-
Notifications
You must be signed in to change notification settings - Fork 46
/
brainchop-parameters.js
380 lines (378 loc) · 29.7 KB
/
brainchop-parameters.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
export {inferenceModelsList, brainChopOpts }
const brainChopOpts = {
// General settings for input shape [batchSize, batch_D, batch_H, batch_W, numOfChan]
batchSize: 1, // How many batches are used during each inference iteration
numOfChan: 1, // num of channel of the input shape
isColorEnable: true, // If false, grey scale will enabled
isAutoColors: true, // If false, manualColorsRange will be in use
bgLabelValue: 0, // Semenatic Segmentation background label value
drawBoundingVolume: false, // plot bounding volume used to crop the brain
isGPU: true, //use WebGL/GPU (faster) or CPU (compatibility)
isBrainCropMaskBased: true, // Check if brain masking will be used for cropping & optional show or brain tissue will be used
showPhase1Output: false, // This will load to papaya the output of phase-1 (ie. brain mask or brain tissue)
isPostProcessEnable: true, // If true 3D Connected Components filter will apply
isContoursViewEnable: false, // If true 3D contours of the labeled regions will apply
browserArrayBufferMaxZDim: 30, // This value depends on Memory available
telemetryFlag: false, // Ethical and transparent collection of browser usage while adhering to security and privacy standards
chartXaxisStepPercent: 10, // percent from total labels on Xaxis
uiSampleName: 'BC_UI_Sample', // Sample name used by interface
atlasSelectedColorTable: 'Fire' // Select from ["Hot-and-Cold", "Fire", "Grayscale", "Gold", "Spectrum"]
}
// Inference Models, the ids must start from 1 in sequence
const inferenceModelsList = [
{
id: 1,
type: 'Segmentation',
path: '/models/model5_gw_ae/model.json',
modelName: '\u26A1 Tissue GWM (light)',
colormapPath: './models/model5_gw_ae/colormap3.json',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 0, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 18, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning: null, // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Gray and white matter segmentation model. Operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the subvolume model.'
},
{
id: 2,
type: 'Segmentation',
path: '/models/model20chan3cls/model.json',
modelName: '\u{1F52A} Tissue GWM (High Acc)',
colormapPath: './models/model20chan3cls/colormap.json',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 0, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides the best accuracy with hard cropping for better speed'
},
{
id: 3,
type: 'Segmentation',
path: '/models/model20chan3cls/model.json',
modelName: '\u{1F52A} Tissue GWM (High Acc, Low Mem)',
colormapPath: './models/model20chan3cls/colormap.json',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 0, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides high accuracy and fit low memory available but slower'
},
{
id: 4,
type: 'Atlas',
path: '/models/model30chan18cls/model.json',
modelName: '\u{1FA93} Subcortical + GWM (High Mem, Fast)',
colormapPath: './models/model30chan18cls/colormap.json',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.'
},
{
id: 5,
type: 'Atlas',
path: '/models/model30chan18cls/model.json',
modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Slow)',
colormapPath: './models/model30chan18cls/colormap.json',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.'
},
{
id: 6,
type: 'Atlas',
path: '/models/model18cls/model.json',
modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Faster)',
colormapPath: './models/model18cls/colormap.json',
preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.'
},
{
id: 7,
type: 'Atlas',
path: '/models/model30chan18cls/model.json',
modelName: '\u{1F52A}\u{1FA93} Subcortical + GWM (Failsafe, Less Acc)',
colormapPath: './models/model30chan18cls/colormap.json',
preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is not a robust model, it may work on low data quality, including varying saturation, and even clinical scans. It may work also on infant brains, but your mileage may vary.'
},
{
id: 8,
type: 'Atlas',
path: '/models/model30chan50cls/model.json',
modelName: '\u{1F52A} Aparc+Aseg 50 (High Mem, Fast)',
colormapPath: './models/model30chan50cls/colormap.json',
preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class.'
},
{
id: 9,
type: 'Atlas',
path: '/models/model30chan50cls/model.json',
modelName: '\u{1F52A} Aparc+Aseg 50 (Low Mem, Slow)',
colormapPath: './models/model30chan50cls/colormap.json',
preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last laye
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time.'
},
// './models/model5_gw_ae/colorLUT.json',
{
id: 10,
type: 'Brain_Extraction',
path: '/models/model5_gw_ae/model.json',
modelName: '\u26A1 Extract the Brain (FAST)',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 0, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 18, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning: null, // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Extract the brain fast model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the failsafe version.'
},
{
id: 11,
type: 'Brain_Extraction',
path: '/models/model11_gw_ae/model.json',
modelName: '\u{1F52A} Extract the Brain (High Acc, Slow)',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 0, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'Extract the brain high accuracy model operates on full T1 image in a single pass, but uses only 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than the fast version.'
},
{
id: 12,
type: 'Brain_Masking',
path: '/models/model5_gw_ae/model.json',
modelName: '\u26A1 Brain Mask (FAST)',
colormapPath: './models/model5_gw_ae/colormap.json',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 0, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 17, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning: null, // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'This fast masking model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than failsafe version.'
},
{
id: 13,
type: 'Brain_Masking',
path: '/models/model11_gw_ae/model.json',
modelName: '\u{1F52A} Brain Mask (High Acc, Low Mem)',
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 0, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'This masking model operates on full T1 image in a single pass, but uses 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than fast version.'
},
{
id: 14,
type: 'Atlas',
path: '/models/model21_104class/model.json',
modelName: '\u{1F52A} Aparc+Aseg 104 (High Mem, Fast)',
colormapPath: './models/model21_104class/colormap.json',
preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions.'
},
{
id: 15,
type: 'Atlas',
path: '/models/model21_104class/model.json',
modelName: '\u{1F52A} Aparc+Aseg 104 (Low Mem, Slow)',
colormapPath: './models/model21_104class/colormap.json',
preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. }
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
isBatchOverlapEnable: false, // create extra overlap batches for inference
numOverlapBatches: 200, // Number of extra overlap batches for inference
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
cropPadding: 0, // Padding size add to cropped brain
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
warning:
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
inferenceDelay: 100, // Delay in ms time while looping layers applying.
description:
'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time. '
}
] // inferenceModelsList