-
Notifications
You must be signed in to change notification settings - Fork 46
/
brainchop-webworker.js
1356 lines (1176 loc) · 48.8 KB
/
brainchop-webworker.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import * as tf from '@tensorflow/tfjs'
import { inferenceModelsList } from './brainchop-parameters.js'
import {
addZeroPaddingTo3dTensor,
applyMriThreshold,
binarizeVolumeDataTensor,
convByOutputChannelAndInputSlicing,
draw3dObjBoundingVolume,
firstLastNonZero3D,
generateBrainMask,
generateOutputSlicesV2,
getAllSlicesDataAsTF3D,
getModelNumLayers,
getModelNumParameters,
isModelChnlLast,
load_model,
minMaxNormalizeVolumeData,
quantileNormalizeVolumeData,
removeZeroPaddingFrom3dTensor,
resizeWithZeroPadding,
SequentialConvLayer
} from './tensor-utils.js'
function callbackUI(message = '', progressFrac = -1, modalMessage = '', statData = []) {
let statStr = []
if (Object.keys(statData).length > 0) {
function arrayToStr() {
const list = {}
for (const key in statData) {
list[key] = statData[key]
}
return JSON.stringify(list)
}
statStr = arrayToStr(statData)
}
self.postMessage({
cmd: 'ui',
message,
progressFrac,
modalMessage,
statData: statStr
})
}
function callbackImg(img, opts, modelEntry) {
self.postMessage({ cmd: 'img', img, opts, modelEntry })
}
async function inferenceFullVolumeSeqCovLayerPhase2(
opts,
modelEntry,
model,
slices_3d,
num_of_slices,
slice_height,
slice_width,
pipeline1_out,
statData,
niftiImage
) {
// --Phase-2, After remove the skull try to allocate brain volume and make inferece
console.log(' ---- Start FullVolume Inference with Sequential Conv Layer for phase-II ---- ')
const quantileNorm = modelEntry.enableQuantileNorm
if (quantileNorm) {
// Quantile normalize function needs specific models to be used
console.log('preModel Quantile normalization enabled')
slices_3d = await quantileNormalizeVolumeData(slices_3d)
} else {
// Min Max Nomalize MRI data to be from 0 to 1
console.log('preModel Min Max normalization enabled')
slices_3d = await minMaxNormalizeVolumeData(slices_3d)
}
let mask_3d
if (pipeline1_out == null) {
// preModel is null
// Check if thresholding the MRI to remove noisy voxels for better cropping is needed.
const autoThresholdValue = modelEntry.autoThreshold
if (autoThresholdValue > 0 && autoThresholdValue <= 1) {
// Filtered MRI from noisy voxel below autoThresholdValue
mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue)
} else {
console.log('No valid crop threshold value')
// binarize original image
mask_3d = await slices_3d.greater([0]).asType('bool')
}
} else {
mask_3d = await pipeline1_out.greater([0]).asType('bool')
// -- pipeline1_out.dispose()
}
console.log(' mask_3d shape : ', mask_3d.shape)
const [row_min, row_max, col_min, col_max, depth_min, depth_max] = await firstLastNonZero3D(mask_3d)
mask_3d.dispose()
// -- Reference voxel that cropped volume started slice with it
const refVoxel = [row_min, col_min, depth_min]
// -- Starting form refVoxel, size of bounding volume
const boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1]
// -- Extract 3d object (e.g. brain)
const cropped_slices_3d = await slices_3d.slice(
[row_min, col_min, depth_min],
[row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1]
)
slices_3d.dispose()
// -- Padding size add to cropped brain
const pad = modelEntry.cropPadding
// Create margin around the bounding volume
let cropped_slices_3d_w_pad = await addZeroPaddingTo3dTensor(cropped_slices_3d, [pad, pad], [pad, pad], [pad, pad])
console.log(' cropped slices_3d with padding shape: ', cropped_slices_3d_w_pad.shape)
cropped_slices_3d.dispose()
if (opts.drawBoundingVolume) {
let testVol = await removeZeroPaddingFrom3dTensor(cropped_slices_3d_w_pad, pad, pad, pad)
console.log(' outLabelVolume without padding shape : ', testVol.shape)
testVol = await resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr)
console.log(' outLabelVolume final shape after resizing : ', testVol.shape)
draw3dObjBoundingVolume(tf.unstack(testVol), opts, modelEntry, callbackImg)
testVol.dispose()
return 0
}
statData.Brainchop_Ver = 'FullVolume'
const res = await model
try {
let startTime = performance.now()
const inferenceStartTime = performance.now()
// maxLabelPredicted in whole volume of the brain
let maxLabelPredicted = 0
const transpose = modelEntry.enableTranspose
if (transpose) {
cropped_slices_3d_w_pad = await cropped_slices_3d_w_pad.transpose()
console.log('Input transposed for pre-model')
} else {
console.log('Transpose not enabled for pre-model')
}
let i = 1
const layersLength = res.layers.length
console.log('res.layers.length ', layersLength)
const isChannelLast = isModelChnlLast(res)
const batchSize = opts.batchSize
const numOfChan = opts.numOfChan
let adjusted_input_shape
// -- Adjust model input shape
if (isChannelLast) {
res.layers[0].batchInputShape[1] = cropped_slices_3d_w_pad.shape[0]
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[1]
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2]
adjusted_input_shape = [
batchSize,
res.layers[0].batchInputShape[1],
res.layers[0].batchInputShape[2],
res.layers[0].batchInputShape[3],
numOfChan
]
} else {
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[0]
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[1]
res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2]
adjusted_input_shape = [
batchSize,
numOfChan,
res.layers[0].batchInputShape[2],
res.layers[0].batchInputShape[3],
res.layers[0].batchInputShape[4]
]
}
console.log(' Model batch input shape : ', res.layers[0].batchInputShape)
// -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W]
statData.Input_Shape = JSON.stringify(res.layers[0].batchInputShape)
statData.Output_Shape = JSON.stringify(res.output.shape)
statData.Channel_Last = await isChannelLast
statData.Model_Param = await getModelNumParameters(res)
statData.Model_Layers = await getModelNumLayers(res)
statData.Model = modelEntry.modelName
statData.Seq_Conv = modelEntry.enableSeqConv
// statData.Extra_Info = null
// Determine the number of output channels in the last layer of the model
// e.g. 3, 50, 104
const outputLayer = res.layers[res.layers.length - 1]
console.log('Output Layer : ', outputLayer)
const expected_Num_labels = isChannelLast
? outputLayer.outputShape[outputLayer.outputShape.length - 1]
: outputLayer.outputShape[1]
console.log('Num of output channels x: ', expected_Num_labels)
const curTensor = []
curTensor[0] = await cropped_slices_3d_w_pad.reshape(adjusted_input_shape)
while (true) {
try {
if (res.layers[i].activation.getClassName() !== 'linear') {
curTensor[i] = await res.layers[i].apply(curTensor[i - 1])
} else {
curTensor[i] = await convByOutputChannelAndInputSlicing(
curTensor[i - 1],
res.layers[i].getWeights()[0],
res.layers[i].getWeights()[1],
res.layers[i].strides,
res.layers[i].padding,
res.layers[i].dilationRate,
3
) // important for memory use
}
tf.dispose(curTensor[i - 1])
} catch (err) {
const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message
callbackUI(errTxt, -1, errTxt)
tf.engine().endScope()
tf.engine().disposeVariables()
statData.Inference_t = Infinity
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = err.message
statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply'
callbackUI('', -1, '', statData)
return 0
}
console.log('layer output Tensor shape : ', curTensor[i].shape)
console.log('layer count params ', res.layers[i].countParams())
res.layers[i].dispose()
curTensor[i - 1].dispose()
callbackUI('Layer ' + i.toString(), (i + 1) / layersLength)
if (tf.memory().unreliable) {
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons
callbackUI(unreliableReasons, NaN, unreliableReasons)
}
if (i === layersLength - 2) {
// Stop before the last layer or classification layer.
// // Create an instance of SequentialConvLayer
// The second parameter is important for memory,
// the larger it is, the more memory it uses
// it was 8, but I set it to 3, got a different error
// let seqConvLayer = new SequentialConvLayer(res, 10, isChannelLast)
const seqConvLayer = await new SequentialConvLayer(res, 10, isChannelLast, callbackUI)
// Apply the last output tensor to the seq. instance
let outputTensor = null
const profileInfo = await tf.profile(async () => {
// Your tensor operations here
outputTensor = await seqConvLayer.apply(curTensor[i])
})
console.log('profileInfo : ', profileInfo)
// -- document.getElementById("progressBarChild").style.width = 0 + "%";
// Dispose the previous layer input tensor
tf.dispose(curTensor[i])
// delete the used class
// ? delete seqConvLayer
// You can now use 'outputTensor' as needed
console.log(' Output tensor', outputTensor)
console.log(' Output tensor shape : ', outputTensor.shape)
// Array(3) [ 256, 256, 256 ]
if (outputTensor.shape.length !== 3) {
const msg = 'Output tensor shape should be 3 dims but it is ' + outputTensor.shape.length
callbackUI(msg, -1, msg)
}
const Inference_t = ((performance.now() - startTime) / 1000).toFixed(4)
console.log(' find array max ')
const curBatchMaxLabel = await outputTensor.max().dataSync()[0]
if (maxLabelPredicted < curBatchMaxLabel) {
maxLabelPredicted = curBatchMaxLabel
}
const numSegClasses = maxLabelPredicted + 1
console.log('Predicted num of segmentation classes', numSegClasses)
statData.Actual_Labels = numSegClasses
statData.Expect_Labels = expected_Num_labels
statData.NumLabels_Match = numSegClasses === expected_Num_labels
if (numSegClasses !== expected_Num_labels) {
const msg = 'expected ' + expected_Num_labels + ' labels, but the predicted are ' + numSegClasses
callbackUI(msg, -1, msg)
}
// -- Transpose back to original unpadded size
let outLabelVolume = outputTensor.reshape([
cropped_slices_3d_w_pad.shape[0],
cropped_slices_3d_w_pad.shape[1],
cropped_slices_3d_w_pad.shape[2]
])
tf.dispose(outputTensor)
// Transpose MRI data to be match pytorch/keras input output
if (transpose) {
console.log('outLabelVolume transposed')
outLabelVolume = outLabelVolume.transpose()
}
outLabelVolume = await removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad)
console.log(' outLabelVolume without padding shape : ', outLabelVolume.shape)
outLabelVolume = await resizeWithZeroPadding(
outLabelVolume,
num_of_slices,
slice_height,
slice_width,
refVoxel,
boundVolSizeArr
)
console.log(' outLabelVolume final shape after resizing : ', outLabelVolume.shape)
// let filterOutWithPreMask = inferenceModelsList[$$("selectModel").getValue() - 1]["filterOutWithPreMask"]
const filterOutWithPreMask = modelEntry.filterOutWithPreMask
// To clean the skull area wrongly segmented inphase-2.
if (pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) {
const bin = await binarizeVolumeDataTensor(pipeline1_out)
outLabelVolume = await outLabelVolume.mul(bin)
}
startTime = performance.now()
// Generate output volume or slices
console.log('Generating correct output')
let outimg
try {
const img = await new Uint32Array(outLabelVolume.dataSync())
const Vshape = outLabelVolume.shape
const Vtype = outLabelVolume.dtype
outimg = await generateOutputSlicesV2(
img,
Vshape,
Vtype,
num_of_slices,
numSegClasses,
slice_height,
slice_width,
modelEntry,
opts,
niftiImage
)
console.log(' Phase-2 num of tensors after generateOutputSlicesV2: ', tf.memory().numTensors)
tf.dispose(outLabelVolume)
tf.engine().endScope()
tf.engine().disposeVariables()
} catch (error) {
// -- Timing data to collect
tf.engine().endScope()
tf.engine().disposeVariables()
console.log('Error while generating output: ', error)
const msg = 'Failed while generating output due to limited browser memory available'
callbackUI(msg, -1, msg)
statData.Inference_t = Inference_t
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = error.message
statData.Extra_Err_Info = 'Failed while generating output'
callbackUI('', -1, '', statData)
return 0
}
const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4)
console.log(
'Processing the whole brain volume in tfjs for multi-class output mask took : ',
((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds'
)
// -- Timing data to collect
statData.Inference_t = Inference_t
statData.Postprocess_t = Postprocess_t
statData.Status = 'OK'
callbackUI('', -1, '', statData)
callbackUI('Segmentation finished', 0)
callbackImg(outimg, opts, modelEntry)
return 0
} else {
i++
}
}
} catch (err) {
callbackUI(err.message, -1, err.message)
console.log(
'If webgl context is lost, try to restore webgl context by visit the link ' +
'<a href="https://support.biodigital.com/hc/en-us/articles/218322977-How-to-turn-on-WebGL-in-my-browser">here</a>'
)
if (tf.memory().unreliable) {
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons
callbackUI(unreliableReasons, NaN, unreliableReasons)
}
}
}
async function inferenceFullVolumePhase2(
model,
slices_3d,
num_of_slices,
slice_height,
slice_width,
pipeline1_out,
modelEntry,
statData,
opts,
niftiImage
) {
let outimg = []
// --Phase-2, After remove the skull try to allocate brain volume and make inferece
console.log(' ---- Start FullVolume inference phase-II ---- ')
const quantileNorm = modelEntry.enableQuantileNorm
if (quantileNorm) {
// Quantile normalize function needs specific models to be used
console.log('preModel Quantile normalization enabled')
slices_3d = await quantileNormalizeVolumeData(slices_3d)
} else {
// Min Max Nomalize MRI data to be from 0 to 1
console.log('preModel Min Max normalization enabled')
slices_3d = await minMaxNormalizeVolumeData(slices_3d)
}
let mask_3d
if (pipeline1_out == null) {
// preModel is null
// Check if thresholding the MRI to remove noisy voxels for better cropping is needed.
const autoThresholdValue = modelEntry.autoThreshold
if (autoThresholdValue > 0 && autoThresholdValue <= 1) {
// Filtered MRI from noisy voxel below autoThresholdValue
mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue)
} else {
console.log('No valid crop threshold value')
// binarize original image
mask_3d = await slices_3d.greater([0]).asType('bool')
}
} else {
mask_3d = await pipeline1_out.greater([0]).asType('bool')
// -- pipeline1_out.dispose()
}
console.log(' mask_3d shape : ', mask_3d.shape)
const [row_min, row_max, col_min, col_max, depth_min, depth_max] = await firstLastNonZero3D(mask_3d)
mask_3d.dispose()
// -- Reference voxel that cropped volume started slice with it
const refVoxel = [row_min, col_min, depth_min]
console.log('refVoxel :', refVoxel)
// -- Starting form refVoxel, size of bounding volume
const boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1]
console.log('boundVolSizeArr :', boundVolSizeArr)
// -- Extract 3d object (e.g. brain)
const cropped_slices_3d = slices_3d.slice(
[row_min, col_min, depth_min],
[row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1]
)
slices_3d.dispose()
// -- Padding size add to cropped brain
const pad = modelEntry.cropPadding
// Create margin around the bounding volume
let cropped_slices_3d_w_pad = await addZeroPaddingTo3dTensor(cropped_slices_3d, [pad, pad], [pad, pad], [pad, pad])
console.log(' cropped slices_3d with padding shape: ', cropped_slices_3d_w_pad.shape)
cropped_slices_3d.dispose()
// -- Test dim after padding ..
// for (let i = 0; i < cropped_slices_3d_w_pad.rank; i++) {
// if(cropped_slices_3d_w_pad.shape[i] > 256) {
// console.log(" cropped_slices_3d_w_pad > 256 ")
// }
// }
if (opts.drawBoundingVolume) {
let testVol = await removeZeroPaddingFrom3dTensor(cropped_slices_3d_w_pad, pad, pad, pad)
console.log(' outLabelVolume without padding shape : ', testVol.shape)
testVol = await resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr)
console.log(' outLabelVolume final shape after resizing : ', testVol.shape)
draw3dObjBoundingVolume(tf.unstack(testVol), opts, modelEntry, callbackImg)
testVol.dispose()
return 0
}
statData.Brainchop_Ver = 'FullVolume'
let startTime = performance.now()
let adjusted_input_shape = []
const res = await model
try {
startTime = performance.now()
const inferenceStartTime = performance.now()
// maxLabelPredicted in whole volume of the brain
let maxLabelPredicted = 0
const transpose = modelEntry.enableTranspose
if (transpose) {
cropped_slices_3d_w_pad = cropped_slices_3d_w_pad.transpose()
console.log('Input transposed for pre-model')
} else {
console.log('Transpose not enabled for pre-model')
}
let i = 1
const layersLength = res.layers.length
console.log('res.layers.length ', layersLength)
const isChannelLast = isModelChnlLast(res)
const batchSize = opts.batchSize
const numOfChan = opts.numOfChan
// -- Adjust model input shape
if (isChannelLast) {
res.layers[0].batchInputShape[1] = cropped_slices_3d_w_pad.shape[0]
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[1]
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2]
adjusted_input_shape = [
batchSize,
res.layers[0].batchInputShape[1],
res.layers[0].batchInputShape[2],
res.layers[0].batchInputShape[3],
numOfChan
]
} else {
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[0]
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[1]
res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2]
adjusted_input_shape = [
batchSize,
numOfChan,
res.layers[0].batchInputShape[2],
res.layers[0].batchInputShape[3],
res.layers[0].batchInputShape[4]
]
}
console.log(' Model batch input shape : ', res.layers[0].batchInputShape)
// -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W]
statData.Input_Shape = JSON.stringify(res.layers[0].batchInputShape)
statData.Output_Shape = JSON.stringify(res.output.shape)
statData.Channel_Last = await isChannelLast
statData.Model_Param = await getModelNumParameters(res)
statData.Model_Layers = await getModelNumLayers(res)
statData.Model = modelEntry.modelName
// statData.Extra_Info = null
const curTensor = []
curTensor[0] = cropped_slices_3d_w_pad.reshape(adjusted_input_shape)
// console.log("curTensor[0] :", curTensor[0].dataSync())
while (true) {
try {
// -- curTensor[i] = res.layers[i].apply( curTensor[i-1])
curTensor[i] = res.layers[i].apply(curTensor[i - 1])
} catch (err) {
callbackUI(err.message, -1, err.message)
tf.engine().endScope()
tf.engine().disposeVariables()
statData.Inference_t = Infinity
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = err.message
statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply'
callbackUI('', -1, '', statData)
return 0
}
callbackUI('Layer ' + i.toString(), (i + 1) / layersLength)
console.log('layer output Tensor shape : ', curTensor[i].shape)
console.log('layer count params ', res.layers[i].countParams())
res.layers[i].dispose()
curTensor[i - 1].dispose()
if (tf.memory().unreliable) {
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons
callbackUI(unreliableReasons, NaN, unreliableReasons)
}
if (i === layersLength - 1) {
// prediction = res.layers[res.layers.length-1].apply(curTensor[i])
// curTensor[i].print()
// outputDataBeforArgmx = Array.from(curTensor[i].dataSync())
const axis = isChannelLast ? -1 : 1
console.log(' find argmax ')
console.log('last Tensor shape : ', curTensor[i].shape)
// -- curTensor[i].shape e.g. [ 1, 256, 256, 256, 3 ]
const expected_Num_labels = isChannelLast ? curTensor[i].shape[4] : curTensor[i].shape[1]
let prediction_argmax
// Try for argMax with model output tensor.
try {
const argMaxTime = performance.now()
console.log(' Try tf.argMax for fullVolume ..')
prediction_argmax = tf.argMax(curTensor[i], axis)
console.log('tf.argMax for fullVolume takes : ', ((performance.now() - argMaxTime) / 1000).toFixed(4))
} catch (err1) {
// if channel last
if (axis === -1) {
try {
const argMaxLargeTime = performance.now()
console.log(' tf.argMax failed .. try argMaxLarge ..')
callbackUI('', -1, 'tensor2LightBuffer() is not dead code?')
callbackUI('', -1, 'argMaxLarge() is not dead code?')
console.log(
'argMaxLarge for fullVolume takes : ',
((performance.now() - argMaxLargeTime) / 1000).toFixed(4)
)
} catch (err2) {
const errTxt = "argMax buffer couldn't be created due to limited memory resources."
callbackUI(errTxt, -1, errTxt)
tf.engine().endScope()
tf.engine().disposeVariables()
statData.Inference_t = Infinity
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = err2.message
statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge failed'
callbackUI('', -1, '', statData)
return 0
}
} else {
// if channel first ..
const errTxt = "argMax buffer couldn't be created due to limited memory resources."
callbackUI(errTxt, -1, errTxt)
prediction_argmax.dispose()
tf.engine().endScope()
tf.engine().disposeVariables()
statData.Inference_t = Infinity
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = err1.message
statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge not support yet channel first'
callbackUI('', -1, '', statData)
return 0
}
}
console.log(' prediction_argmax shape : ', prediction_argmax.shape)
// -- prediction_argmax.shape : [ 1, 256, 256, 256]
const Inference_t = ((performance.now() - startTime) / 1000).toFixed(4)
// outputDataBeforArgmx = Array.from(prediction_argmax.dataSync())
tf.dispose(curTensor[i])
console.log(' find array max ')
const curBatchMaxLabel = await prediction_argmax.max().dataSync()[0]
if (maxLabelPredicted < curBatchMaxLabel) {
maxLabelPredicted = curBatchMaxLabel
}
const numSegClasses = maxLabelPredicted + 1
console.log('numSegClasses', numSegClasses)
statData.Actual_Labels = numSegClasses
statData.Expect_Labels = expected_Num_labels
statData.NumLabels_Match = numSegClasses === expected_Num_labels
if (numSegClasses !== expected_Num_labels) {
// errTxt = "expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses + ". For possible solutions please refer to <a href='https://github.com/neuroneural/brainchop/wiki/FAQ#Q3' target='_blank'><b> FAQ </b></a>.", "alert-error"
const errTxt = 'expected ' + expected_Num_labels + ' labels, but the predicted are ' + numSegClasses
callbackUI(errTxt, -1, errTxt)
}
// -- Transpose back to original unpadded size
let outLabelVolume = prediction_argmax.reshape([
cropped_slices_3d_w_pad.shape[0],
cropped_slices_3d_w_pad.shape[1],
cropped_slices_3d_w_pad.shape[2]
])
tf.dispose(prediction_argmax)
// Transpose MRI data to be match pytorch/keras input output
if (transpose) {
console.log('outLabelVolume transposed')
outLabelVolume = outLabelVolume.transpose()
}
outLabelVolume = await removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad)
console.log(' outLabelVolume without padding shape : ', outLabelVolume.shape)
outLabelVolume = await resizeWithZeroPadding(
outLabelVolume,
num_of_slices,
slice_height,
slice_width,
refVoxel,
boundVolSizeArr
)
console.log(' outLabelVolume final shape after resizing : ', outLabelVolume.shape)
const filterOutWithPreMask = modelEntry.filterOutWithPreMask
// To clean the skull area wrongly segmented in phase-2.
if (pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) {
const bin = binarizeVolumeDataTensor(pipeline1_out)
outLabelVolume = outLabelVolume.mul(bin)
}
startTime = performance.now()
// Generate output volume or slices
console.log('Generating correct output')
try {
const img = new Uint32Array(outLabelVolume.dataSync())
const Vshape = outLabelVolume.shape
const Vtype = outLabelVolume.dtype
tf.dispose(outLabelVolume)
tf.engine().endScope()
tf.engine().disposeVariables()
outimg = await generateOutputSlicesV2(
img,
Vshape,
Vtype,
num_of_slices,
numSegClasses,
slice_height,
slice_width,
modelEntry,
opts,
niftiImage
)
console.log(' Phase-2 num of tensors after generateOutputSlicesV2: ', tf.memory().numTensors)
} catch (error) {
// -- Timing data to collect
tf.engine().endScope()
tf.engine().disposeVariables()
const errTxt = 'Failed while generating output due to limited browser memory available'
callbackUI(errTxt, -1, errTxt)
statData.Inference_t = Inference_t
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = error.message
statData.Extra_Err_Info = 'Failed while generating output'
callbackUI('', -1, '', statData)
return 0
}
const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4)
tf.engine().disposeVariables()
console.log(
'Processing the whole brain volume in tfjs for multi-class output mask took : ',
((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds'
)
// -- Timing data to collect
statData.Inference_t = Inference_t
statData.Postprocess_t = Postprocess_t
statData.Status = 'OK'
callbackUI('Segmentation finished', 0)
callbackUI('', -1, '', statData)
callbackImg(outimg, opts, modelEntry)
return 0
}
i++
}
} catch (err) {
callbackUI(err.message, -1, err.message)
console.log(
'If webgl context is lost, try to restore webgl context by visit the link ' +
'<a href="https://support.biodigital.com/hc/en-us/articles/218322977-How-to-turn-on-WebGL-in-my-browser">here</a>'
)
}
}
async function inferenceFullVolumePhase1(
model,
slices_3d,
num_of_slices,
slice_height,
slice_width,
isModelFullVol,
modelEntry,
statData,
opts,
niftiHeader,
niftiImage
) {
statData.No_SubVolumes = 1
// load pre-model for inference first, can be null if no pre-model such as GWM models
if (modelEntry.preModelId) {
const preModel = await load_model(opts.rootURL + inferenceModelsList[modelEntry.preModelId - 1].path)
const transpose = inferenceModelsList[modelEntry.preModelId - 1].enableTranspose
const quantileNorm = inferenceModelsList[modelEntry.preModelId - 1].enableQuantileNorm
let preModel_slices_3d = null
// -- If pre-model is not null then slices_3d mask will be generated..
// -- The mask is needed to remove the skull and set noise in background to 0, and get the brain bounding volume properly
const slices_3d_mask = null
if (quantileNorm) {
// Quantile normalize function needs specific models to be used
console.log('preModel Quantile normalization enabled')
preModel_slices_3d = await quantileNormalizeVolumeData(slices_3d)
} else {
// Min Max Nomalize MRI data to be from 0 to 1
console.log('preModel Min Max normalization enabled')
preModel_slices_3d = await minMaxNormalizeVolumeData(slices_3d)
}
// -- Transpose MRI data to be match pytorch/keras input output
// -- Check if pre-model needs transpose..
if (transpose) {
preModel_slices_3d = preModel_slices_3d.transpose()
console.log('Input transposed for pre-model')
} else {
console.log('Transpose not enabled for pre-model')
}
statData.Brainchop_Ver = 'PreModel_FV' // e.g. "PreModel_FV"
// preModel.then(function (res) {
const res = await preModel
try {
const inferenceStartTime = performance.now()
const preModelObject = res
// read input shape from model.json object
const preModelBatchInputShape = preModelObject.layers[0].batchInputShape
console.log(' Pre-Model batch input shape : ', preModelBatchInputShape)
// -- Verify input shape
if (preModelBatchInputShape.length !== 5) {
const errTxt = 'The pre-model input shape must be 5D '
callbackUI(errTxt, -1, errTxt)
return 0
}
const isPreModelChannelLast = await isModelChnlLast(preModelObject)
const batchSize = opts.batchSize
const numOfChan = opts.numOfChan
let batch_D, batch_H, batch_W
let preModel_input_shape
if (isPreModelChannelLast) {
console.log('Pre-Model Channel Last')
if (isNaN(preModelBatchInputShape[4]) || preModelBatchInputShape[4] !== 1) {
const errTxt = 'The number of channels for pre-model input shape must be 1'
callbackUI(errTxt, -1, errTxt)
return 0
}
batch_D = preModelBatchInputShape[1]
batch_H = preModelBatchInputShape[2]
batch_W = preModelBatchInputShape[3]
preModel_input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan]
} else {
console.log('Pre-Model Channel First')
if (isNaN(preModelBatchInputShape[1]) || preModelBatchInputShape[1] !== 1) {
const errTxt = 'The number of channels for pre-model input shape must be 1'
callbackUI(errTxt, -1, errTxt)
return 0
}
batch_D = preModelBatchInputShape[2]
batch_H = preModelBatchInputShape[3]
batch_W = preModelBatchInputShape[4]
preModel_input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W]
}
statData.Input_Shape = JSON.stringify(preModel_input_shape)
statData.Output_Shape = JSON.stringify(preModelObject.output.shape)
statData.Channel_Last = await isPreModelChannelLast
statData.Model_Param = await getModelNumParameters(preModelObject)
statData.Model_Layers = await getModelNumLayers(preModelObject)
// maxLabelPredicted in whole volume of the brain
let maxLabelPredicted = 0
let i = 1
const layersLength = res.layers.length
const curTensor = []
// -- reshape MRI to model input shape
curTensor[0] = preModel_slices_3d.reshape(preModel_input_shape)
// Dispose the volume
tf.dispose(preModel_slices_3d)
while (true) {
try {
curTensor[i] = res.layers[i].apply(curTensor[i - 1])
} catch (err) {
const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message
callbackUI(errTxt, -1, errTxt)
tf.engine().endScope()
tf.engine().disposeVariables()
statData.Inference_t = Infinity
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = err.message
statData.Extra_Err_Info = 'PreModel Failed while model layer ' + i + ' apply'
callbackUI('', -1, '', statData)
return 0
}
res.layers[i].dispose()
curTensor[i - 1].dispose()
callbackUI('Layer ' + i.toString(), (i + 1) / layersLength)
if (tf.memory().unreliable) {
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons
callbackUI(unreliableReasons, NaN, unreliableReasons)
}
if (i === layersLength - 1) {
// -- prediction = res.layers[res.layers.length-1].apply(curTensor[i])
// -- curTensor[i].print()
// -- outputDataBeforArgmx = Array.from(curTensor[i].dataSync())
const axis = isPreModelChannelLast ? -1 : 1
console.log(' find argmax ')
console.log('last Tensor shape : ', curTensor[i].shape)
// -- curTensor[i].shape : [ 1, 256, 256, 256, 3 ]
const expected_Num_labels = isPreModelChannelLast ? curTensor[i].shape[4] : curTensor[i].shape[1]
let prediction_argmax
// Try for argMax with model output tensor.
try {
console.log(' Try tf.argMax for fullVolume ..')
prediction_argmax = await tf.argMax(curTensor[i], axis)
} catch (err1) {
// if channel last
if (axis === -1) {
try {
const argMaxLargeTime = performance.now()
console.log(' tf.argMax failed .. try argMaxLarge ..')
callbackUI('', -1, 'tensor2LightBuffer() is not dead code?')
callbackUI('', -1, 'argMaxLarge() is not dead code?')
console.log(
'argMaxLarge for fullVolume takes : ',
((performance.now() - argMaxLargeTime) / 1000).toFixed(4)
)
} catch (err2) {
const errTxt = "argMax buffer couldn't be created due to limited memory resources."
callbackUI(errTxt, -1, errTxt)
prediction_argmax.dispose()
tf.engine().endScope()
tf.engine().disposeVariables()
statData.Inference_t = Infinity
statData.Postprocess_t = Infinity
statData.Status = 'Fail'
statData.Error_Type = err2.message
statData.Extra_Err_Info = 'preModel prediction_argmax from argMaxLarge failed'
callbackUI('', -1, '', statData)
return 0
}
} else {
// if channel first ..
const errTxt = "argMax buffer couldn't be created due to limited memory resources."
callbackUI(errTxt, -1, errTxt)