1303 - -Craddock -R. Cameron - - - - - -Université de Montréal, Montréal, Canada - - - - -Centre de recherche de l’université de Montréal, Montréal, -CA - - - - -University of Oxford, Oxford, UK - - - - -brainhack.org - - - - -22 -10 -2021 - -3 -34 -10 - -Authors of papers retain copyright and release the -work under a Creative Commons Attribution 4.0 International License (CC -BY 4.0) -2022 -The article authors - -Authors of papers retain copyright and release the work under -a Creative Commons Attribution 4.0 International License (CC BY -4.0) - - - -Preprint -Jupyter Book -Reproducible article -Neuroscience - - - - - - Summary -

Back in 2017, a special issue on the topic of brain - parcellation and segmentation was published in the journal - Neuroimage. We acted as guest editors for this special issue, and - wrote an editorial - (Craddock - et al., 2018) providing an overview of all papers, sorted into - categories. The categories were generated using a data-driven - parcellation analysis, based on the words contained in the abstract of - the articles. This jupyter book will allow interested readers to - reproduce this analysis, as a proof of concept for reproducible - publications using - jupyter - books and the - Neurolibre - preprint server.

-
- - Acknowledgements -

NeuroLibre is sponsored by the Canadian Open Neuroscience Platform - (CONP), Brain Canada, Cancer Computers, the Courtois foundation, the - Quebec Bioimaging Network, and Healthy Brains for Healthy Life.

-

- -

NOTE: The following section in this - document repeats the narrative content exactly as found in the - corresponding - NeuroLibre Reproducible Preprint (NRP). The content was - automatically incorporated into this PDF using the NeuroLibre - publication workflow - (Karakuzu - et al., 2022) to credit the referenced resources. The - submitting author of the preprint has verified and approved the - inclusion of this section through a GitHub pull request made to the - source - repository from which this document was built. Please - note that the figures and tables have been excluded from this - (static) document. To interactively explore such outputs and - re-generate them, please visit the corresponding - NRP. - For more information on integrated research objects (e.g., NRPs) - that bundle narrative and executable content for reproducible and - transparent publications, please refer to DuPre et al. - (2022). - NeuroLibre is sponsored by the Canadian Open Neuroscience Platform - (CONP) - (Harding - et al., 2023).

-
-
- - Text mining - - List of papers -

We first assembled the title, the name of the corresponding - author, and the abstract for all the articles into a - tabular-separated values (tsv) file, which we publicly archived on - Figshare. - We use the - Repo2Data - tool developed by the NeuroLibre team to collect these data and - include them in our reproducible computational environment.

-
- - Word features -

For each paper, we used - scikit-learn - (Kramer, - 2016) to extract a bag of words representation for each - abstract, picking on the 300 most important terms seen across all - articles based on a term frequency-inverse document frequency - (tf-idf) - index. Following that, a special value decomposition was - used to further reduce the dimensionality of the abstracts to 10 - components. We ended up with a component matrix of dimension 38 - (articles) times 10 (abstract text components). The distribution of - each of the 38 articles across the 10 components is represented - below. Note how some articles have particular high loadings on - specific components, suggesting these may capture particular topics. - Rather than visually inspect the component loadings to group paper - ourselves, we are going to resort to an automated parcellation - (clustering) technique.

-
- - Parcellate the papers -

Now that the content of each paper has been condensed into only - 10 (hopefully informative) numbers, we can run these features into a - trusted, classic parcellation algorithm: Ward’s agglomerative - hierarchical clustering, as implemented in the scipy library. We cut - the hierarchy to extract 7 “paper parcels”, and also use the - hierarchy to re-order the papers, such that similar papers are close - in order, as illustrated in a dendrogram representation.

-
- - Similarity matrix -

So, to get a better feel of the similarity between papers that - was fed into the clustering procedure, we extracted the 38x38 - (papers x papers) correlation matrix across features. Papers are - re-ordered in the matrix according to the above hierarchy. Each - “paper parcel” has been indicated by a white square along the - diagonal, which represents the similarity measures between papers - falling into the same parcel.

-
- - Word cloud -

Now, each paper of the special issue has been assigned to one and - only one out of 7 possible “paper parcel”. For each paper parcel, we - can evaluate which words contribute more to the dominant component - associated with that parcel.

-
- - Categories -

Thanks to the word clouds, these simple data-driven categories - turned out to be fairly easily interpretable. For example, the word - cloud of the category number 4 features prominently words like - “white”, “matter” and “bundles”. If we examine the exact list of - papers included in this category, we see that it is composed of four - papers, which all considered parcels derived from white matter - bundles with diffusion imaging. We can also check the distribution - of component loadings for this category alone. As expected, there is - a certain similarity in the component loadings for these papers, in - particular along component 4:

-
-
- - - - - - - CraddockR Cameron - BellecPierre - JbabdiSaad - - Neuroimage special issue on brain segmentation and parcellation - editorial - Neuroimage - 201804 - 170 - https://doi.org/10.1016/j.neuroimage.2017.11.063 - 10.1016/j.neuroimage.2017.11.063 - 1 - 4 - - - - - - KramerOliver - - Scikit-learn - Machine learning for evolution strategies - Springer International Publishing - Cham - 2016 - 978-3-319-33383-0 - 10.1007/978-3-319-33383-0_5 - 45 - 53 - - - - - - KarakuzuAgah - DuPreElizabeth - TetrelLoic - BermudezPatrick - BoudreauMathieu - ChinMary - PolineJean-Baptiste - DasSamir - BellecPierre - StikovNikola - - NeuroLibre : A preprint server for full-fledged reproducible neuroscience - OSF Preprints - 202204 - osf.io/h89js - 10.31219/osf.io/h89js - - - - - - DuPreElizabeth - HoldgrafChris - KarakuzuAgah - TetrelLoı̈c - BellecPierre - StikovNikola - PolineJean-Baptiste - - Beyond advertising: New infrastructures for publishing integrated research objects - PLOS Computational Biology - Public Library of Science San Francisco, CA USA - 2022 - 18 - 1 - 10.1371/journal.pcbi.1009651 - e1009651 - - - - - - - HardingRachel J. - BermudezPatrick - BernierAlexander - BeauvaisMichael - BellecPierre - HillSean - KarakuzuAgah - KnoppersBartha M. - PavlidisPaul - PolineJean-Baptiste - RoskamsJane - StikovNikola - StoneJessica - StrotherStephen - ConsortiumCONP - EvansAlan C. - - The Canadian Open Neuroscience Platform—An open science framework for the neuroscience community - PLOS Computational Biology - 202307 - 19 - 7 - 10.1371/journal.pcbi.1011230 - 10.1371/journal.pcbi.1011230 - 1 - 14 - - - - -
diff --git a/neurolibre.00010/10.55458.neurolibre.00010.pdf b/neurolibre.00010/10.55458.neurolibre.00010.pdf deleted file mode 100644 index 1485a2d..0000000 Binary files a/neurolibre.00010/10.55458.neurolibre.00010.pdf and /dev/null differ