diff --git a/.flake8 b/.flake8 index da04798..2f9a811 100644 --- a/.flake8 +++ b/.flake8 @@ -1,15 +1,6 @@ [flake8] -; exclude = - ; .git, - ; __pycache__, - ; build, - ; dist, - ; env, - ; venv, - ; doc/_build --select = A,B,C,D,E,F,W,C90,FS -; docstring-convention = numpy -max-line-length = 100 +max-line-length = 90 # For PEP8 error codes see # http://pep8.readthedocs.org/en/latest/intro.html#error-codes ; per-file-ignores = diff --git a/.github/workflows/run_examples.yml b/.github/workflows/run_examples.yml index e052da7..801d40d 100644 --- a/.github/workflows/run_examples.yml +++ b/.github/workflows/run_examples.yml @@ -22,7 +22,7 @@ jobs: strategy: fail-fast: false matrix: - example: [comparedesigns.py, comparison_neurodesign.py, JSS_example.py, optimisation.py] + example: [compare_designs.py, JSS_example.py, optimisation.py] steps: - name: Checkout uses: actions/checkout@v4 diff --git a/.github/workflows/test_notebook.yml b/.github/workflows/test_notebook.yml new file mode 100644 index 0000000..cd32c20 --- /dev/null +++ b/.github/workflows/test_notebook.yml @@ -0,0 +1,31 @@ +--- +name: test notebook + +on: + push: + branches: + - master + pull_request: + branches: + - '*' + +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + test_notebook: + name: run notebooks + runs-on: ubuntu-latest + steps: + - name: Checkout + uses: actions/checkout@v4 + - name: Setup python + uses: actions/setup-python@v5 + with: + python-version: '3.12' + allow-prereleases: false + - name: Install tox + run: python -m pip install --upgrade tox + - name: Run tests + run: tox run -e test_notebook diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml new file mode 100644 index 0000000..9c72f15 --- /dev/null +++ b/.github/workflows/tests.yml @@ -0,0 +1,41 @@ +--- +name: tests + +on: + push: + branches: + - master + pull_request: + branches: + - '*' + +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + tests: + name: Test with ${{ matrix.py }} on ${{ matrix.os }} + runs-on: ${{ matrix.os }} + strategy: + fail-fast: false + matrix: + py: ['3.12', '3.11', '3.10', '3.9', '3.8'] + os: [ubuntu-latest, macos-latest, windows-latest] + steps: + - name: Checkout + uses: actions/checkout@v4 + - name: Setup python + uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.py }} + allow-prereleases: false + - name: Install tox + run: python -m pip install --upgrade tox + - name: Run tests + run: tox run -e tests + - name: Upload coverage to CodeCov + uses: codecov/codecov-action@v4 + with: + flags: ${{ matrix.os }}_${{ matrix.py }} + if: success() diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 3966227..0d3abe3 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -32,6 +32,7 @@ repos: rev: 24.1.1 hooks: - id: black + additional_dependencies: ['.[jupyter]'] args: [--config, pyproject.toml] - repo: https://github.com/adamchainz/blacken-docs @@ -65,4 +66,4 @@ repos: hooks: - id: flake8 args: [--config, .flake8, --verbose, neurodesign, examples] - additional_dependencies: [flake8-docstrings, flake8-use-fstring] + additional_dependencies: [flake8-docstrings, flake8-use-fstring, flake8-nb] diff --git a/examples/JSS_example.py b/examples/JSS_example.py index 8c6666f..7fff8b3 100644 --- a/examples/JSS_example.py +++ b/examples/JSS_example.py @@ -1,12 +1,14 @@ -import os -import os.path as op from collections import Counter +from pathlib import Path import matplotlib.pyplot as plt import neurodesign -EXP = neurodesign.experiment( +output_dir = Path(__file__).parent / "output" +output_dir.mkdir(parents=True, exist_ok=True) + +exp = neurodesign.experiment( TR=1.2, n_trials=20, P=[0.3, 0.3, 0.4], @@ -19,40 +21,44 @@ ITImax=4, ) -DES1 = neurodesign.design( - order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], ITI=[2] * 20, experiment=EXP +design_1 = neurodesign.design( + order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], + ITI=[2] * 20, + experiment=exp, ) -DES1.designmatrix() - -DES1.FCalc(weights=[0.25, 0.25, 0.25, 0.25]) +design_1.designmatrix() +design_1.FCalc(weights=[0.25, 0.25, 0.25, 0.25]) -plt.plot(DES1.Xconv) -out_dir = "output" -if not op.isdir(out_dir): - os.makedirs(out_dir) +plt.plot(design_1.Xconv) -plt.savefig(op.join(out_dir, "example_figure_1.pdf"), format="pdf") +plt.savefig(output_dir / "example_figure_1.pdf", format="pdf") -DES2 = neurodesign.design( - order=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], ITI=[2] * 20, experiment=EXP +design_2 = neurodesign.design( + order=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], + ITI=[2] * 20, + experiment=exp, ) -DES2.designmatrix() -DES2.FCalc(weights=[0.25, 0.25, 0.25, 0.25]) -print("Ff of Design 1: " + str(DES1.Ff)) -print("Ff of Design 2: " + str(DES2.Ff)) -print("Fd of Design 1: " + str(DES1.Fd)) -print("Fd of Design 2: " + str(DES2.Fd)) +design_2.designmatrix() +design_2.FCalc(weights=[0.25, 0.25, 0.25, 0.25]) +print(f"Ff of Design 1: {str(design_1.Ff)}") +print(f"Ff of Design 2: {str(design_2.Ff)}") +print(f"Fd of Design 1: {str(design_1.Fd)}") +print(f"Fd of Design 2: {str(design_2.Fd)}") -DES3, DES4 = DES1.crossover(DES2, seed=2000) -print(DES3.order) -print(DES4.order) +design_3, design_4 = design_1.crossover(design_2, seed=2000) +print(design_3.order) +print(design_4.order) order = neurodesign.generate.order( - nstim=4, ntrials=100, probabilities=[0.25, 0.25, 0.25, 0.25], ordertype="random", seed=1234 + nstim=4, + ntrials=100, + probabilities=[0.25, 0.25, 0.25, 0.25], + ordertype="random", + seed=1234, ) print(order[:10]) Counter(order) @@ -70,6 +76,11 @@ ) POP = neurodesign.optimisation( - experiment=EXP, weights=[0, 0.5, 0.25, 0.25], preruncycles=10, cycles=100, folder="./", seed=100 + experiment=exp, + weights=[0, 0.5, 0.25, 0.25], + preruncycles=10, + cycles=100, + folder="./", + seed=100, ) POP.optimise() diff --git a/examples/compare_designs.py b/examples/compare_designs.py new file mode 100644 index 0000000..df75b10 --- /dev/null +++ b/examples/compare_designs.py @@ -0,0 +1,87 @@ +import neurodesign +from neurodesign import generate + +# define experimental setup + +exp = neurodesign.experiment( + TR=2, + n_trials=20, + P=[0.3, 0.3, 0.4], + C=[[1, -1, 0], [0, 1, -1]], + n_stimuli=3, + rho=0.3, + stim_duration=1, + t_pre=0.5, + t_post=2, + ITImodel="exponential", + ITImin=2, + ITImax=4, + ITImean=2.1, +) + +# define first design with a fixed ITI + +design_1 = neurodesign.design( + order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], + ITI=[2] * 20, + experiment=exp, +) + +# expand to design matrix + +design_1.designmatrix() +design_1.FCalc(weights=[0, 0.5, 0.25, 0.25]) +design_1.FdCalc() +design_1.FcCalc() +design_1.FfCalc() +design_1.FeCalc() + +# define second design + +design_2 = neurodesign.design( + order=[0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 1], + ITI=generate.iti(20, "exponential", min=1, mean=2, max=4, seed=1234)[0], + experiment=exp, +) + +design_2.designmatrix() +design_2.FeCalc() +design_2.FdCalc() +design_2.FcCalc() +design_2.FfCalc() + +# crossover to obtain design 3 and 4 + +design_3, design_4 = design_1.crossover(design_2, seed=2000) +design_3.order +design_4.order +design_3.designmatrix() +design_3.FeCalc() +design_3.FdCalc() +design_3.FcCalc() +design_3.FfCalc() +design_4.designmatrix() +design_4.FeCalc() +design_4.FdCalc() +design_4.FcCalc() +design_4.FfCalc() + +# mutate design +DES5 = design_1.mutation(0.3, seed=2000) +DES5.designmatrix() +DES5.FeCalc() +DES5.FdCalc() +DES5.FcCalc() +DES5.FfCalc() + +# compare detection power +result = ( + f" RESULTS \n ======= \n" + f"DESIGN 1: Fd = {design_1.Fd} \n" + f"DESIGN 2: Fd = {design_2.Fd} \n" + f"DESIGN 3: Fd = {design_3.Fd} \n" + f"DESIGN 4: Fd = {design_4.Fd} \n" + f"DESIGN 5: Fd = {DES5.Fd} \n" +) + +print(result) diff --git a/examples/comparedesigns.py b/examples/comparedesigns.py deleted file mode 100644 index 5300e3c..0000000 --- a/examples/comparedesigns.py +++ /dev/null @@ -1,86 +0,0 @@ -import neurodesign -from neurodesign import generate - -# define experimental setup - -EXP = neurodesign.experiment( - TR=2, - n_trials=20, - P=[0.3, 0.3, 0.4], - C=[[1, -1, 0], [0, 1, -1]], - n_stimuli=3, - rho=0.3, - stim_duration=1, - t_pre=0.5, - t_post=2, - ITImodel="exponential", - ITImin=2, - ITImax=4, - ITImean=2.1, -) - -# define first design with a fixed ITI - -DES = neurodesign.design( - order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], ITI=[2] * 20, experiment=EXP -) - -# expand to design matrix - -DES.designmatrix() -DES.FCalc(weights=[0, 0.5, 0.25, 0.25]) -DES.FdCalc() -DES.FcCalc() -DES.FfCalc() -DES.FeCalc() - -# define second design - -DES2 = neurodesign.design( - order=[0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 1], - ITI=generate.iti(20, "exponential", min=1, mean=2, max=4, seed=1234)[0], - experiment=EXP, -) - -DES2.designmatrix() -DES2.FeCalc() -DES2.FdCalc() -DES2.FcCalc() -DES2.FfCalc() - -# crossover to obtain design 3 and 4 - -DES3, DES4 = DES.crossover(DES2, seed=2000) -DES3.order -DES4.order -DES3.designmatrix() -DES3.FeCalc() -DES3.FdCalc() -DES3.FcCalc() -DES3.FfCalc() -DES4.designmatrix() -DES4.FeCalc() -DES4.FdCalc() -DES4.FcCalc() -DES4.FfCalc() - -# mutate design -DES5 = DES.mutation(0.3, seed=2000) -DES5.designmatrix() -DES5.FeCalc() -DES5.FdCalc() -DES5.FcCalc() -DES5.FfCalc() - -# compare detection power -result = ( - " RESULTS \n" - " ======= \n" - "DESIGN 1: Fd = {} \n" - "DESIGN 2: Fd = {} \n" - "DESIGN 3: Fd = {} \n" - "DESIGN 4: Fd = {} \n" - "DESIGN 5: Fd = {} \n".format(DES.Fd, DES2.Fd, DES3.Fd, DES4.Fd, DES5.Fd) -) - -print(result) diff --git a/examples/comparison_neurodesign.html b/examples/comparison_neurodesign.html deleted file mode 100644 index ee484e8..0000000 --- a/examples/comparison_neurodesign.html +++ /dev/null @@ -1,17144 +0,0 @@ - - - -comparison_neurodesign - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
-
-
-

Neurodesign comparison of design generators

In this notebook, we will compare 3 methods to generate an experimental design:

-
    -
  • a design optimised using the genetic algorithm
  • -
  • a design optimised using simulations
  • -
  • a randomly drawn design
  • -
-

We will do so using simulations: what is the resulting observed power when we simulate experiments according to the three designs.

- -
-
-
-
-
-
In [22]:
-
-
-
from neurodesign import optimisation,experiment
-import matplotlib.pyplot as plt
-from scipy.stats import t
-import seaborn as sns
-import pandas as pd
-import numpy as np
-
-%matplotlib inline
-%load_ext rpy2.ipython
-
-cycles = 1000
-sims = 5000
-
- -
-
-
- -
-
- - -
-
-
The rpy2.ipython extension is already loaded. To reload it, use:
-  %reload_ext rpy2.ipython
-
-
-
- -
-
- -
-
-
-
-
-
-

Optimise designs

-
-
-
-
-
-
-
-
-

First we define the experiment. We will optimise an experiment with a TR of 2 seconds and 250 trials of 0.5 seconds each. There are 4 stimulus types, and we are interested in the shared effect of the first and second stimulus versus baseline, as well as the difference between the first and the fourth stimulus. We assume an autoregressive temporal autocorrelation of 0.3.

-

We sample ITI's from a truncated exponential distribution with minimum 0.3 seconds and maximum 4 seconds, and the mean is 1 second.

- -
-
-
-
-
-
In [2]:
-
-
-
# define the experiment
-EXP = experiment(
-    TR=2,
-    n_trials=450,
-    P = [0.25,0.25,0.25],
-    C = [[1,0,0],[0,1,0],[0,0,1],[1,0,-1]],
-    n_stimuli = 3,
-    rho = 0.3,
-    resolution=0.1,
-    stim_duration=1,
-    ITImodel = "exponential",
-    ITImin = 0.3,
-    ITImean = 1,
-    ITImax=4
-    )
-
- -
-
-
- -
-
- - -
-
-
/Users/Joke/anaconda/lib/python2.7/site-packages/neurodesign/neurodesign.py:410: UserWarning: Warning: the resolution is adjusted to be a multiple of the TR.  New resolution: 0.100000
-  warnings.warn("Warning: the resolution is adjusted to be a multiple of the TR.  New resolution: %f"%self.resolution)
-/Users/Joke/anaconda/lib/python2.7/site-packages/neurodesign/neurodesign.py:560: RuntimeWarning: divide by zero encountered in log
-  res = (h - 1) * np.log(s) + h * np.log(l) - l * s - np.log(gamma(h))
-
-
-
- -
-
- -
-
-
-
In [3]:
-
-
-
POP_Max = optimisation(
-    experiment=EXP,
-    weights=[0,0.5,0.25,0.25],
-    preruncycles = cycles,
-    cycles = 2,
-    optimisation='GA'
-    )
-
-POP_Max.optimise()
-
- -
-
-
- -
-
- - -
-
-
100% |########################################################################|
-100% |########################################################################|
-
-
-
- -
Out[3]:
- - -
-
<neurodesign.neurodesign.optimisation at 0x110fd2510>
-
- -
- -
-
- -
-
-
-
In [4]:
-
-
-
EXP.FeMax = POP_Max.exp.FeMax
-EXP.FdMax = POP_Max.exp.FdMax
-
- -
-
-
- -
-
-
-
-
-
-

Below we define two populations of designs. We will optimise one using the genetic algorithm, and the other using randomly drawn designs.

-

We optimise for statistical power (weights = [0,1,0,0]). We run 100 cycles.

- -
-
-
-
-
-
In [5]:
-
-
-
POP_GA = optimisation(
-    experiment=EXP,
-    weights=[0,0.5,0.25,0.25],
-    preruncycles = 2,
-    cycles = cycles,
-    seed=1,
-    outdes=5,
-    I=10,
-    folder='/tmp/',
-    optimisation='GA'
-    )
-
-POP_RN = optimisation(
-    experiment=EXP,
-    weights=[0,0.5,0.25,0.25],
-    preruncycles = 2,
-    cycles = cycles,
-    seed=100,
-    outdes=5,
-    I=50,
-    G=10,
-    folder='/tmp/',
-    optimisation='simulation'
-    )
-
- -
-
-
- -
-
-
-
In [6]:
-
-
-
POP_GA.optimise()
-
- -
-
-
- -
-
- - -
-
-
100% |########################################################################|
-
-
-
- -
Out[6]:
- - -
-
<neurodesign.neurodesign.optimisation at 0x11c2638d0>
-
- -
- -
-
- -
-
-
-
In [7]:
-
-
-
POP_RN.optimise()
-
- -
-
-
- -
-
- - -
-
-
100% |########################################################################|
-
-
-
- -
Out[7]:
- - -
-
<neurodesign.neurodesign.optimisation at 0x11c263990>
-
- -
- -
-
- -
-
-
-
-
-
-

Below, we show how the efficiency scores improve over cycles for both algorithms, although the Genetic Algorithm clearly improves faster and reaches a higher plateau.

- -
-
-
-
-
-
In [8]:
-
-
-
plt.plot(POP_GA.optima,label='Genetic Algorithm')
-plt.plot(POP_RN.optima,label='Simulation')
-plt.legend()
-plt.savefig("output/test_scores.pdf")
-
- -
-
-
- -
-
- - -
- - -
- -
- -
- -
-
- -
-
-
-
-
-
-

Below, we repeat the random design generator, but we search only 100 designs and one generation. As such, this is a random design.

- -
-
-
-
-
-
In [9]:
-
-
-
# 1 gen
-POP_JO = optimisation(
-    experiment=EXP,
-    weights=[0,0.5,0.25,0.25],
-    preruncycles = 1,
-    cycles = 1,
-    seed=1,
-    outdes=5,
-    G=100,
-    folder='/tmp/',
-    optimisation='simulation'
-    )
-POP_JO.optimise()
-
- -
-
-
- -
-
- - -
-
-
100% |########################################################################|
-
-
-
- -
Out[9]:
- - -
-
<neurodesign.neurodesign.optimisation at 0x11cb4fa90>
-
- -
- -
-
- -
-
-
-
In [10]:
-
-
-
#collect scores and take average
-scores = [x.F for x in POP_JO.designs]
-
-median_idx = np.where(scores == np.median(scores))[0][0]
-rnd_median = POP_JO.designs[median_idx]
-
-# get PI
-BTI_l = np.percentile(scores,5)
-BTI_u = np.percentile(scores,95)
-
- -
-
-
- -
-
-
-
In [11]:
-
-
-
print("Optimisation score - random: %s \n\
-Optimisation score - genetic algorithm: %s \n\
-Optimisation score - simulation (90 percent PI): %s-%s"%(POP_RN.optima[::-1][0],
-    POP_GA.optima[::-1][0],BTI_l,BTI_u))
-
- -
-
-
- -
-
- - -
-
-
Optimisation score - random: 0.7933121936748979
-Optimisation score - genetic algorithm: 0.867326561918992
-Optimisation score - simulation (90 percent PI): 0.607035712415793-0.6984508300540047
-
-
-
- -
-
- -
-
-
-
-
-
-

Let's look at the resulting experimental designs.

- -
-
-
-
-
-
In [12]:
-
-
-
des = np.array([POP_GA.bestdesign.Xconv,POP_RN.bestdesign.Xconv,rnd_median.Xconv])
-labels = ['Genetic Algorithm','Simulation','Median random design']
-plt.figure(figsize=(10,7))
-for ind,label in enumerate(labels):
-    plt.subplot(3,1,ind+1)
-    plt.plot(des[ind,:,:])
-    plt.title(label)
-    plt.tick_params(axis = 'x',which = 'both', bottom = 'off', labelbottom='off')
-
-plt.savefig("output/designs.pdf")
-
- -
-
-
- -
-
- - -
- - -
- -
- -
- -
-
- -
-
-
-
In [13]:
-
-
-
des = np.array([POP_GA.bestdesign.Xconv,POP_RN.bestdesign.Xconv]+[x.Xconv for x in POP_JO.designs])
-
- -
-
-
- -
-
-
-
-
-
-

Simulate data

We continue with the best designs from the two algorithms and the random design. Below, we simulate data in one voxel that is significantly related to the task. We assume beta values of (0.5, 0, -0.5).

- -
-
-
-
-
-
In [23]:
-
-
-
# create datatables 
-tp = des.shape[1]
-Y = np.zeros([tp,sims,des.shape[0]])
-
-for i in range(sims):
-    rnd = np.random.normal(0,1,tp)
-    for lb in range(Y.shape[2]):
-        Y[:,i,lb] = np.dot(des[lb,:,:],np.array([0.5,0,-0.5]))+rnd
-
-ids = [0,1,median_idx]
-
- -
-
-
- -
-
-
-
In [24]:
-
-
-
plt.plot(Y[:,1:3,1])
-
- -
-
-
- -
-
- - -
Out[24]:
- - -
-
[<matplotlib.lines.Line2D at 0x11d287e50>,
- <matplotlib.lines.Line2D at 0x11d287950>]
-
- -
- -
- - -
- -
- -
- -
-
- -
-
-
-
-
-
-

We analyse the data using R below.

- -
-
-
-
-
-
In [25]:
-
-
-
%%R -i des,Y,sims,ids -o tvals_main,tvals_diff,pows
-tvals_main <- array(NA,dim=c(sims,3))
-tvals_diff <- array(NA,dim=c(sims,3))
-pows <- array(NA,dim=c(dim(Y)[3],2))
-
-threshold <- qt(0.95,df=(dim(des)[2]-2))
-
-i = 1
-for (method in 1:dim(Y)[3]){
-    ts_main <- c()
-    ts_diff <- c()
-    for (sim in 1:sims){
-        dif <- des[method,,1]-des[method,,2]
-        fit_main <- lm(Y[,sim,method]~des[method,,])
-        fit_diff <- lm(Y[,sim,method]~dif)
-        ts_main[sim] <- summary(fit_main)$coef[2,3]
-        ts_diff[sim] <- summary(fit_diff)$coef[2,3]
-        }
-    if ((method-1) %in% ids){
-        tvals_main[,i] <- ts_main
-        tvals_diff[,i] <- ts_diff
-        i <- i+1
-    }
-    pows[method,1] <- mean(ts_main>threshold)
-    pows[method,2] <- mean(ts_diff>threshold)
-}
-
- -
-
-
- -
-
-
-
-
-
-

This is what the distributions for the two contrasts look like.

- -
-
-
-
-
-
In [26]:
-
-
-
nms = ['Main effect','Contrast effect']
-plt.figure(figsize=(18,4))
-for idx,tv in enumerate([tvals_main,tvals_diff]):
-    plt.subplot(1,2,idx+1)
-    for idy,method in enumerate(labels):
-        sns.distplot(tv[:,idy],label=method)
-    plt.title(nms[idx])
-plt.legend()
-plt.savefig("output/distributions.pdf")
-
- -
-
-
- -
-
- - -
- - -
- -
- -
- -
-
- -
-
-
-
In [27]:
-
-
-
pows.shape
-
- -
-
-
- -
-
- - -
Out[27]:
- - -
-
(103, 2)
-
- -
- -
-
- -
-
-
-
-
-
-

Observed power

-
-
-
-
-
-
In [31]:
-
-
-
# We're assuming a single threshold on a single test, a representative simplification.
-threshold = t.ppf(0.95,des.shape[1]-2)
-nms = ['main effect','contrast effect']
-out = {label:[] for label in labels}
-for idx in range(2):
-    for idy,method in enumerate(labels):
-        if idy < 2:
-            print("The power for the %s with %s: %f"%(nms[idx],method,pows[idy,idx]))
-    med = np.percentile(pows[2:,idx],50)
-    ll = np.percentile(pows[2:,idx],5)
-    ul = np.percentile(pows[2:,idx],95)
-    print("The median for the %s with a randomly drawn design: %f"%(nms[idx],med))
-    print("The 90 percent PI for the %s with a randomly drawn design: %f-%f"%(nms[idx],
-                  ll,ul))
-
- -
-
-
- -
-
- - -
-
-
The power for the main effect with Genetic Algorithm: 0.449800
-The power for the main effect with Simulation: 0.395600
-The median for the main effect with a randomly drawn design: 0.261400
-The 90 percent PI for the main effect with a randomly drawn design: 0.221400-0.312000
-The power for the contrast effect with Genetic Algorithm: 0.733400
-The power for the contrast effect with Simulation: 0.748800
-The median for the contrast effect with a randomly drawn design: 0.358400
-The 90 percent PI for the contrast effect with a randomly drawn design: 0.211400-0.758400
-
-
-
- -
-
- -
-
-
- - diff --git a/examples/comparison_neurodesign.ipynb b/examples/comparison_neurodesign.ipynb index 4bf276f..e2095f7 100644 --- a/examples/comparison_neurodesign.ipynb +++ b/examples/comparison_neurodesign.ipynb @@ -16,28 +16,16 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 5, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The rpy2.ipython extension is already loaded. To reload it, use:\n", - " %reload_ext rpy2.ipython\n" - ] - } - ], + "outputs": [], "source": [ - "from neurodesign import optimisation,experiment\n", "import matplotlib.pyplot as plt\n", - "from scipy.stats import t\n", - "import seaborn as sns\n", - "import pandas as pd\n", "import numpy as np\n", + "import seaborn as sns\n", + "from scipy.stats import t\n", "\n", - "%matplotlib inline\n", - "%load_ext rpy2.ipython\n", + "from neurodesign import experiment, optimisation\n", "\n", "cycles = 1000\n", "sims = 5000" @@ -54,91 +42,71 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "First we define the experiment. We will optimise an experiment with a TR of 2 seconds and 250 trials of 0.5 seconds each. There are 4 stimulus types, and we are interested in the shared effect of the first and second stimulus versus baseline, as well as the difference between the first and the fourth stimulus. We assume an autoregressive temporal autocorrelation of 0.3.\n", + "First we define the experiment.\n", + "We will optimise an experiment with a TR of 2 seconds and 250 trials of 0.5 seconds each.\n", + "There are 4 stimulus types, and we are interested in the shared effect of the first and second stimulus versus baseline, as well as the difference between the first and the fourth stimulus. We assume an autoregressive temporal autocorrelation of 0.3.\n", "\n", "We sample ITI's from a truncated exponential distribution with minimum 0.3 seconds and maximum 4 seconds, and the mean is 1 second." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 6, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/Joke/anaconda/lib/python2.7/site-packages/neurodesign/neurodesign.py:410: UserWarning: Warning: the resolution is adjusted to be a multiple of the TR. New resolution: 0.100000\n", - " warnings.warn(\"Warning: the resolution is adjusted to be a multiple of the TR. New resolution: %f\"%self.resolution)\n", - "/Users/Joke/anaconda/lib/python2.7/site-packages/neurodesign/neurodesign.py:560: RuntimeWarning: divide by zero encountered in log\n", - " res = (h - 1) * np.log(s) + h * np.log(l) - l * s - np.log(gamma(h))\n" - ] - } - ], + "outputs": [], "source": [ "# define the experiment\n", - "EXP = experiment(\n", + "exp = experiment(\n", " TR=2,\n", " n_trials=450,\n", - " P = [0.25,0.25,0.25],\n", - " C = [[1,0,0],[0,1,0],[0,0,1],[1,0,-1]],\n", - " n_stimuli = 3,\n", - " rho = 0.3,\n", + " P=[0.25, 0.25, 0.25],\n", + " C=[[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, -1]],\n", + " n_stimuli=3,\n", + " rho=0.3,\n", " resolution=0.1,\n", " stim_duration=1,\n", - " ITImodel = \"exponential\",\n", - " ITImin = 0.3,\n", - " ITImean = 1,\n", - " ITImax=4\n", - " )" + " ITImodel=\"exponential\",\n", + " ITImin=0.3,\n", + " ITImean=1,\n", + " ITImax=4,\n", + ")" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100% |########################################################################|\n", - "100% |########################################################################|\n" + " 8% |##### |\r" ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ "POP_Max = optimisation(\n", - " experiment=EXP,\n", - " weights=[0,0.5,0.25,0.25],\n", - " preruncycles = cycles,\n", - " cycles = 2,\n", - " optimisation='GA'\n", - " )\n", + " experiment=exp,\n", + " weights=[0, 0.5, 0.25, 0.25],\n", + " preruncycles=cycles,\n", + " cycles=2,\n", + " optimisation=\"GA\",\n", + ")\n", "\n", "POP_Max.optimise()" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "EXP.FeMax = POP_Max.exp.FeMax\n", - "EXP.FdMax = POP_Max.exp.FdMax" + "exp.FeMax = POP_Max.exp.FeMax\n", + "exp.FdMax = POP_Max.exp.FdMax" ] }, { @@ -152,41 +120,41 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "POP_GA = optimisation(\n", - " experiment=EXP,\n", - " weights=[0,0.5,0.25,0.25],\n", - " preruncycles = 2,\n", - " cycles = cycles,\n", + " experiment=exp,\n", + " weights=[0, 0.5, 0.25, 0.25],\n", + " preruncycles=2,\n", + " cycles=cycles,\n", " seed=1,\n", " outdes=5,\n", " I=10,\n", - " folder='/tmp/',\n", - " optimisation='GA'\n", - " )\n", + " folder=\"/tmp/\",\n", + " optimisation=\"GA\",\n", + ")\n", "\n", "POP_RN = optimisation(\n", - " experiment=EXP,\n", - " weights=[0,0.5,0.25,0.25],\n", - " preruncycles = 2,\n", - " cycles = cycles,\n", + " experiment=exp,\n", + " weights=[0, 0.5, 0.25, 0.25],\n", + " preruncycles=2,\n", + " cycles=cycles,\n", " seed=100,\n", " outdes=5,\n", " I=50,\n", " G=10,\n", - " folder='/tmp/',\n", - " optimisation='simulation'\n", - " )" + " folder=\"/tmp/\",\n", + " optimisation=\"simulation\",\n", + ")" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -213,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -247,12 +215,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD3CAYAAADmBxSSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X18VNWB//HPTCYPJCQhwID1CVTk\nWKpFK7bQRWQtarV1Qav4bKUiP2vrE1WXFSmyWsWt+ND67GpB1Fa0xVXbgl3XWgWpUqtFkVODgihC\nAuQRyNPM/f1xZyaTB8hNMiGZO9/368VrMvfcO/ecEL6cnHvuuQHHcRAREX8J9nYFREQk9RTuIiI+\npHAXEfEhhbuIiA8p3EVEfCjU2xWIKy+v6fK0nZKSfCoqdqWyOn2e2pwZ1ObM0J02h8OFgfa2+6Ln\nHgpl9XYV9jm1OTOozZmhJ9rsi3AXEZGWFO4iIj6kcBcR8SGFu4iIDyncRUR8SOEuIuJDCncRER/q\nMzcxiYikq/Wbq/jzO58T7cKtmAOLcvl/3xud8jop3EXEs9Xryvi0rIbkx0A4DjjENiS/JL52Wuy/\nvbqOHdX1LT53V10jZRW73TeB5mPTRXeqm5udxUXf+UrK6hKncBeRNv65qZInX/4nkWg0sa2hMcr2\n6rqUnSM71DwqHAAOCPcnPzeL7JwQjQ1NKTvPvjLiwAH86zEHdPq4/LwQBf2y2VWbuu8tKNxFfGtH\ndR0ffLIDB6isqWfj1pY97mSO47Blxy521rmhWru7EYCsYICCvOaYKCnMZeLR+2MOLiEQgACxZU0C\nkFjgJLEpQCBp1ZP416FgkP0HFxAMtrskCuFwIeXlNV1osSRTuIv41APPv8/Hm6s97x8IwNCSfLKC\nAYoLcjjkS0VMO+0IAoH2Q1j6NoW7SIrsqmtiV30jkYhDYyTKWx+WsWXHLnCcxBi0g9tLBhK9aMdJ\njFg3j1/H9s3OzqKhoanFvvH9qnc10NAYpT2NkSjVOxsYMqAf/zZ+OADD9yuipDB3j/UPZQXIzsBF\nu/xK4S6SAp+V1TJv4dtEujJdootyQkEK83PaLcvOCjJsv0KmTjyMLw8fuM/qJH2Hwl184fNtO1n/\neRVNkShNEYf6hibq99Cr7arGpigfb65id0OkxfZI1GHrDnct7iMPHcjAwlyysoLk54b4xqihFOXn\nJMak40McgcQYdfO4dGIMO7GvO/68bVvtHso1XCJ71mG4G2OCwAPAaKAemG6tLU0qvw44D4gCt1lr\nlxpjsoC7gDFALnCztfalHqi/7GO765uoaxVu+0owJ0RFTX27ZfcseS+lMzn2Jj831OZi4P6DC9h/\ncAHTv/NlcrJTN7SRHcoilKV7DaXzvPTcpwB51tpxxpixwAJgMoAxZgBwFTACKADeBZYCFwHZ1tp/\nMcYcAJzdE5VPlWiKfpWurWtkzfrtRPc0JcGDuoYIlbX1e5wvDO54a79+Oeze3dA8FhsfpCVpzm3S\n/OOW2+JfN5c5yTsQH/t1RSJRtlXVUd8QYVNZbZ+dgnz4gcV869gDyQoGyc0Okpeb+l9MiwtyCA/o\nl/LPFUk1Lz/944FlANbaVcaYMUllO4GNuMFegNt7BzgFWGOM+T3ub5BXdnSSkpL8bj2NJBwu7PQx\nTZEodzzxNqve39Ll82aKYACCwQDFhbmMOmQg2Vl968JbMAiTJxzGYQcO6O2qpFxXfrbTndrcfV7C\nvQioSnofMcaErLXxuww2AWuBLOD22LbBwOHAd4EJwK9ir3vUnWcmdnZebFMkyrK/fsr/vPFJ4gLY\nl4eVdPn8yQ4IFzBsaNf/kgIBGFSU5/4qnjRfOF4WN7CkgMrKXW2Obf46PqJL0uc07xjo6JjYF/Gx\n3ZLC3F4fHvDy9+y3+dGZOOdbbe78se3xEu7VQPLRwaRgPxX4EnBI7P1yY8wKYDvwkrXWAV4zxozs\nUq27oCkSZcWaL3hp5YY9XlCL36ABMLg4j2mnfTll4b6vhMOFlOf1rd6ziPQdXsJ9BXA6sCQ25r4m\nqawC2A3UW2sdY0wlMAB4AzgN+K0xZjTwaWqrvWdvfrCFRcssADnZQcLFbcdHiwtyyMkOMnn8oRx5\n6ECCmnUgIj7jJdyXAicZY1bi/pY+zRgzEyi11r5gjJkErDLGRHFD/U/Aa8CDxphVsWMu75nqu+rq\nm3j21VLeLd3mXowEvvvNYUw5/lAFt4hkpA7D3VobpW04r0sqnwvMbVVeD/yg27Xz6NW/beKPf3V/\nORhYlMthBxQzZbyCXUQyly9uYqqMzX2edtoRHP/V/Xu5NiIivc8Xd0fsqnev7x4Y7t/LNRER6Rt8\nEe67Y+Gel6PZIyIi4JNw3xVbg7pfD9yRKCKSjnwS7u689X45CncREfBJuDc2uTcrJT+2S0Qkk/ki\nDeNLCGjmo4iIyxfh7jiO1rcWEUnik3Bnjw/bFRHJRL4I96jjaEhGRCSJL8LdcRwNyYiIJPFFuEcd\nXUwVEUnmi3BXz11EpCV/hHvUfQyciIi4fBHuUceh+cFxIiLii3B3NFtGRKSFDhdjMcYEgQeA0bgP\n4ZhurS1NKr8OOA+IArdZa5cmlR0B/BUYaq2tS3HdE6IacxcRacFLz30KkGetHQfMAhbEC4wxA4Cr\ngHHAycA9SWVFsX3rU1nh9kQ15i4i0oKXcB8PLAOw1q4CxiSV7QQ2AgWxP1EAY0wAeAS4EdiVwvq2\ny3EcAkp3EZEEL2vkFgFVSe8jxpiQtbYp9n4TsBbIAm6PbZsL/N5a+54xxlNFSkryCYW69rANx4FQ\nVpBwuLBLx6erTGsvqM2ZQm3uPi/hXg0knzWYFOynAl8CDom9X26MWQFcCHxmjLkU2A94GZiwt5NU\nVHS9gx91HBzHoby8psufkW7C4cKMai+ozZlCbe78se3xEu4rgNOBJcaYscCapLIKYDdQb611jDGV\nwABr7Yj4DsaYDbjj8T3G0VRIEZEWvIT7UuAkY8xKIABMM8bMBEqttS8YYyYBq4wxUeAN4E89V932\nafkBEZGWOgx3a20UuLzV5nVJ5XNxx9j3dPzwrlbOK8dxyFK6i4gk6CYmEREf8kW4u8MySncRkTh/\nhHtUPXcRkWS+CHfHcQgq3UVEEnwR7hqWERFpyRfh7vbce7sWIiJ9h2/CXT13EZFmvgh33cQkItKS\nL8LdiarnLiKSzBfhHnW0nruISDJfhLvG3EVEWvJRuPd2LURE+o60D3fHcTTPXUSklfQP99irxtxF\nRJqlf7g7bryr5y4i0swH4e6+qucuItLMB+GunruISGsdPonJGBMEHgBGA/XAdGttaVL5dcB5QBS4\nzVq71BhTDDwJFAE5wExr7Zs9UH+isZ67wl1EpJmXnvsUIM9aOw6YBSyIFxhjBgBXAeNwH4J9T6xo\nJvCKtfYE4BLg/hTWuYXmnntPnUFEJP14CffxwDIAa+0qYExS2U5gI1AQ+xONbb8beDj2dQioS0Vl\n29M85q50FxGJ63BYBndopSrpfcQYE7LWNsXebwLWAlnA7QDW2koAY8x+uMMz13R0kpKSfEKhrE5U\n3VW7uxGA3NwQ4XBhp49PZ5nWXlCbM4Xa3H1ewr0aSD5rMCnYTwW+BBwSe7/cGLPCWvuWMeYo4DfA\nddba1zo6SUXFrk5Uu1k83BsbI5SX13TpM9JROFyYUe0FtTlTqM2dP7Y9XoZlVgCnARhjxgJrksoq\ngN1AvbW2DqgEBhhjRgHPAudba//YpRp7FNWYu4hIG1567kuBk4wxK4EAMM0YMxMotda+YIyZBKwy\nxkSBN4A/Ac8DecC9xhiAKmvt5J5ogKPZMiIibXQY7tbaKHB5q83rksrnAnNblfdIkLcnPltGNzGJ\niDTzwU1M7qtmy4iINPNBuGvMXUSktbQP96iWHxARaSPtw735gmrv1kNEpC/xQbir5y4i0poPwt19\n1WwZEZFmaR/uGnMXEWnLB+HuvircRUSapX24ayqkiEhbPgh391U3MYmINPNBuKvnLiLSmg/C3X1V\nz11EpFnah7uW/BURaSvtw11L/oqItOWDcFfPXUSkNR+Eu/uqMXcRkWZpH+4acxcRaavDJzEZY4LA\nA8BooB6Ybq0tTSq/DjgPiAK3WWuXGmP6AU8CQ4Aa4PvW2vIeqH/zsAxKdxGROC899ylAnrV2HDAL\nWBAvMMYMAK4CxgEnA/fEin4IrLHWHg88AdyUykoni2rJXxGRNryE+3hgGYC1dhUwJqlsJ7ARKIj9\nibY+BvgjMCkVlW1P4hmqWhZSRCShw2EZoAioSnofMcaErLVNsfebgLVAFnB7O8fUAMUdnaSkJJ9Q\nKMtTpVtUbsduAPr3zyUcLuz08eks09oLanOmUJu7z0u4VwPJZw0mBfupwJeAQ2LvlxtjVrQ6phCo\n7OgkFRW7PFW4tcpK97jduxooL6/p0meko3C4MKPaC2pzplCbO39se7wMy6wATgMwxowF1iSVVQC7\ngXprbR1uiA9IPgb3P4DXu1RrD7Tkr4hIW1567kuBk4wxK4EAMM0YMxMotda+YIyZBKwyxkSBN4A/\nxV4XGWPeABqA83um+rqJSUSkPR2Gu7U2ClzeavO6pPK5wNxW5buAs7tdOw8Syw9oKqSISELa38SU\nmC2jbBcRSUj7cNeYu4hIW17G3Ps0jbn3La9ueoPPajb3yGfn5WVTV9fYI5/dV2Vim3PzQmzcsZna\nxp29XZV9oiS3mJsnXZPyz037cI/qJqY+ozHSyHMfvdDb1RCf6J9dQCiY9hHVoaZoU6KTmkpp/53b\nst2d565hmd7X5EQAGFkygguOOCvlnz9oYAHbd2RGby4uU9tcW9VIYU7/3q7KPpMTysFduit10j7c\nN2xxJ/6HshTuvS0SC/d+oTwG9xuY8s8P9y8ksDs35Z/bl2VumzPrJqaekPYXVLNDbhO+euigXq6J\nRKLu0kJZgbT/sRJJe2n/r7D5gqp67r0tGuu5ZwU6v0aQiKRW+od77FXZ3vsiTrznrnAX6W3pH+6a\n595nxMfcgxqWEel1af+vUPPc+45INDYsE1TPXaS3+SDc3Vdle+9rHpZJ+x8rkbTno3+Fivfepguq\nIn1H2oe7hmX6jviYu4ZlRHpf+od77FXh3vsSY+4alhHpdWn/r1CzZfoOTYUU6Tt8EO6xYZleroco\n3EX6kg7XljHGBIEHgNG4K9tMt9aWxsqOBu5J2n0sMAVYCyzGzdwdwPnW2q49AbsDGpbpO+IXVIPB\ntO8ziKQ9LwuHTQHyrLXjYg/IXgBMBrDWvgtMBDDGnA1sttYuM8bcDTxjrX3AGPMz4FLglz3RAHpp\n+YG3trzD6q3v7tNzJsvJCdHQ0NRr529PdYO72JN67iK9z0u4jweWAVhrVxljxrTewRhTAMwDJsQ2\nvQscGPu6CNjU/aq2L5r6ZZA9+eOG/6Vs17beOXkflhXIYv+C/Xq7GiIZz0u4FwFVSe8jxpiQtTa5\n23gp8Ky1Np52nwHzjTHnA7nAzR2dpKQkn1Co8z2+7Gz3mCFDisjq4IEd/9z2MZ9Wfd7pc7RnR10l\nh5UMY+6J16bk8/wiKxAkOyu7xz4/HC7ssc/uq9TmzJDqNnsJ92og+azBVsEOcAGQ/HSGnwOXWGuX\nG2O+AzwBfGdvJ6mo6NqQfHxoYtu2GoIdDM3c+tovqIukbkH8cG6YmoqGlH1ep84dLqS8vK+ueV3X\nI5/at9vcM9TmzNCdNu/pPwUv4b4COB1YEhtzX5NcaIwpBnKttclDLxU09/Y3AyWdrbBXnVl+oC5S\nz9D8IZw6/FvdPm8gEOCIksO7/TkiIj3BS7gvBU4yxqzEzdBpxpiZQKm19gVgJLCh1TFXAvcZY7Ji\nx/wodVVuyet67vH9inMKOW6/Y3qqOiIifUKH4W6tjQKXt9q8Lqn8bdwZNcnHrAVOTEUFO+LgbRqk\ngx7qISKZI+0nJLvh3nFgN9/spHAXEf9L/3B3HE9xHVXPXUQySNqHO04ne+4KdxHJAGkf7lGnk2Pu\nGpYRkQyQ9uEOjseeu7uolcJdRDJB2od7p3vuGpYRkQyQ9uGO4+0GpviYe1A9dxHJAGkf7o7HYRnN\nlhGRTJL+4e51WEbz3EUkg/gk3D1cUFXPXUQySPqHO95uYlLPXUQySdqHO5otIyLSRtqHe9TxOs89\n3nNP+yaLiHTIF0nnpTMejU+FVM9dRDJA2od7py+oasxdRDKAD8K9kxdU1XMXkQyQ/uGO15671pYR\nkczR4ZOYjDFB4AFgNFAPTLfWlsbKjgbuSdp9LO5TmV4HHgQOAXKAK621b6W26i7HcTp3E5N67iKS\nAbz03KcAedbaccAsYEG8wFr7rrV2orV2InA/8Dtr7TLgeuB9a+3xwGWASXnNYxyva8toKqSIZBAv\nD8geDywDsNauMsaMab2DMaYAmAdMiG06BXjGGLMcqMbDA7JLSvIJhbK81jshmBXEcRzC4cK97leX\nUwNAfr+cDvdNF35pR2eozZlBbe4+L+FeBFQlvY8YY0LW2qakbZcCz1prt8XeDwZKrLWnGGMuBu4E\nLt7bSSoqdnWi2kmVaYqQlRWkvLxmr/vtqN0JQH1dU4f7poNwuNAX7egMtTkzqM2dP7Y9XoZlqoHk\no4Otgh3gAuC/k95vB16Iff0i0Ka3nyreL6hqKqSIZA4v4b4COA3AGDMWWJNcaIwpBnKttZuSNr8R\nPwZ3qOaD7le1fV5XhYzqgqqIZBAvwzJLgZOMMStxr11OM8bMBEqttS8AI4ENrY65DfhvY8ybQCMd\nDMl0h+N1+QFNhRSRDNJhuFtro8DlrTavSyp/G3dGTfIxO4AzU1HBjnieLaOeu4hkEJ/cxORlP425\ni0jmSPtwp9OrQircRcT/0j7co1rPXUSkjbQPd/AW2Iklf9VzF5EMkPbhrlUhRUTa8kG46yYmEZHW\n0j/c0aqQIiKtpX+4O956480997RvsohIh9I+6Rwg4KEV6rmLSCZJ/3D3eEE1imbLiEjm8LK2TJ92\nwOACDt6vCIBNNZv586Y3iMbWkUlWWV8NqOcuIpkh7cN99kVjGDKkkG3bann985Ws2rJ6r/sP7jdo\nH9VMRKT3pH24B4OBRG+8KRoBYObXrqAkr7jNvtnBbApz+u/T+omI9Ia0D/dkUccdjhmYN4CSvAG9\nXBsRkd6T9hdUk8XDPehl+oyIiI/5KgUV7iIirg6HZYwxQeABYDRQD0y31pbGyo4G7knafSwwxVq7\nLFY+AXjKWntQqivensR0R4W7iGQ4L2PuU4A8a+242DNUFwCTAay17wITAYwxZwObk4L9IOAnQHYP\n1LtdUce9oBrUdEcRyXBeurjjgWUA1tpVwJjWOxhjCoB5wFWx93nAQ8AVKaupB4llfQNZ+/K0IiJ9\njpeeexFQlfQ+YowJWWubkrZdCjxrrd0We38fcKe19nNjjKeKlJTkEwp1PZTD4UJC2W6PfUi4iJys\nffYLQ68Jhwt7uwr7nNqcGdTm7vMS7tVA8lmDrYId4ALgLABjzP7A8cAIY8xcYKAx5jfW2nP3dpKK\nil3ea91KOFxIeXkNdfWNAOzYtpOsoL977/E2ZxK1OTOozZ0/tj1ewn0FcDqwJDbmvia50BhTDORa\nazcBWGs3AyapfEtHwZ4qmi0jIuLyEu5LgZOMMSuBADDNGDMTKLXWvgCMBDb0XBW9izpRAgS0foyI\nZLwOw91aGwUub7V5XVL527gzavZ0/H5drl0nRZ2oeu0iIvjuJiZH4S4igu/CPaI57iIi+C3ccTTH\nXUQEn4V7xImq5y4igs/C3dEFVRERwGfhHnGiBP3VJBGRLvFVEqrnLiLi8lUSRhTuIiKAT8K9sq6a\nd8r+QUOkgSyFu4iIP56h+sjqp1n9+XsADOo3sJdrIyLS+3wR7jV1NQQIcPbIyRw+4NDero6ISK/z\nRbg3RBvJzsrmhAO/2dtVERHpE3wxQN0UaSI74Iv/p0REUsIX4d4QbSIUVLiLiMT5ItybIgp3kb7q\n888/46abbmDGjEu46qrLuf76q/n44/Up+/zXXnuVbdvK2b59G3feOd/zcR988D4TJ47lww8/SGx7\n7LGHef7557pVn8WLF7J27fvU19fz4ovPp+xzO8sXidgQbaQgK7+3qyHSpy35v1LeXleW0s887ogh\nTD1xxB7L6+rqmDVrJv/+7zdx5JFfBWDt2ve56647uO++R1JSh2ef/TXDh9/IsGHDue66WZ6Pe+ml\n5zn33Av53e+eZfbsr6SkLgAXXXQJAF98sZkXX3ye00/f4+MuepQvwr0x0kh2ti+aIuIrK1b8hWOP\nPS4R7ACjRh3JL3/5MABbt27hv/7rNhoa6snJyeWGG26kvr6Kq666hiFDhvL5558xatRXuO66/6C2\ntpb58/+TqqoqAK655nq2bt1Caek/ufXWnzJnzi3ceutcHnlkIStWvM6vfvUoAIcfbrj++v8gGGwe\nqNi1axd/+9vbLF68hO9//1wqKysZMGBAotxxHBYsuANr1zJw4CC++GIzd9xxNwDz599CU1MTgUCA\nq6++jsMPH8n3vvddhg0bzrBhh1BbW8O3vnUyr732f2zY8EmiHq+//hdeffUVqqqqmD79csaPn8A5\n50zhyCO/ytatmznqqGPYubOWDz/8gIMPHsacObd063vfYSIaY4LAA8BooB6Ybq0tjZUdDdyTtPtY\n3KcyrQUej31+AJhhrbXdquleNGrMXaRDU08csddedk/YvHkzBxxwUOL9rFkzqa2tZfv2bdx774Pc\nf/+9nHXWOYwb9y+sXv0WDz10H7NmXc+mTZ9y9933kZubx9Spk9m+fRvPPPM0xx77dc444yw2bfqU\n226bx4MPPsaIESO5/vobyc7OBqCpqYm77/4vHn10ESUlA/nVrx6lrKyM/fZrfijcK6+8zAknnEhu\nbi4nnngSL730PBdeeEmi/I03XqO6uopHH32CiooKzjvvDADuv/8ezjrrHI4/fiIffWSZP/8WHnts\nMWVlW3n88ScpLh7Az352MwAXX/wD1q8vZdq0y3jssYcJh8PMmjWHd95ZzdNPP8H48RPYsuUL7r33\nIY44YjjHHfd1HnlkIddeewNTp06mpqaGwsL2H37thZdEnALkWWvHxR6QvQCYDGCtfReYCGCMORvY\nbK1dZoxZBNxnrX3eGHMKcDtwZpdruRdRJ0okGlG4i/RBQ4cOZd26tYn38+ffBcCMGZcQiUT4+ONS\nFi/+FU89tQiAUMj9d3zAAQeSn18AwKBBg2loaODjj0t5553VvPLKywDU1NS0e86qqkoKCwspKXFv\naJw27bI2+7z44vNkZWUxc+aV1NfXUVZWxvnnX5wo37BhA0ceeRQAJSUlHHzw8MT20aO/Bri/EZSV\nbQWguHgAxcUD2BtjvpxoT11dHQBFRcXst99+ZGdn069fPw45xL1Pp6CgPw0N9UDPhvt4YBmAtXaV\nMWZM20qbAmAeMCG26SdAVdI56rpcww5srP7MPYnCXaTPGT/+BJ58ciHvv78mEZaffbaJ8vIyAoEA\nBx88nPPOu5CjjhrNxo0b+Pvf/wbQ7kPuhw0bzsknj+Lkk79NRcWOxMXKYDBINBpN7FdSMpDa2lqq\nq6soKirmnnt+zsknn8qoUUcCsH59KdFolEceWZg45pprrmDlytcT7w899DCWL/8DU6dCdXU1mzZ9\nCsDw4cP5xz/+zvjxJ/DRR5aBAwcl6tBaIBDEcaJJ79t+f9prZ6p4ScQimoMaIGKMCVlrm5K2XQo8\na63dBhB/NcYY4E728gDtuJKSfEKhzj9F6cOdtQAMKCgkHO76/3LpKNPaC2pz+ink0UcfYcGCBTz2\n2AM0NTURCoX42c9u5aijRvLTn87m5ptvpr6+nrq6OmbPng1AdnZWot3Z2VkMHFjAtddexezZs1m2\n7AVqa2v58Y9/TDhcyNe/Pob58+dxyy23kJ2dxdChxcybdzM33vgTgsEgo0aNYsKEsYkgffjh3/O9\n753R4vt6wQXn8dxzz3HMMcfQv38ekyefynvvvc2VV17G4MGDyc/vx9ChA5gzZzZz5szhued+TVNT\nE3fccTvhcCHBYCDxeXl52RQX92PkyINxnCgLFz5EQUEe/fvnEQ4XUl2dT05OqM1xyV+HQkEGDerf\nrb/7gOM4e93BGHMXsMpauyT2/jNr7YGt9vkrcJa1dlPStn/FHau/yFq7uqOKlJfX7L0ie7By89s8\nte5ZLvryVMZ+qc0vFb4VDhdSXt7+r6V+pTZnhr7Q5o0bN/DRR5ZJk06hqqqSiy46h+eee5GcnJwe\nOV932hwOF7bb/ffSc18BnA4siY25r0kuNMYUA7ntBPu9wLettRu7VGOPIo77C0RIz04VkRQZMmQo\nDz74C5Ys+TXRaJQf/vDKHgv2nuIl3JcCJxljVuLOfJlmjJkJlFprXwBGAhtaHXMPkAMsckdmsNba\n/5eyWieJxMbagkGFu4ikRr9+/RIXf9NVh+FurY0Cl7favC6p/G1ajalba0enpHYeRJwIAFnquYuI\nJKT98gPN4Z72TRERSZm0T8T4sEyWhmVERBLSP9x1QVVEpI20v/Mn4qjnLtKXLV68kNWr3yIYDBAI\nBJgx40csX/4HzjnnghZLAnTGY489zKBBg5gy5ax2y7dscdecGT9+Avfeu6Bb50pX6R/uUV1QFfHi\nd6Uv8feyNR3v2AnHDDmKM0d8d4/ln3zyMStW/IUHH3yMQCDARx9Zbr31ZhYt+nVK69HaO++8zcaN\nGxg/fgJXX/2THj1XX5X+4R67oBpUuIv0OSUlA9m6dQu///3/8I1vfJPDDzc8+ugifvzjGVx//Y38\n7/8u5/PPP6OyspKamirOOONs3nzzL5SWrmf27HkMGjSIuXNvTCwVMGPGJcybd1vi8yORCD//+W2U\nlW2lqqqKsWO/yQ9+MIMnn1xIXV0dRx31VX7zm6e4/vobGThwELfcMoedO3cSiUS47LIfcuyxx/H9\n75/L0Ud/jfXrSwF3/Zv+/fv3xrcrpXwQ7rFhGc2WEdmrM0d8d6+97J4wYMAA5s+/i9/+9hkef/xR\n8vLymDHjihb75Obmctddv2Tx4oW8+eYKHnroIRYufIpXXnmZqVPP2+vnl5Vt5StfOYpZs+ZQX1/P\nmWeexmWX/ZALL7wk1nM/gd9F5sTVAAAF60lEQVT85ikAFi16jDFjvsHUqedRXl7GFVdM55lnnmfn\nzp1MmnQK1157A/Pm3cSqVSuYNOmUHvue7CvpH+7xYRmNuYv0OZ99tomCggJuvHEuAOvWreW6665m\n0KBBiX1GjjwCgMLC/gwffkjs66LYqogttV4upaioiA8//IB33llNQUEBDQ2Ne6zLxo2fcPLJ3wYg\nHB5Cfn4BlZUVsToYwL0ztaGhoavN7VPSvrsbH5bRbBmRvmf9+o+4887bqa93g/qggw6mf//+LVZR\n3NvCiDk5OVRUVBCJRKipqeGLLza3KP/DH16if/9C5s69lXPPvZD6+jocxyEQCLRYkRFg2LBDeO+9\ndwEoLy+jpqaaoqLieC2639g+Ju177n/d4i4Rqp67SN9zwgknsmHDJ8yYcQn5+f2IRh2uuOJqlix5\n2tPxgwYN5rjjvs5ll13MAQccxIEHHtSi/Nhjj+Pmm2/kH/94l7y8PA488CC2bSvnsMNG8MQTjyd+\nKwC4+OJp3H77f/LnP79CfX09N9wwO7F+vB91uCrkvtLVVSGXlv6eOnZxzmHfI5hB4+59YeW8fU1t\nzgxqc6eP7fKqkH3aGSO+k5E/DCIie5M5XV0RkQyicBcR8SGFu4iIDyncRUR8SOEuIuJDHc6WMcYE\ncR90PRqoB6Zba0tjZUfjPlIvbizuU5lWA08D/YDNwDRr7a7UVl1ERPbES899CpBnrR0HzAIWxAus\nte9aaydaaycC9wO/s9YuA34KPG2tPR74O9Ajz08VEZH2eQn38cAyAGvtKmBM6x2MMQXAPOCq1scA\nfwQmdbumIiLimZebmIqAqqT3EWNMyFrblLTtUuBZa+22do6pAYrpwJ7usvIqHC7szuFpSW3ODGpz\nZkh1m72EezWQfNZgq2AHuABIfiRK/JjdsdfK7lRSREQ6x8uwzArgNABjzFigxaNcjDHFQK61dlN7\nxwCnAq93v6oiIuKVl577UuAkY8xK3HUxpxljZgKl1toXgJHAhlbH3AosMsZcBmwDzk9dlUVEpCN9\nZlVIERFJHd3EJCLiQwp3EREfUriLiPhQWj+sY29LI6Q7Y0w28DgwHMjFvUi9FlgIOMD7wI+stVFj\nzFzgO0ATcI219q3eqHOqGGOGAH8DTsJt00J83GZjzH8A/wbk4P48v4aP2xz72V6E+7MdAS7Dx3/P\nxphvAHdYaycaY0bgsZ172tfredO9577HpRF84EJge2wJh1OB+4C7gJti2wLAZGPM14ATgG8A5+Iu\nA5G2Yv/wH8a9RwJ83mZjzETgm8C/4LbpIHzeZtxp0iFr7TeB/wR+hk/bbIy5AfhvIC+2qTPtbLNv\nZ86d7uHe4dIIaexZYE7S+ybgWNxeHTQv6zAeeNla61hrPwVCxpjwPq1pat0JPIS74Bz4v82n4N47\nshR4EXgJ/7f5n7j1D+Lezd6If9u8Hjgz6X1n2tnevp6le7i3uzRCb1Umlay1tdbaGmNMIfAccBMQ\nsNbG567Gl3Vo/T3wtNxDX2SMuQQot9YuT9rs6zYDg3E7JWcDlwNP4d4F7uc21+IOyawDHgV+gU//\nnq21v8X9zyuuM+1sb1/P0j3cvSyNkLaMMQcBrwKLrbVPA8njbfFlHVp/D9J5uYcf4N4w92fgaOAJ\nYEhSuR/bvB1Ybq1tsNZaoI6W/4j92OZrcds8Evd62SLc6w1xfmxzXGf+Dbe3r2fpHu57XRohnRlj\nhgIvA/9urX08tvnvsTFaaF7WYQVwijEmaIw5GPc/uG1tPjANWGsnWGtPiC0h/S5wMfBHP7cZeAP4\ntjEmYIzZHygAXvF5myto7qnuALLx+c92ks60s719PUv3IYw2SyP0cn1S6UagBJhjjImPvV8N/MIY\nkwN8CDxnrY0YY14H3sT9z/pHvVLbnvMT4FG/ttla+5IxZgLwFs1t+QQftxm4G3g81p4c3J/11fi7\nzXGd+Xlus29nTqTlB0REfCjdh2VERKQdCncRER9SuIuI+JDCXUTEhxTuIiI+pHAXEfEhhbuIiA/9\nf4n4iLsn5p5QAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD3CAYAAADmBxSSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X18VNWB//HPTCYPJCQhwID1CVTkWKpFK7bQRWQtarV1Qav4bKUiP2vrE1WXFSmyWsWt+ND67GpB1Fa0xVXbgl3XWgWpUqtFkVODgihCAuQRyNPM/f1xZyaTB8hNMiGZO9/368VrMvfcO/ecEL6cnHvuuQHHcRAREX8J9nYFREQk9RTuIiI+pHAXEfEhhbuIiA8p3EVEfCjU2xWIKy+v6fK0nZKSfCoqdqWyOn2e2pwZ1ObM0J02h8OFgfa2+6LnHgpl9XYV9jm1OTOozZmhJ9rsi3AXEZGWFO4iIj6kcBcR8SGFu4iIDyncRUR8SOEuIuJDCncRER/qMzcxiYikq/Wbq/jzO58T7cKtmAOLcvl/3xud8jop3EXEs9Xryvi0rIbkx0A4DjjENiS/JL52Wuy/vbqOHdX1LT53V10jZRW73TeB5mPTRXeqm5udxUXf+UrK6hKncBeRNv65qZInX/4nkWg0sa2hMcr26rqUnSM71DwqHAAOCPcnPzeL7JwQjQ1NKTvPvjLiwAH86zEHdPq4/LwQBf2y2VWbuu8tKNxFfGtHdR0ffLIDB6isqWfj1pY97mSO47Blxy521rmhWru7EYCsYICCvOaYKCnMZeLR+2MOLiEQgACxZU0CkFjgJLEpQCBp1ZP416FgkP0HFxAMtrskCuFwIeXlNV1osSRTuIv41APPv8/Hm6s97x8IwNCSfLKCAYoLcjjkS0VMO+0IAoH2Q1j6NoW7SIrsqmtiV30jkYhDYyTKWx+WsWXHLnCcxBi0g9tLBhK9aMdJjFg3j1/H9s3OzqKhoanFvvH9qnc10NAYpT2NkSjVOxsYMqAf/zZ+OADD9yuipDB3j/UPZQXIzsBFu/xK4S6SAp+V1TJv4dtEujJdootyQkEK83PaLcvOCjJsv0KmTjyMLw8fuM/qJH2Hwl184fNtO1n/eRVNkShNEYf6hibq99Cr7arGpigfb65id0OkxfZI1GHrDnct7iMPHcjAwlyysoLk54b4xqihFOXnJMak40McgcQYdfO4dGIMO7GvO/68bVvtHso1XCJ71mG4G2OCwAPAaKAemG6tLU0qvw44D4gCt1lrlxpjsoC7gDFALnCztfalHqi/7GO765uoaxVu+0owJ0RFTX27ZfcseS+lMzn2Jj831OZi4P6DC9h/cAHTv/NlcrJTN7SRHcoilKV7DaXzvPTcpwB51tpxxpixwAJgMoAxZgBwFTACKADeBZYCFwHZ1tp/McYcAJzdE5VPlWiKfpWurWtkzfrtRPc0JcGDuoYIlbX1e5wvDO54a79+Oeze3dA8FhsfpCVpzm3S/OOW2+JfN5c5yTsQH/t1RSJRtlXVUd8QYVNZbZ+dgnz4gcV869gDyQoGyc0Okpeb+l9MiwtyCA/ol/LPFUk1Lz/944FlANbaVcaYMUllO4GNuMFegNt7BzgFWGOM+T3ub5BXdnSSkpL8bj2NJBwu7PQxTZEodzzxNqve39Ll82aKYACCwQDFhbmMOmQg2Vl968JbMAiTJxzGYQcO6O2qpFxXfrbTndrcfV7CvQioSnofMcaErLXxuww2AWuBLOD22LbBwOHAd4EJwK9ir3vUnWcmdnZebFMkyrK/fsr/vPFJ4gLYl4eVdPn8yQ4IFzBsaNf/kgIBGFSU5/4qnjRfOF4WN7CkgMrKXW2Obf46PqJL0uc07xjo6JjYF/Gx3ZLC3F4fHvDy9+y3+dGZOOdbbe78se3xEu7VQPLRwaRgPxX4EnBI7P1yY8wKYDvwkrXWAV4zxozsUq27oCkSZcWaL3hp5YY9XlCL36ABMLg4j2mnfTll4b6vhMOFlOf1rd6ziPQdXsJ9BXA6sCQ25r4mqawC2A3UW2sdY0wlMAB4AzgN+K0xZjTwaWqrvWdvfrCFRcssADnZQcLFbcdHiwtyyMkOMnn8oRx56ECCmnUgIj7jJdyXAicZY1bi/pY+zRgzEyi11r5gjJkErDLGRHFD/U/Aa8CDxphVsWMu75nqu+rqm3j21VLeLd3mXowEvvvNYUw5/lAFt4hkpA7D3VobpW04r0sqnwvMbVVeD/yg27Xz6NW/beKPf3V/ORhYlMthBxQzZbyCXUQyly9uYqqMzX2edtoRHP/V/Xu5NiIivc8Xd0fsqnev7x4Y7t/LNRER6Rt8Ee67Y+Gel6PZIyIi4JNw3xVbg7pfD9yRKCKSjnwS7u689X45CncREfBJuDc2uTcrJT+2S0Qkk/kiDeNLCGjmo4iIyxfh7jiO1rcWEUnik3Bnjw/bFRHJRL4I96jjaEhGRCSJL8LdcRwNyYiIJPFFuEcdXUwVEUnmi3BXz11EpCV/hHvUfQyciIi4fBHuUceh+cFxIiLii3B3NFtGRKSFDhdjMcYEgQeA0bgP4ZhurS1NKr8OOA+IArdZa5cmlR0B/BUYaq2tS3HdE6IacxcRacFLz30KkGetHQfMAhbEC4wxA4CrgHHAycA9SWVFsX3rU1nh9kQ15i4i0oKXcB8PLAOw1q4CxiSV7QQ2AgWxP1EAY0wAeAS4EdiVwvq2y3EcAkp3EZEEL2vkFgFVSe8jxpiQtbYp9n4TsBbIAm6PbZsL/N5a+54xxlNFSkryCYW69rANx4FQVpBwuLBLx6erTGsvqM2ZQm3uPi/hXg0knzWYFOynAl8CDom9X26MWQFcCHxmjLkU2A94GZiwt5NUVHS9gx91HBzHoby8psufkW7C4cKMai+ozZlCbe78se3xEu4rgNOBJcaYscCapLIKYDdQb611jDGVwABr7Yj4DsaYDbjj8T3G0VRIEZEWvIT7UuAkY8xKIABMM8bMBEqttS8YYyYBq4wxUeAN4E89V932afkBEZGWOgx3a20UuLzV5nVJ5XNxx9j3dPzwrlbOK8dxyFK6i4gk6CYmEREf8kW4u8MySncRkTh/hHtUPXcRkWS+CHfHcQgq3UVEEnwR7hqWERFpyRfh7vbce7sWIiJ9h2/CXT13EZFmvgh33cQkItKSL8LdiarnLiKSzBfhHnW0nruISDJfhLvG3EVEWvJRuPd2LURE+o60D3fHcTTPXUSklfQP99irxtxFRJqlf7g7bryr5y4i0swH4e6+qucuItLMB+GunruISGsdPonJGBMEHgBGA/XAdGttaVL5dcB5QBS4zVq71BhTDDwJFAE5wExr7Zs9UH+isZ67wl1EpJmXnvsUIM9aOw6YBSyIFxhjBgBXAeNwH4J9T6xoJvCKtfYE4BLg/hTWuYXmnntPnUFEJP14CffxwDIAa+0qYExS2U5gI1AQ+xONbb8beDj2dQioS0Vl29M85q50FxGJ63BYBndopSrpfcQYE7LWNsXebwLWAlnA7QDW2koAY8x+uMMz13R0kpKSfEKhrE5U3VW7uxGA3NwQ4XBhp49PZ5nWXlCbM4Xa3H1ewr0aSD5rMCnYTwW+BBwSe7/cGLPCWvuWMeYo4DfAddba1zo6SUXFrk5Uu1k83BsbI5SX13TpM9JROFyYUe0FtTlTqM2dP7Y9XoZlVgCnARhjxgJrksoqgN1AvbW2DqgEBhhjRgHPAudba//YpRp7FNWYu4hIG1567kuBk4wxK4EAMM0YMxMotda+YIyZBKwyxkSBN4A/Ac8DecC9xhiAKmvt5J5ogKPZMiIibXQY7tbaKHB5q83rksrnAnNblfdIkLcnPltGNzGJiDTzwU1M7qtmy4iINPNBuGvMXUSktbQP96iWHxARaSPtw735gmrv1kNEpC/xQbir5y4i0poPwt191WwZEZFmaR/uGnMXEWnLB+HuvircRUSapX24ayqkiEhbPgh391U3MYmINPNBuKvnLiLSmg/C3X1Vz11EpFnah7uW/BURaSvtw11L/oqItOWDcFfPXUSkNR+Eu/uqMXcRkWZpH+4acxcRaavDJzEZY4LAA8BooB6Ybq0tTSq/DjgPiAK3WWuXGmP6AU8CQ4Aa4PvW2vIeqH/zsAxKdxGROC899ylAnrV2HDALWBAvMMYMAK4CxgEnA/fEin4IrLHWHg88AdyUykoni2rJXxGRNryE+3hgGYC1dhUwJqlsJ7ARKIj9ibY+BvgjMCkVlW1P4hmqWhZSRCShw2EZoAioSnofMcaErLVNsfebgLVAFnB7O8fUAMUdnaSkJJ9QKMtTpVtUbsduAPr3zyUcLuz08eks09oLanOmUJu7z0u4VwPJZw0mBfupwJeAQ2LvlxtjVrQ6phCo7OgkFRW7PFW4tcpK97jduxooL6/p0meko3C4MKPaC2pzplCbO39se7wMy6wATgMwxowF1iSVVQC7gXprbR1uiA9IPgb3P4DXu1RrD7Tkr4hIW1567kuBk4wxK4EAMM0YMxMotda+YIyZBKwyxkSBN4A/xV4XGWPeABqA83um+rqJSUSkPR2Gu7U2ClzeavO6pPK5wNxW5buAs7tdOw8Syw9oKqSISELa38SUmC2jbBcRSUj7cNeYu4hIW17G3Ps0jbn3La9ueoPPajb3yGfn5WVTV9fYI5/dV2Vim3PzQmzcsZnaxp29XZV9oiS3mJsnXZPyz037cI/qJqY+ozHSyHMfvdDb1RCf6J9dQCiY9hHVoaZoU6KTmkpp/53bst2d565hmd7X5EQAGFkygguOOCvlnz9oYAHbd2RGby4uU9tcW9VIYU7/3q7KPpMTysFduit10j7cN2xxJ/6HshTuvS0SC/d+oTwG9xuY8s8P9y8ksDs35Z/bl2VumzPrJqaekPYXVLNDbhO+euigXq6JRKLu0kJZgbT/sRJJe2n/r7D5gqp67r0tGuu5ZwU6v0aQiKRW+od77FXZ3vsiTrznrnAX6W3pH+6a595nxMfcgxqWEel1af+vUPPc+45INDYsE1TPXaS3+SDc3Vdle+9rHpZJ+x8rkbTno3+FivfepguqIn1H2oe7hmX6jviYu4ZlRHpf+od77FXh3vsSY+4alhHpdWn/r1CzZfoOTYUU6Tt8EO6xYZleroco3EX6kg7XljHGBIEHgNG4K9tMt9aWxsqOBu5J2n0sMAVYCyzGzdwdwPnW2q49AbsDGpbpO+IXVIPBtO8ziKQ9LwuHTQHyrLXjYg/IXgBMBrDWvgtMBDDGnA1sttYuM8bcDTxjrX3AGPMz4FLglz3RAHpp+YG3trzD6q3v7tNzJsvJCdHQ0NRr529PdYO72JN67iK9z0u4jweWAVhrVxljxrTewRhTAMwDJsQ2vQscGPu6CNjU/aq2L5r6ZZA9+eOG/6Vs17beOXkflhXIYv+C/Xq7GiIZz0u4FwFVSe8jxpiQtTa523gp8Ky1Np52nwHzjTHnA7nAzR2dpKQkn1Co8z2+7Gz3mCFDisjq4IEd/9z2MZ9Wfd7pc7RnR10lh5UMY+6J16bk8/wiKxAkOyu7xz4/HC7ssc/uq9TmzJDqNnsJ92og+azBVsEOcAGQ/HSGnwOXWGuXG2O+AzwBfGdvJ6mo6NqQfHxoYtu2GoIdDM3c+tovqIukbkH8cG6YmoqGlH1ep84dLqS8vK+ueV3XI5/at9vcM9TmzNCdNu/pPwUv4b4COB1YEhtzX5NcaIwpBnKttclDLxU09/Y3AyWdrbBXnVl+oC5Sz9D8IZw6/FvdPm8gEOCIksO7/TkiIj3BS7gvBU4yxqzEzdBpxpiZQKm19gVgJLCh1TFXAvcZY7Jix/wodVVuyet67vH9inMKOW6/Y3qqOiIifUKH4W6tjQKXt9q8Lqn8bdwZNcnHrAVOTEUFO+LgbRqkgx7qISKZI+0nJLvh3nFgN9/spHAXEf9L/3B3HE9xHVXPXUQySNqHO04ne+4KdxHJAGkf7lGnk2PuGpYRkQyQ9uEOjseeu7uolcJdRDJB2od7p3vuGpYRkQyQ9uGO4+0GpviYe1A9dxHJAGkf7o7HYRnNlhGRTJL+4e51WEbz3EUkg/gk3D1cUFXPXUQySPqHO95uYlLPXUQySdqHO5otIyLSRtqHe9TxOs893nNP+yaLiHTIF0nnpTMejU+FVM9dRDJA2od7py+oasxdRDKAD8K9kxdU1XMXkQyQ/uGO15671pYRkczR4ZOYjDFB4AFgNFAPTLfWlsbKjgbuSdp9LO5TmV4HHgQOAXKAK621b6W26i7HcTp3E5N67iKSAbz03KcAedbaccAsYEG8wFr7rrV2orV2InA/8Dtr7TLgeuB9a+3xwGWASXnNYxyva8toKqSIZBAvD8geDywDsNauMsaMab2DMaYAmAdMiG06BXjGGLMcqMbDA7JLSvIJhbK81jshmBXEcRzC4cK97leXUwNAfr+cDvdNF35pR2eozZlBbe4+L+FeBFQlvY8YY0LW2qakbZcCz1prt8XeDwZKrLWnGGMuBu4ELt7bSSoqdnWi2kmVaYqQlRWkvLxmr/vtqN0JQH1dU4f7poNwuNAX7egMtTkzqM2dP7Y9XoZlqoHko4Otgh3gAuC/k95vB16Iff0i0Ka3nyreL6hqKqSIZA4v4b4COA3AGDMWWJNcaIwpBnKttZuSNr8RPwZ3qOaD7le1fV5XhYzqgqqIZBAvwzJLgZOMMStxr11OM8bMBEqttS8AI4ENrY65DfhvY8ybQCMdDMl0h+N1+QFNhRSRDNJhuFtro8DlrTavSyp/G3dGTfIxO4AzU1HBjnieLaOeu4hkEJ/cxORlP425i0jmSPtwp9OrQircRcT/0j7co1rPXUSkjbQPd/AW2Iklf9VzF5EMkPbhrlUhRUTa8kG46yYmEZHW0j/c0aqQIiKtpX+4O956480997RvsohIh9I+6Rwg4KEV6rmLSCZJ/3D3eEE1imbLiEjm8LK2TJ92wOACDt6vCIBNNZv586Y3iMbWkUlWWV8NqOcuIpkh7cN99kVjGDKkkG3bann985Ws2rJ6r/sP7jdoH9VMRKT3pH24B4OBRG+8KRoBYObXrqAkr7jNvtnBbApz+u/T+omI9Ia0D/dkUccdjhmYN4CSvAG9XBsRkd6T9hdUk8XDPehl+oyIiI/5KgUV7iIirg6HZYwxQeABYDRQD0y31pbGyo4G7knafSwwxVq7LFY+AXjKWntQqivensR0R4W7iGQ4L2PuU4A8a+242DNUFwCTAay17wITAYwxZwObk4L9IOAnQHYP1LtdUce9oBrUdEcRyXBeurjjgWUA1tpVwJjWOxhjCoB5wFWx93nAQ8AVKaupB4llfQNZ+/K0IiJ9jpeeexFQlfQ+YowJWWubkrZdCjxrrd0We38fcKe19nNjjKeKlJTkEwp1PZTD4UJC2W6PfUi4iJysffYLQ68Jhwt7uwr7nNqcGdTm7vMS7tVA8lmDrYId4ALgLABjzP7A8cAIY8xcYKAx5jfW2nP3dpKKil3ea91KOFxIeXkNdfWNAOzYtpOsoL977/E2ZxK1OTOozZ0/tj1ewn0FcDqwJDbmvia50BhTDORaazcBWGs3AyapfEtHwZ4qmi0jIuLyEu5LgZOMMSuBADDNGDMTKLXWvgCMBDb0XBW9izpRAgS0foyIZLwOw91aGwUub7V5XVL527gzavZ0/H5drl0nRZ2oeu0iIvjuJiZH4S4igu/CPaI57iIi+C3ccTTHXUQEn4V7xImq5y4igs/C3dEFVRERwGfhHnGiBP3VJBGRLvFVEqrnLiLi8lUSRhTuIiKAT8K9sq6ad8r+QUOkgSyFu4iIP56h+sjqp1n9+XsADOo3sJdrIyLS+3wR7jV1NQQIcPbIyRw+4NDero6ISK/zRbg3RBvJzsrmhAO/2dtVERHpE3wxQN0UaSI74Iv/p0REUsIX4d4QbSIUVLiLiMT5ItybIgp3kb7q888/46abbmDGjEu46qrLuf76q/n44/Up+/zXXnuVbdvK2b59G3feOd/zcR988D4TJ47lww8/SGx77LGHef7557pVn8WLF7J27fvU19fz4ovPp+xzO8sXidgQbaQgK7+3qyHSpy35v1LeXleW0s887oghTD1xxB7L6+rqmDVrJv/+7zdx5JFfBWDt2ve56647uO++R1JSh2ef/TXDh9/IsGHDue66WZ6Pe+ml5zn33Av53e+eZfbsr6SkLgAXXXQJAF98sZkXX3ye00/f4+MuepQvwr0x0kh2ti+aIuIrK1b8hWOPPS4R7ACjRh3JL3/5MABbt27hv/7rNhoa6snJyeWGG26kvr6Kq666hiFDhvL5558xatRXuO66/6C2tpb58/+TqqoqAK655nq2bt1Caek/ufXWnzJnzi3ceutcHnlkIStWvM6vfvUoAIcfbrj++v8gGGweqNi1axd/+9vbLF68hO9//1wqKysZMGBAotxxHBYsuANr1zJw4CC++GIzd9xxNwDz599CU1MTgUCAq6++jsMPH8n3vvddhg0bzrBhh1BbW8O3vnUyr732f2zY8EmiHq+//hdeffUVqqqqmD79csaPn8A550zhyCO/ytatmznqqGPYubOWDz/8gIMPHsacObd063vfYSIaY4LAA8BooB6Ybq0tjZUdDdyTtPtY3KcyrQUej31+AJhhrbXdquleNGrMXaRDU08csddedk/YvHkzBxxwUOL9rFkzqa2tZfv2bdx774Pcf/+9nHXWOYwb9y+sXv0WDz10H7NmXc+mTZ9y9933kZubx9Spk9m+fRvPPPM0xx77dc444yw2bfqU226bx4MPPsaIESO5/vobyc7OBqCpqYm77/4vHn10ESUlA/nVrx6lrKyM/fZrfijcK6+8zAknnEhubi4nnngSL730PBdeeEmi/I03XqO6uopHH32CiooKzjvvDADuv/8ezjrrHI4/fiIffWSZP/8WHntsMWVlW3n88ScpLh7Az352MwAXX/wD1q8vZdq0y3jssYcJh8PMmjWHd95ZzdNPP8H48RPYsuUL7r33IY44YjjHHfd1HnlkIddeewNTp06mpqaGwsL2H37thZdEnALkWWvHxR6QvQCYDGCtfReYCGCMORvYbK1dZoxZBNxnrX3eGHMKcDtwZpdruRdRJ0okGlG4i/RBQ4cOZd26tYn38+ffBcCMGZcQiUT4+ONSFi/+FU89tQiAUMj9d3zAAQeSn18AwKBBg2loaODjj0t5553VvPLKywDU1NS0e86qqkoKCwspKXFvaJw27bI2+7z44vNkZWUxc+aV1NfXUVZWxvnnX5wo37BhA0ceeRQAJSUlHHzw8MT20aO/Bri/EZSVbQWguHgAxcUD2BtjvpxoT11dHQBFRcXst99+ZGdn069fPw45xL1Pp6CgPw0N9UDPhvt4YBmAtXaVMWZM20qbAmAeMCG26SdAVdI56rpcww5srP7MPYnCXaTPGT/+BJ58ciHvv78mEZaffbaJ8vIyAoEABx88nPPOu5CjjhrNxo0b+Pvf/wbQ7kPuhw0bzsknj+Lkk79NRcWOxMXKYDBINBpN7FdSMpDa2lqqq6soKirmnnt+zsknn8qoUUcCsH59KdFolEceWZg45pprrmDlytcT7w899DCWL/8DU6dCdXU1mzZ9CsDw4cP5xz/+zvjxJ/DRR5aBAwcl6tBaIBDEcaJJ79t+f9prZ6p4ScQimoMaIGKMCVlrm5K2XQo8a63dBhB/NcYY4E728gDtuJKSfEKhzj9F6cOdtQAMKCgkHO76/3LpKNPaC2pz+ink0UcfYcGCBTz22AM0NTURCoX42c9u5aijRvLTn87m5ptvpr6+nrq6OmbPng1AdnZWot3Z2VkMHFjAtddexezZs1m27AVqa2v58Y9/TDhcyNe/Pob58+dxyy23kJ2dxdChxcybdzM33vgTgsEgo0aNYsKEsYkgffjh3/O9753R4vt6wQXn8dxzz3HMMcfQv38ekyefynvvvc2VV17G4MGDyc/vx9ChA5gzZzZz5szhued+TVNTE3fccTvhcCHBYCDxeXl52RQX92PkyINxnCgLFz5EQUEe/fvnEQ4XUl2dT05OqM1xyV+HQkEGDerfrb/7gOM4e93BGHMXsMpauyT2/jNr7YGt9vkrcJa1dlPStn/FHau/yFq7uqOKlJfX7L0ie7By89s8te5ZLvryVMZ+qc0vFb4VDhdSXt7+r6V+pTZnhr7Q5o0bN/DRR5ZJk06hqqqSiy46h+eee5GcnJweOV932hwOF7bb/ffSc18BnA4siY25r0kuNMYUA7ntBPu9wLettRu7VGOPIo77C0RIz04VkRQZMmQoDz74C5Ys+TXRaJQf/vDKHgv2nuIl3JcCJxljVuLOfJlmjJkJlFprXwBGAhtaHXMPkAMsckdmsNba/5eyWieJxMbagkGFu4ikRr9+/RIXf9NVh+FurY0Cl7favC6p/G1ajalba0enpHYeRJwIAFnquYuIJKT98gPN4Z72TRERSZm0T8T4sEyWhmVERBLSP9x1QVVEpI20v/Mn4qjnLtKXLV68kNWr3yIYDBAIBJgx40csX/4HzjnnghZLAnTGY489zKBBg5gy5ax2y7dscdecGT9+Avfeu6Bb50pX6R/uUV1QFfHid6Uv8feyNR3v2AnHDDmKM0d8d4/ln3zyMStW/IUHH3yMQCDARx9Zbr31ZhYt+nVK69HaO++8zcaNGxg/fgJXX/2THj1XX5X+4R67oBpUuIv0OSUlA9m6dQu///3/8I1vfJPDDzc8+ugifvzjGVx//Y387/8u5/PPP6OyspKamirOOONs3nzzL5SWrmf27HkMGjSIuXNvTCwVMGPGJcybd1vi8yORCD//+W2UlW2lqqqKsWO/yQ9+MIMnn1xIXV0dRx31VX7zm6e4/vobGThwELfcMoedO3cSiUS47LIfcuyxx/H975/L0Ud/jfXrSwF3/Zv+/fv3xrcrpXwQ7rFhGc2WEdmrM0d8d6+97J4wYMAA5s+/i9/+9hkef/xR8vLymDHjihb75Obmctddv2Tx4oW8+eYKHnroIRYufIpXXnmZqVPP2+vnl5Vt5StfOYpZs+ZQX1/PmWeexmWX/ZALL7wk1nM/gd9F5sTVAAAF60lEQVT85ikAFi16jDFjvsHUqedRXl7GFVdM55lnnmfnzp1MmnQK1157A/Pm3cSqVSuYNOmUHvue7CvpH+7xYRmNuYv0OZ99tomCggJuvHEuAOvWreW6665m0KBBiX1GjjwCgMLC/gwffkjs66LYqogttV4upaioiA8//IB33llNQUEBDQ2Ne6zLxo2fcPLJ3wYgHB5Cfn4BlZUVsToYwL0ztaGhoavN7VPSvrsbH5bRbBmRvmf9+o+4887bqa93g/qggw6mf//+LVZR3NvCiDk5OVRUVBCJRKipqeGLLza3KP/DH16if/9C5s69lXPPvZD6+jocxyEQCLRYkRFg2LBDeO+9dwEoLy+jpqaaoqLieC2639g+Ju177n/d4i4Rqp67SN9zwgknsmHDJ8yYcQn5+f2IRh2uuOJqlix52tPxgwYN5rjjvs5ll13MAQccxIEHHtSi/Nhjj+Pmm2/kH/94l7y8PA488CC2bSvnsMNG8MQTjyd+KwC4+OJp3H77f/LnP79CfX09N9wwO7F+vB91uCrkvtLVVSGXlv6eOnZxzmHfI5hB4+59YeW8fU1tzgxqc6eP7fKqkH3aGSO+k5E/DCIie5M5XV0RkQyicBcR8SGFu4iIDyncRUR8SOEuIuJDHc6WMcYEcR90PRqoB6Zba0tjZUfjPlIvbizuU5lWA08D/YDNwDRr7a7UVl1ERPbES899CpBnrR0HzAIWxAuste9aaydaaycC9wO/s9YuA34KPG2tPR74O9Ajz08VEZH2eQn38cAyAGvtKmBM6x2MMQXAPOCq1scAfwQmdbumIiLimZebmIqAqqT3EWNMyFrblLTtUuBZa+22do6pAYrpwJ7usvIqHC7szuFpSW3ODGpzZkh1m72EezWQfNZgq2AHuABIfiRK/JjdsdfK7lRSREQ6x8uwzArgNABjzFigxaNcjDHFQK61dlN7xwCnAq93v6oiIuKVl577UuAkY8xK3HUxpxljZgKl1toXgJHAhlbH3AosMsZcBmwDzk9dlUVEpCN9ZlVIERFJHd3EJCLiQwp3EREfUriLiPhQWj+sY29LI6Q7Y0w28DgwHMjFvUi9FlgIOMD7wI+stVFjzFzgO0ATcI219q3eqHOqGGOGAH8DTsJt00J83GZjzH8A/wbk4P48v4aP2xz72V6E+7MdAS7Dx3/PxphvAHdYaycaY0bgsZ172tfredO9577HpRF84EJge2wJh1OB+4C7gJti2wLAZGPM14ATgG8A5+IuA5G2Yv/wH8a9RwJ83mZjzETgm8C/4LbpIHzeZtxp0iFr7TeB/wR+hk/bbIy5AfhvIC+2qTPtbLNvZ86d7uHe4dIIaexZYE7S+ybgWNxeHTQv6zAeeNla61hrPwVCxpjwPq1pat0JPIS74Bz4v82n4N47shR4EXgJ/7f5n7j1D+Lezd6If9u8Hjgz6X1n2tnevp6le7i3uzRCb1Umlay1tdbaGmNMIfAccBMQsNbG567Gl3Vo/T3wtNxDX2SMuQQot9YuT9rs6zYDg3E7JWcDlwNP4d4F7uc21+IOyawDHgV+gU//nq21v8X9zyuuM+1sb1/P0j3cvSyNkLaMMQcBrwKLrbVPA8njbfFlHVp/D9J5uYcf4N4w92fgaOAJYEhSuR/bvB1Ybq1tsNZaoI6W/4j92OZrcds8Evd62SLc6w1xfmxzXGf+Dbe3r2fpHu57XRohnRljhgIvA/9urX08tvnvsTFaaF7WYQVwijEmaIw5GPc/uG1tPjANWGsnWGtPiC0h/S5wMfBHP7cZeAP4tjEmYIzZHygAXvF5myto7qnuALLx+c92ks60s719PUv3IYw2SyP0cn1S6UagBJhjjImPvV8N/MIYkwN8CDxnrY0YY14H3sT9z/pHvVLbnvMT4FG/ttla+5IxZgLwFs1t+QQftxm4G3g81p4c3J/11fi7zXGd+Xlus29nTqTlB0REfCjdh2VERKQdCncRER9SuIuI+JDCXUTEhxTuIiI+pHAXEfEhhbuIiA/9f4n4iLsn5p5QAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -262,8 +230,8 @@ } ], "source": [ - "plt.plot(POP_GA.optima,label='Genetic Algorithm')\n", - "plt.plot(POP_RN.optima,label='Simulation')\n", + "plt.plot(POP_GA.optima, label=\"Genetic Algorithm\")\n", + "plt.plot(POP_RN.optima, label=\"Simulation\")\n", "plt.legend()\n", "plt.savefig(\"output/test_scores.pdf\")" ] @@ -277,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -301,41 +269,41 @@ "source": [ "# 1 gen\n", "POP_JO = optimisation(\n", - " experiment=EXP,\n", - " weights=[0,0.5,0.25,0.25],\n", - " preruncycles = 1,\n", - " cycles = 1,\n", + " experiment=exp,\n", + " weights=[0, 0.5, 0.25, 0.25],\n", + " preruncycles=1,\n", + " cycles=1,\n", " seed=1,\n", " outdes=5,\n", " G=100,\n", - " folder='/tmp/',\n", - " optimisation='simulation'\n", - " )\n", + " folder=\"/tmp/\",\n", + " optimisation=\"simulation\",\n", + ")\n", "POP_JO.optimise()" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "#collect scores and take average\n", + "# collect scores and take average\n", "scores = [x.F for x in POP_JO.designs]\n", "\n", "median_idx = np.where(scores == np.median(scores))[0][0]\n", "rnd_median = POP_JO.designs[median_idx]\n", "\n", "# get PI\n", - "BTI_l = np.percentile(scores,5)\n", - "BTI_u = np.percentile(scores,95)" + "BTI_l = np.percentile(scores, 5)\n", + "BTI_u = np.percentile(scores, 95)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -349,10 +317,12 @@ } ], "source": [ - "print(\"Optimisation score - random: %s \\n\\\n", + "print(\n", + " \"Optimisation score - random: %s \\n\\\n", "Optimisation score - genetic algorithm: %s \\n\\\n", - "Optimisation score - simulation (90 percent PI): %s-%s\"%(POP_RN.optima[::-1][0],\n", - " POP_GA.optima[::-1][0],BTI_l,BTI_u))" + "Optimisation score - simulation (90 percent PI): %s-%s\"\n", + " % (POP_RN.optima[::-1][0], POP_GA.optima[::-1][0], BTI_l, BTI_u)\n", + ")" ] }, { @@ -364,12 +334,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGYCAYAAABic7c/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXeUJdldJviFj+fTV5brrrbRkrqR\nkG0hFgYJZhbQCO3Cclhm4LCDAA2wHKRlAGEGBoQEaISEEw0IIWh5jSRaErRvtdp7U91VXVFVXT4r\nzcvMl/lc+Ij945owz+TLqsoyXfGd06cr34sXccPd+93v9/1+V4iiCDly5MiRI0eOHDk2B/FCNyBH\njhw5cuTIkeNSRE6icuTIkSNHjhw5zgA5icqRI0eOHDly5DgD5CQqR44cOXLkyJHjDJCTqBw5cuTI\nkSNHjjNATqJy5MiRI0eOHDnOAPKFbkCOHDkuLhiG8V8A/AKACgANwBEAv2Oa5uNbdLwfBvAW0zT/\nu2EY7wLw/aZp/som9zEF4CSAT5um+V8Tn/8MgB8zTfOd56it7wUwZprmHxuG8R4AqmmanzAM4/cB\nTJmm+cvn4jg5cuS4NJCTqBw5cnAYhvEhAN8D4MdN0zxOP3s7gG8ahvEG0zRPbMFh3wRgAgBM0/w6\ngK+fwT5+FsBtAH7SMIzfNk1z9Ry2j8M0zVsSf343gBe34jg5cuS4NJCTqBw5cgAADMPYBuBXAVxj\nmuY8+9w0zfsMw3g/gBLdbieAvwJwBQAFwBdM0/yQYRh7ANwL4N8AvAXAOIBfN03za/R3vw3gR0Fs\nBMcA/CKA3QDeC0AyDGMdwCFQ5cgwjFkAtwC4AUAI4BbTNP+iT7tFEOXsFwGUAfw8gD/us921AD4F\nQtjmAQgAPmOa5qcNw3g3gN+jbWsBeL9pmk9QhemtAHYAeB7AYQBT9DzfBeAHDMOw6CFuMAzjWwC2\nA1gE8BOmac4bhnEMwOcAvJ1ekz8F8DYAbwDgAXiXaZqnB92XHDlyXLzIPVE5cuRgeCuAl5IEisE0\nzVtN03yJ/nkrgE+ZpvkGAG8G8P2GYfw4/e5qAHeapvlmAL8J4OMAYBjGTwO4CcCbTdN8HQjR+iQN\nEd4C4Iumaf525rCfAHDQNM0baNt+nhKhLP53AEUA9wD4JwC/bBhGvwnirQA+b5rmjQB+he4ThmHc\nQNvwo6ZpvhbAfwdwm2EYVfq7KwF8p2ma/zlxPb4Goph9zDTNv06c+4/T9jYAvCdxbN00zZvpvv8O\nwJ/TY50E8DN92pojR45LALkSlSNHDgYBAF8HyjCMCoAH6Z9lAF8C8EcAvhfAhGEYf5j47nUAngBR\nVv6Nfv4MaJgOwDtBCNdThmEAgARCfIbh+wH8OgCYprkO4MYB2/1XAJ81TdM3DOPrAP4WwP8F4POJ\ncxmnx/8eur+XDMO4l379dgD3mqZ5hH53n2EYSyBKEQA8Zpqmv0FbAeBu0zTr9N/PA5hJfPcV+v+X\nASyYpvl84u8J5MiR45JETqJy5MjB8DhISGrSNM0V0zRbIOQIzDgNQn4EAN9lmmaXfjcFwKbfu6Zp\nhnR/Ed0W9Hd/Yprm39DfaCChrWHwkSZ1VwNYNk2zmfjsSgA/BOD1hmH8KP1YBvA+JEgU3RcS7QGA\nING27CKiIkioEgDaG7STwUv8O3nuAOAM2C5HjhyXMPJwXo4cOQAA1Jfz5wC+bBjGFexzSlTeBiCg\nBOYxAO+n340BeBjAj2yw+zsBvCcRIvsDkPAaQAiO0uc39wD4f+hxaiA+pOsy2/wCgIdM09xpmuYe\n0zT3gChIrzcM47sS59ai7WT7uwrAO0DIzr0A/gMlacxIvxuEVA7DoHbnyJHjMkFOonLkyMFBfUn/\nAOBzhmE8axjGEQBfBXAXgA/QzX4SwM2GYbwAQjQ+b5rmZzfY9ScBfBPAY4Zh7APwHYi9QPeBkJi/\nzPzmlwG8yjCMvSAE6MOmaT7NvjQMQwXJyvvTzDkcAlGh3pfZ308D+HHDMJ4H8NcAjgLomqa5H8SU\n/lXDMF4EMaX/RxpCHIbbAbzXMIwPbLBdjhw5XqEQoiirYufIkSPHKw80O/ArpmkeoMrWXgA/SElU\njhw5cmwauScqR44clwsOAviiYRghSN/3xzmBypEjx9kgV6Jy5MiRI0eOHDnOABsqUbSQ3ScAvBYk\nw+Q9pmkeTnz/awD+b5BieB9ihfVy5MiRI0eOHDleyRjFWP5ukEJxbwUpnvdR9gXNzGFF6/49aGG9\nHDly5MiRI0eOVzpG8UR9N4A7AMA0zccMw3hj4rsOgOMgy0GUQNSooajXW1sePxwfL6LR6G71YXJs\nIfJ7eOkjv4eXPvJ7eOkjv4dnj+npijDou1FIVBVAMtU3MAxDTlTwPQlgP0jBug9vtLPx8SJkWRrh\nsGeH6enKlh8jx9Yiv4eXPvJ7eOkjv4eXPvJ7uHUYhUQ1ASTvgJggUD8IstjmVfTvOw3DeNg0zScG\n7ex8MOLp6Qrq9daWHyfH1iG/h5c+8nt46SO/h5c+8nt49hhGQkfxRD0MsqwCDMO4GcALie8aACwA\njmmaNoA1AGNn3NIcOXLkyJEjR45LBKOQqK8BsA3DeATAxwC8zzCM9xuG8S7TNB8E8CRIFeJHQeqw\n3L11zc2RI0eOHDkubti+gwfnHoUfjrJudY5LGRuG8+hiou/NfHwg8f3vAfi9c9yuHDly5MiR45LE\nPSfux+3H7oUqqnjL9jdc6Obk2ELka+flyJEjR44c5whRFOGZpb0AgBOtUxe4NTm2GjmJypEjR44c\nOc4R5juLWOzWAQAnW3MXuDU5tho5icqRI0eOHDnOEfYu7wMACBBwsn0aYbRh+cQclzByEpUjR44c\nOXKcIzTsNQDA7soOuIGLenf5Arcox1YiJ1E5cuTIkWNTOL7QwpMHli50My5KWL4NALhu/BoAwMn2\n6QvZnBxbjJxE5ciRI8cICFotLH72VgTt9oVuygXH//r2y7jlthdhOXkKfxZWQEnU2NUAgNPthTPa\nT2f/Ppz4oz+At1w/Z23Lce6Rk6gcOS4SLHWX8TfPf+qMO90cW4vmE49h/Vv3ovnYoxe6KRccra6L\nKALWO+6FbspFB9t3IAoidpV3AADq1uBw3tKaha98+2UsrVmpz0PXxeI/fQr20SNYvfOOLW1vjrND\nTqJy5LgIEEUR/vDx/4kXVw7gsfmnLnRzcvSBv0wGQ3dx/gK35MKjaxMFaq3lXOCWXHywfRu6pKGm\nVaGIMurWSt/tTtXb+M1bHsW/Pnocj7yQfqbW7r0b/gr5XfORhxB0O1ve7hxnhpxE5XhFIAhDhGF0\noZtxxni+/mKcxTNwvXDAdn186t9ewtKQNSj9tTUc/cCvo/38c+e4lZc3vFUyqLnzOYniJKqTk6gs\nLN9GQdYhCiKmCpOod5cRRb1908GTa/zfthukvms9/RQgSRj/wR9G5DhoP/PMlrc7x5khJ1HnEc8d\nXsZc/ez9FNahg3BOnjwHLXplwA9C/MYtj+KW21680E05Y5xI1JNpu4NnnfuONvDQ3nk8tm+Rf+aH\nPpwgDqvYR1+GV19C58UX+u0ixxnCo8qAu3D+SdTat+9H89GHz/tx+yGMIu6FWm/n4bwsLN+GLusA\ngJnCFOzAQdvrfaedBHFy/bgMQtBuwzl+DIWrr0HRMAAA/vpaz+9zXBzISdR5guMF+OuvvoAv3nf4\nrPYTBQFO/smHcPx//O45atlgdA+aaD72CPz19S0/1tlgrt7BatPBU2Yd+46tXujmnBHW3Sb/d6dP\nh8vQssig1bY9/tlHn/4E3v/t3+FKlr9GOly/cfbXwvNDfPSLz+GOx0+c9b7ONfrN7rcS/goJ5wVr\nawgsa4Otzx2ajz2CpVs/jYV/+HsAhMS0LW+DX20dbMcHu/KbJVFhFOKf938Rj75CQ9ZhFMIJHBQo\niZoqTgIgfscsrASJShKq7oH9QBSh+JobIZXKZL95MsNFi5xEnSesd1wEYYS1s5y5uYvnx3QcRRFO\n/+XHsfDJv8PJj3z4vBzzTHFiscX/fdtDRy9gS84c605Motre4FBdixp5WTgFiJeWaFEFKyZRjbNu\n12P7FrDv6Cpuf/z4RRUuXfzsP+PYb/0GIv/8ZIeFjoOgFT9n3vl6D8MQS5+9NfXZvU+fwq/8+YN4\n6fjZ398zQSfx7K21NxfOm2sv4PGFp/GZl750rpt1TnGmWYdO4CBCxEnUdGEKQH9zue3Gx3D9BIna\nT4p1Fl/9GohlQqKCTk6iLlbkJOo8gQ1+bevsSJRz6vyE8SLXRUhn26MOxkGng84Le7eyWX1xPEGi\n5pcvTQNm021Bl3TU1Cra7uAOs9UlCkSnjxKxapP7dK6UqDCKcDtVoFpdD4fnLh5Fcv1b953XkKVP\n/VCQJACj+6Iad92J5hOPnfFxQ9vi76Egk/Xi73mK9AF3PnFh1MHuWZCoo+vHzurYoeeh/qUvwDm9\ndbWXXjrewC997AHsfXnzRTJZjShdKgAg4TwAfQtupsJ5XhzO65omRF2HfuUerkTlZTUuXuQk6jyh\nyUmUd1ZhCPdUvKDlVoYzgk5MRiLXHelYi7d+GnN//mdoPfXElrWrH04stiEKAq7bVUPH9uF6wcY/\nusiw7jRR0yooq6XhShQlT0k1gGHVJqTJXyNkKmg2z0qpOb3cwcJqF5NVDQDwzMGLo15NFMYDTvOR\nh87LMZkfqnDNtQAAd2lx2OYASOi9/r++iJWv/8sZHzdMhA0j30cUhtgxWQIAnFy6MANrNxFK3myJ\ng5fPkkSt3XMXGnfdgfm/+auz2s8wMIXvsf0b3+MsGIkqyOSdGdNrAIB1t9WzbdJM7tA+y2824S0u\nQL/mWgiSBLFQACQp1R/nuLiQk6jzhPUu6Wz8IOrJxNgMkkpU5G+dLyJMvrRRhMjb+Fjdl/YDAFpP\nnT+/QxhGOLnUxo6pIqbHyOxv7RKrXeOHPtpeBzW1irJSgh3Y8MP+5IeR8Q4dyJLkdiWjRJF/D1YR\n3cDFBx//KO44dl/f75l6+pZXz0JTJOw/R36zL5pfw+89+icIwjN7D5Ln137+OfjN5pCtzw1YZp5+\n5R4AmfdjAPz1NSAM4a+unvGEJ+xm6gc5DgK6r0bLSYWEzhe6zpkpUVEU4fAaCbeX5OIZHds+cgQA\nEHpb946z5J8Xj6wi3OR940oUDedpkgoA8MLe/tPxkkoU+bd1+BAAoHDd9QAAQRAgFUu5EnURIydR\n5wmtxMDe2oQp9Oj6cfzpU3/JPTNJEhVa9rlrYAbZGHzkbtxpKdMzAADn5PEtaVM/1NcsOF6A3TMV\njFfI7O9Sq13TpLPUqlZBWSEqQ79sHiARzqNKVDIrj5OoRCbPsFDs4bWjmO8s4rl6/5BYmx5jrKxi\nrKzyY58tHph7FMvWylDFbRhYBWdB04AgwNo9d52Tdg0DC+epu3YDwEh1e/wVQjoj10XYPbNzDaz0\n7yLXSd2HgyfPf4g1qYJaTpAiA8Ow5qxjzSHttQL7jIilO0/CeOq22U3/dlTMUUtA2/JwbL5XQRoG\nmytRhESpogIg/Z7ybSkZLRcUnp1nHzpIfn/tdXw7qVzOPVEXMTYkUYZhiIZh3GIYxqOGYdxvGMa1\nme9/0DCMx+h/nzAMY0iVm8sXzU7c8bU3GIw+e9dB/P03iLnwky9+BsebJ/GvR+9GYFnwV2M1ILRG\n65hDx0H3oLmp9gaZTj90NiYmQZt0ON7iIrz6+Qn9LDbITH12soixMiVRm/RpXGisO+S61bQqyioh\nUZ0BBINl53VoWNgOYiK9ajUQel4qk8cb4osyGyRTdL6z2FcValP1tFxUUNSVlAJxprD8WFlJtn0z\nYFlyU+/+PyFVKli983Yceu970D3w0lm3bxCYqVzdvh0ARiJFXiMusph8b/vhob3z+JcHj/R8nj1O\n6Lip/uP0BfAAMk9USScerfUR37dkBmoYhX3VmSQ6+/elPG+R78dh1ERIdxieWdqLg43RM6IdL0C9\nYUESyTD20vHNqa9WhkQpTIkKes/VdgNoqgRNkbg/ynr5ECBJ0K+6mm8nlcsIO51UGHsUdF7Yi6XP\nf7YvWXW8AN9+bg6PvpivjnC2GEWJejcA3TTNtwL4TQAfZV8YhlEB8BEA7zRN82YAxwBMbUE7L3mw\ncB6wsbn83mdO4dF9i/CDEIpIOirLtxBmZiOjKlFr996NU3/6YTgnRzeismMJCplJRe7wjjKKIgSJ\nMIv18qGRj3U2qNPlEqbHdIyVSYd1sShRfhCONEtng0tNraJElahWH3N5FEV8AA3CCK4X8k4bIEpU\nQFUosUBCm8OUKEai/NDvW1WZpdGXCwqKugzPD+H5Z+c3O5moh2X7Z0aiPFo5XN2xExPvfBcQBIh8\nf0v9UYxEKVPTgCD0TDL6IUmckoSqH2576Ai+/vAxNDLPbtZUHjlOqrzBanPr1OhB6Drk+DPj5Blr\nW6ORa8tLt9Xa4P7P/dlHMPfxjyKkVgLn1ClOnkYpMXHfiQfwDy9+Bp94/lMjq17zKx1EAK7YVgGA\nTZeS4CRKIiRKFiSIggg37KNEeQF0VYKqiDw7z52fh7ptG0RN49uJpRIQRSl/3CiY+/M/w9q9d8Ne\n6CVKH//S8/inO0z8/Tf3I9gkOcuRxigk6rsB3AEApmk+BuCNie++C8ALAD5qGMaDABZN07w43KcX\nGVLhvIwS5a+v4djv/lZPZtvyuo2CTDoqy7cR2ulOJ7RHe6lY+MPbYDacBDMyyuMT5FjOcOIXtFvE\nxCySRyrpW9lKxCSqkFCizswv0XY7I/t07n7qJL5w73Ci+KFbn8Zv/u2jG/oqmjRUW9OqqChMiepV\nGLqOjyBRZqBje6mBaNVehUdJk76HzGQHZeh1vC5OteIMp9Od3o6WhZ0rBRVFjQzi3T6G9s0gWVS0\n659ZrSWmciqTUxh/xw/g2r/6G0i1Gjp79256tj4qglYLEARI5TLEYhHhKOG8xPs2jMy2ui5WmoQ8\nZX1nTG2WxsYAAE6XhK+v2EaytlYuBImiz8BUjfRNjFRtBCsYnUSFCQ+mRUNcaSvDcBLbsNfw1cP/\nCgDwQn/o+nVJzNXJfb16RxVAOmtuFNgZT5QgCFBFpX84zw2gKxJURYLjBQi6HYSWRYh6AmeSoZck\nmX6zNyR5eiV+fjd7jjnSkEfYpgogGXgPDMOQTdP0QVSn7wPwOgBtAA8ahvGoaZoHB+1sfLwIWZbO\nps0jYXq6suXH2Aw6yVCIJKbat3zwRbjzpxEeOYjpt7+Nf275EWrFEtACfLio6oSgCIqCyPNQViJM\njnCeyy55sUtyOPJ16YK0tzAzBW9pEdWihNqQ37ZbpJMqX3sN2gcPQfWss74Ho/y+RTv0G66ehkd9\nBV0v2PSxu66F93/jjzGh1/CB7/1lzJanB27rByG+/tBRdGwfP/vum1DUlZ5tzOOrOLZAQ0AFFeMV\nfeD+vAVyf66c2YY1m3Z4Wu85uJlq92pBhSbE0XMv9AGXkNfxG65F96V9kN3+9+HY3BFEiHDD1DU4\nsPwyGuFKz3Y+5WtX7BrDxNgSaVZR69mu8cyzKF55JbTJiZ7jZLddPBxnPKlF4YyekYVmAxAEbL9h\nD0RFAVBB681vwuLd90BvLKB6g7Gp/fldC50jR1B9zashCP3dCCetDuRKBTPbajhZKSOwNn6+lztx\n+Eq12wO3P2Uu8X+/PN/Cu99+Pf/bFgipL0xNorW8DFkgz/ieHTUsrHTRsrwt7+uy+w8ico2u3FHD\nkweWICvKSG2Qm+SBqulVrNtNaGUB01P9f5dUT8JDL2H6e2+G5SSef3v49X/cfBwRIlxZ24nj63NY\n8E/jNdNXD9yeoWkTonbjtdO49+lTEGVxU9dXmCf3Z/vUJP+dpmgI0fs+O16A6fECdFWGu9BCOSDE\np7Jre2rb9vQ4mgCqSojKiG1ZfSoegr31dUwb16e+dxLEqVIrDO2fcgzHKCSqCSB550RKoABgBcCT\npmkuAIBhGA+AEKqBJKoxZM2vc4Xp6Qrq9c0ZArcajcSMcX6pnWrf6lHy4rbrK5hfiPnqgaPLCOiz\n3bS7WF0gs1R5bAxevY61xQbCEc7TWiGz4LXFVQgjXpdWnZpiy2RG1lhqwJ1J/3a1aePpg3Vcua2C\nHauk9IK08wrg4CG05utndQ9GvYenFlvQFAmu5XCVZnG5s+ljH2ocgeM7mG8v4ffv/Rg+8KZfRVEp\n9N3WPNHg5tq9BxZxzc5azzafu+MA//fhYyvYM1sdeOwFGuoJuxJChxDlhdWVnnM4fiqt7p06vY6O\nnlYuVk4TkuLqZPZqtbp9r8UzJ0gm5Vtn3owDyy/j8NKJnu2W6bvqdl2ItEb13Pw69IR+bR87hhMf\n/CCU2Vlc9cE/Tv2+3z08thKX6FhcbaCub/4Z6S4sQqrVsLJmAyDvlXT9q4G778HpR56EM7ljU/ur\nf+XLaNz+ryh95+ux472/BEHqneS5a01IFXI+kVaAv9rY8BnrzMeEsXlqYeD2z5vxds8cWMTiUhMi\nJXOtZXLPoxLpghdOk/utSgLGKxoWV/vf33OFfvew0SSDfVElD8J8vZXaZu3++yDIMqpv+99SpHSJ\nqtNjSg3rdhPzy6sYj/pPVrqHYuvB8hNPovIjP4b1k6Q2l1gowO8MP+8HjjwJAQL+j6vfiY8/+7d4\n5uR+fEf1tRue7xytOVei59ZsOZu6vis0U9Rph6iDhoAhw/LS+wnDCI4bQBYECPTdmjePAQD8YjW1\nrSsSm8LyqSXYE9tHakf9saf5v71ms+fYyTIw8wtN+PbWZXq/EjCMSI8SznsYwA8BgGEYN4OE7xie\nBnCjYRhThmHIAG4GsP/Mm/rKhB+E6Ng+9+xkPVHM4xG0WikPzcJKF45PZP6O1+HhPHlsnGw/YjiP\nycCjpGXz39BtlQmybEE2nOf5IX73Hx7H5+85hM/cdZCn0utXXgng/Kz1FEUR6msWpsd0CIIAWRJR\nLSpYazuIogh3PXECv3HLI3j59MYZTPM0nDWujWHVbuBLB28buO3el2N/y9wAY29ycdFGc7hHq0VD\nd2W1jKJCUr87fUJdLDmB1W3q2B5s+nywsG/gUFJRJi/9oKzKI2vHIQoibpp+DXRJx3IfT1TH8qDI\nIlRF5OG8bH0q+8QxAIDXx3fRD8kw5SjhvEOn1vD339ifShYIuxYPcTAoNFvrTAqM2kdeJm179hm0\nn3265/soDBF02pBo9WipWCIZdxuU/fAbq5AniDo3zOB/fJG8n1dtr6LZ9VKePuaDYe+83SbEtlJQ\nMFHV0ep6W1oXrem08eWDt6XWc+zYHiRRwATNhk3WjXIX5rH0mX/G4qc/hcV//kfYx46hcfediMKQ\nh7rGdRKaHBbOS/nJFhdJUg29hurOXYh8f2CZgzVnHceaJ3D9+DW4duxqlJUSL62wEZgnbYaWS0le\n27Vv34/5v/uboSFjljjBjOUAoEpqTziP9fPMWA4ANgtTT6VtxaxqedYTOwwWfaYBwFtL939Zn+ao\n2ZU5+mMUEvU1ALZhGI8A+BiA9xmG8X7DMN5F/U8fAHAngMcBfNU0zUt3FdgtAvNA7Zwqpf5m4Gty\ntVqpKrbzq13YAXmp214HnpXxKY1oNOQkahNp1mGHbCtTL0Z2MO7YHiyHtLXZdbnnQ5mahlSunBcS\n1bY82G7A60MBwFhFQ6Pt4IHnT+ML9x1Gfc3GNx8+tuG+5iiJ+rmbfgpT+gReWN43cNu9R2LC0S87\nKgjDtPl3A6N7x+tAFEQUZB2aREKD/bJ5GPneNkGJlu1zn0lVJaTJp8RaKpFnrV99LzfwcKJ1CrvL\nO6FJKgqyzp+zJFpdD+WCAkEQeMgy63/xlzdX1TlJnDYylr9wZAUf/swzeHTfQsorFDp2yngLAHKN\nqIFnUjPKX4nvp3OiN/ki6LSBKIJUIddYLJLnbdj7FHouglYLysw2SJXKQHIXRhGOnl5HSZdx9Xai\nViafHeb9Ye+h3SHXr1xUMUHJdNaMfjZgBT0Z7jj0Ldx/6mE8vhCTy67to6DJ8TORrGD+LVJzTKrV\n0HzwAZz44O+j/sXPwzl5gpOmCUqiht1/VpdLniSTOL/RgL+6CrFY4tdi0PVftsi1vrK6G4IgYFd5\nBxrOWl9fUhaNlsMTKYD0wsBLt34arScehzs3N+jn/BisPhRASJSXOTarFairElRqb3Hr5F2SJ9Ik\n6ow8UckM3fXhJCr3RJ0dNgznmaYZAnhv5uMDie+/AOAL57hdryiwAomzEyXsP97oyfhg1ZCDdq8S\nNebHHWSnTYiJPE47kRFIFJtFA701Z4Yh6LQhaBrJDAEQZrLzkgVDgyDkSpQ8Ng6pVouXydhC1NdI\nJ5wkUbMTRZxYbOOB54n0X9Ak7H15BZ+9+yC+68ZZXLW9f1htvr0AAQJ2lGZR02pYsRuIoqjHI7Oy\nbmOu3sG1O2s4PLfeV4liJHmsrGKt7WK1NZwstN0OSkoRoiBCpZ1vv2weVmKAnG8DHduD7zMSVcZi\ndwkhVaJETYegqgj7KFHHmycRRAGuGdsDANBlDU2nN2TRsT1uHmbp7FZGiWJmX/acDIMXePBCH2Wl\nhLbX2TA769F9sbrFnrfI94EggKilPRxisQhBlhFscrHs0HPhrSxDnd0Od2Eezum5+DiiCEEUeWYe\nI1GMoIbdDlDrDeUC4O2Qx8YQtFoD34cn9i9ipengbTfNolSgal+if2BZgIw4uF0bQAmVgoLJKrkG\nq02bE+uzxcu/9quQa2PY8z8+CAB4ao4ku5xup++Frkr8mWDPZeh5aD7yEKTaGPb84R9h8Z8/jfZT\nT5LzaLVgiRklik4AoihCy/JQLcbEg12vwjXXobWyAr+xCm91Fcr0NM88DS0LqI31nAOrscaSNCZ0\nouI17AZmS9sGnnsURWi0HMyMFyBLIiRR6KvyWS8fgrZ7d999sMmPkiRRogI/ChCEASSRqk60SKqu\nSjx0yybTWSVKOoP180Kry72zXmZi4bhZEpUrUWeDvNjmeQBbGqFWVlHSlRSJiqIoDue12ykS1ba8\n1GzN6lASRaX9UUhUaFk8LXgzSlTQ7UAqlSCqpDOInOxMKh5MHS/gMx+pXIZcqyG0rJFqSzF89fA3\n8XnzqyNvDwANSk5YWAEAds9rPx8gAAAgAElEQVSQDufofBNFTcZ/+oHrEYEs2vq1PnV4ALrYcmcB\nM8UpKJICTVYRIeo7c2Uq1FtevQ3jFa2vEsVIM/NBbaQUtLwOKgppNyvO17euDFX+Jujg2bF8TkSY\nEhXQay5oKulE+5GoFiE+e6pXAAB0Se8pfugHISwnQLlA2jMonOfQZYgEYeOupMuVCPL8bkSiTiWW\nNWEdPwtpC3paiRIEAVKlCr+5ORLlLS0BUYTC9ddDqlTgzs0hCgIc/a1fx9zHP0pKdzASVWZKFBmc\nh5U5YBlRcrUGUVP7KoJhFOFfHjoKSRTwrrddxa918hqHlgVIEkSqRri0gnmlqPDnYCOlc1SEtoWw\n3YY7R+7pqt3AsTXy77lOvFag65H6RtlnIlhbQ2hZKL761ZCKJex47y9h5j//NPmu0+Z9Wfb+f+He\nw3jfXzyE+5+NFR42sdSvuYYcc24OkWNDmZiAVCSEMej27/86bhweTx6PFaMdBFY4lBXtVRWJK1FJ\ndY5VFe/aPj7y+WfxQkKZdkMPAgTIQuyrU6m67CbqYsVKlAyVhvOCxgoEVeVknUEqMtJOzrfRcnhW\n8iCE3S6UGUIYs+G87IoZ7lmWLbnccVmSqPbzz+HUn30Ebn1p443PAVq0RlS1pEJXpRRRCjsdRFQ9\niFwXTjvdMSfDLDbN9pHHKYkawRPFCmACwzv9LMJOB2KxBEElHUqPEuXE5+AHEVc8BE2DTGeHmxnQ\nnlp4Fo/PP7WpKsa8jlExzo5jJAoAds2UcfNrZvFz73w1AODluWbfcgNrzjos38aOEvHV6BI5Z6dP\niGvvYUJ4v+OaSeyYKqHRcnpWfG/S+717pgwBwz1RQRjA8i1eqVzhSlT/4nxA7Inq2jHJrmrMA0WO\nJWoaRFVF1Mc3wmo17a7sJOcra7T4YXwenUSNKAAoZFQHgPjmmGIQdNoblhewfPL8TY5Aojw/xPxK\n/Lyyc2fEPBvOA0gIKWg2N/UMsYWE1dntUHfshLdch7u4CH91Fd39+7B+/338HeJKFB3Eh01KgnaT\n/0ZQ1J4wGUBI4lLDwptfNYPpsQJK9Fqnw3kWpEKRn69PSWS5oPDJw7kqc+BkwlQvLsfJEcmCrI4X\nQlOkRDiP1i6j10kuxyQgVlFi5XFcI+qd5ds4cLyBu586iQjArXea3L/or65CLJWgzhIjtXWE1DST\nxycgFuj1H6CsM48hq7k2WSDP2+oGJKpBfXesVIqqiFylYUQaiEnUS8cbeOl4I6WYeqEHRVJSCjZX\nlxMTIycZzqMkKmqsQpmY7FG/xQIhy6y//9vbXsT//MKzA88j9FxEvg+5VoOg6b1KFD2nAiXBpzun\n8VfPfXJggd8cw3HZkaj2c8/i9F9+HN39+9A9TyvAM2WiWlShyGIqBu1lPCXueuKBF0IEUYKsMJPp\nJjxRydj4RkqU5fj48v2H0e7YpPMulSBSEpVVNLKzmcBxAEGAIMuQaIgjWBuNREVRhLbXhRf6qYrW\nG6GdGegBYNd0TKJ2z5QhCgLeeuMs3nbTLCzHx+l6r3L0XJ3Y+K6sEomekaisT8gPQrx0vIHtk0Va\nl4p0jtllfNj9Hq9qqJbUoUpUm5vKSYcvCxIECHD71pUhBKZWIu1z/bjYZlUhAxdLABA1DYKiInR7\nydip1mnoko6pwkTqfJOksZUhqKU+/hf3dFxnClG0IanvVaIGbz+/0kEQRtgzW6HnzkhUHK7MQq5W\nEXnepooSuguERCmzs9B27gSiCN39sa2zcdedPeE8kSshgxM1gib7TTVWczPvkHmCKMuvupLch1iJ\nSoTzrC7EQoGTKLaPgiajRgf75ohrRa584zYsfe4zA701qXU5w5DXVtpe2kYLsi4jDCP4QQhVFknS\ngSzyZ4Kr0Qklhfl5wk4HVmBDlVRObmzfxv3PEeL2Pa/djgiEWEZRBG91BcrEJO/r7JeJUVqemODX\nfxCJ6gwI563aw32azNDPlShZ5EpUcg1Kf3kZ/toajtNMvvnluB1u4HE1mUEV2fp58X1izzMxlotA\nFAFWF1K1124g6ix8SZ79+rqN5TUbYdh/ssAUK7FYhFyp9Hii2LGr9N2+d/Vf8NLqQdxx7N6++xuE\nrxz6Bu4csO7m5YTLjkSxRXKBWDLearBwXrVESJQXJEjUCl0HjFYk9hIzHkikc1LYS0ln4XKtBgjC\naCQqsT9GoqIowj/u+xzuPfFAatvP3X0Qtz92Al++nQwiUrEEQSMdQDY0l134NHBcCKpKsuSYyXdE\nc7nl25wsrjmjG4M7tFJyKUGixisa92okVanrdhF1zDy5llIqwijE/acehiLKuHk7qSOr0RXYHT99\nzq2uB9cP+X4Lan+fEMuiqxVVjFc0rLacgeoIJ1G0wxcEAaqkDFWiKrTzIySKhndo6IINsoKqQVDV\nnkrzTuBisVvHrsp2iDQExwoDJpUhrkTp6XBeWolKD8YbrTTfpTPdslKCKqlDjcUnaSjv2l3kWXI8\n6ruxqRKl91Gi6AAUbMJc7i4SFUHdth3qzl0AkCp6662uwKeDEAvn8fDKkPMNWlSJqlYgUBKVzSYz\naQancQV5NhlRzSpRYqHA9yHQ+6vIIiddo1TVjsIQK7d9DWv33YNTf/aRvtukilnaNroeebauHych\ntbn2fJxVRtWTgi4nSBTpa1g2GRB75YJ2G5ZvoyDpPHPN8m2stV0IAnDjVcRAbrsBItdF5DiQqlUo\nE4QAMWO+MjEBiXmiBoTzWm5aiWJG9g2VqCyJUiSuRGWLpfrNdRyndeDmVztc4fZCL+6vKVg4L2kP\nsD3miSLhPCUifzPlPwlRJ9eLeVo7tocIGLgMEy/QWixCqlbgrafVWXYPKyXm2yLKF1vDc1Tcd/JB\nfP3IHZv6zSsRlx2JShKPjdazOlfg4byiAlWW4CWUqKBNSwmw+DUdAHRVgkBJVJUOkGAqg16AqOsj\nhvPigY6F8zp+F08tPpfKuAHigcuhGUCirnMlapCxXFepFO04fMa92XBey4vbyBYoHQX9lChBEDjJ\nSZMoMhh/9u6D+NiXnuef718xsWyt4E3bXs+JyCAlKns8JodnCWUzEb4dr2jwg3DgotMsdZyRKIDM\nXPsrUQHfLwB4XgDbJ7N7RvxAB1lRVSGqSo8XZ649jwgRD+WlzzcmNdlzZdlKyXR29vyxTj7cIHuI\nL4mhFFCUC1yZ6odTtLAoI7/cWD5UiWIZehs/Q81HH0Z773PwFhYgyDKUqSloOwiJsswD8XkFAV8u\nqVeJGhLO4z6qamLppMS1iyIcPLmGiaqGqRo5lzI3lpPnKfJ98l4V43AeaEhIlSVOpkdZGDpIXBPn\nxHFEQa8Pxj0V1/AKbRsdGn69pnYVAGChs5RKzQcI8WPKGTtnuY8SxTxRBVnnz5vlW1jvuKgUVf58\nOW7Ar6tUKpG+rhAnjijbZnk4b1CiDFeiqLpbU6sQBRErVi+J+toDR/DES6ROF/NYxkqUxItS8sQZ\nmi0YWjaOL5C+2vVCrmK5gctJE0O/cB7vPxVS4kCmk0hR7S3cK8gySRKxbfhByCMZg8gzu35ioQCp\nXCHlIBLjHuuvmJFfAfVYbiKcl/JPhv3J3OWCy5pEeSubS88+UzQzSlQYEUkcAPesKOzlpANRpagA\nInk4K9Q0HJMoHaJeGGn9qKQnKrS6iMKQz8iyhKVNO8OKQl4QQVX5DHhQOI+FFELP49tyRaA12swm\nWYNmfRNKVD8SBQBvf/0uvPlVMykSNTtRxKv3kFntgROxQvbMElEdvmvHm/hn2gBPFF+QN0OiLCc9\nICXvd4V2VJ1BJIoSSGaCBcjM1e27YKkPQYgVCy8IYQUOCpLO11iE6wKSRDrePl6cU8wPVU6QqD7K\nGzMLs8FNlki9qG7K9Ezrlk2SbKINlSiqmhVlHbqsj6REXUOX33Cynii9l0RJlEQFG5Co0POw8OlP\nYekzt8JdmIcyMwNBkqDuJEU6I59W67+OVHnmoSS6f5EbfYcYy6kSJVcrcTgvoUQtrnbRtjxcv3uM\ne2CynihmopcKRT6ZEb1YiZIlEQVNGolEZZd8yt6rKIoySpSFjteFIAg87GsHDldmmI+nqMvoOj4x\n4PPkkiSJKvHjWZRESaLElchmx0GtpHJSZrsBv67sOrP9yeMT0PdctWE4r+21oYgKJy+SKGFcq/Uo\nUY4b4BuPHMMtt5FyJg26XNQ47dM0RYQfhCSESUmUSuuRtdbbaCauO/PveWG/cB59X5PhPCfpiRKh\nUCIiKCr6QdR1hJaVSjoYRKLYGCcWiom+OO5XnUw4T45o3bk+S00NQpI4bWbi+0rE5UeiWB2dWu28\nKVHrHY8bCBWZXHK2RAkjJzItahlR0lMpqgklinQiguuRwVGWIRb0TXmipHKF+lZsNKg3oON1U1lg\n7KWU2QutqnwGPCicVyvFJIt39KyTG7G4ZzulRG2ORAlCTGYY3njDDN77IzdCluLHWxAE/NpPfCde\ndeU4/CCEH4QIwgAvLO/HmFbjfiggJhV2JpzXph0YI0a6Rjr+QcbyalHlYY9BtVhaXq8SpUhq/wVL\naWq5LAkQBBLOs30buqzHIQTX4/esnxdnifpcZkszifMlhCSpvDGyVEosaVPU5FQIgQ3ybAKwUQq2\nxUlUEYU+GYFJnFpqY6qmc5Nv1hMlDPBEARvXinLnTwNBAH91BaFlQd1GzMtSscSTNoCYRAWtJsRy\nmXv9pNIonihmLK/ygTFZbmJlnZzH9kRpgoImQxBiT1Q8GOp8giL6pNClKBLiVSmoGy5oDvSq7snJ\nFUAUvmR/QsJ5XZTVUmJS4XJlRqO1jUqajCgi94cb8BPhPEHTIMgy/HYLQRTwZ60gabB8B5YToFZS\nodPQuO0FfF1CZuD3aAJQ6XWvgyCKG4bz2l439T4BxBfVdFvp5ImEqtrsuFhcJURoaoy0kRFFzw/h\nN0ifyYq61uuEOOygtf/mVzrEyxX6UAYoUclwXqrYppxQorQBJKpQQGhbKSV4IInqJsJ5lIAmJ7Ts\n2EzRDiJyT1vu6CTKSfRPG4VJX+m47EhUYFkQFAXqzDb4aw0+69wKHJ5bx3/7xMM4VW9z6VTNkCgW\nJmMDUUQ7kEpBASQau6Yqheh43GQoqNrAatRJMBKlzJBBM7S6KYMlIy1hFPGB3rHobH8UJYrF1T03\nVqLY7HOERVqBjBLlbo5ElQsKr7MyCpI+koNrL6PrW3jt9I3cHwTESlRPOI+SI1bPh/mErGw4r+NC\nUyRodJYJxB3XYmcpNYtj585CDwCZuQ5SonRVJr4pGhZ2AxeapHASJXg+J1H9vDisEOGkHq9zp/Hw\nSsITRTtrpkSRfytpJcohgxira7OxJ4pWc1aILyaMwr7er/W2g2bXI4kBogBVEWF7rMTBCJ6oDWpF\nOSeOp/5Wt8dLaag7iEInqCq0K/fwz/XdV3DFSBwlO6/V4pOQfu/QKvffxGRQFIRUCZQkYRRUFRAE\niIHHnymAGP9bXW/DjESWRcnOL2suD6zM4uYWUaLKapEXjnQChz/HKl0WhT0fHdtD0OpVogRBgFgq\ncYLN/FCKqMChz3itpEJX4vpJ7Dli17n0HWS5luqbb059Piic1/Y6PFGDoapWECFC243PO/ksH55b\nx+nlDiarOid0bMLr+EGPEsUsDzdQP9v8ShdBFCCMwj6eqN5wHisroNEFiBmJGqxEFXqUqEHqdhzO\nK8Y1tRKL18feSmoLiMizuO42R16APTn5XtnAsP9Kx2VHophRU56YBKIolXVxrvHsoTpfnZ2xfvZi\nspeI1V9iIRGhy8J5ao8nSnQ9HsYQaSE11nn6QYhvPXMqNbsCYsmbDXRht5uaOaw55AVILjXh0Q5V\nUFVieBfFwUpUWSWZJZ7HlY9Rwh1JtBIy8mY9UdlQ3kZg2Wbtrodj6yR88eqJ9OKc2Ww15h9hvqZK\ngSpRzFieVaI6LqolchymRDlegIXOEv7w8Y/i26ce4dt2MunYAAnneaGHMEqrV5YTcA+aIotwfB9u\n6EGTNCgSaYvg+dyc2s+Ls2KtQpc0lJSEAtInfBkrUUkSRUzEzESbDedt7IliSlQhYS7uVRNOUj8U\nC8fqisRDEMM8UdKInqhsVXKmLgCARs3l8vhEquihtvuK+DiF0TxRjNTF4bxEFXtaloBVHWcoFRQ+\nUDLlStQ0CIJASJnvQUks4F4pKAjCqCdbNgsWztOuuIK3L4ko468MbQsdv4uKWuYkyg28HmN5smp5\n0G4RopcpvCqVSlyV5iRKUvhAXC2pXNV1EuE8ZuCf/S8/h90f+B2uDLJ7H9m9Wa9u4MEN3B4liqnL\nSa9hUlV97vAy1jsuV5YAxJXEvQB+o0E8RtV0PTb2jNbXLHh0QtDjiRJ760SxSbQii8QTFTIS1b8/\nEwsFRK6Lbrc3+SML1ucTLx31Kzrx75yMt9IHuSZhFI7c/yavY65EXWYIacowU362MkNvLpFOH5Oo\nWCIG4o6SZbSBKlOVosKz85gnSnR9CJREsdlto1XHw3OP49mDddx610H8waefTLWBr7dHwxRBt78S\ntdiIO9GAzfYVkm0nqupAJWqsrEGKQgiI4pCDrgOCsKEywZAM543qiQqjCB3bS2XmjYJKQomy6Krp\n2Vlr0iO0/vBDOPQLPwv72DG0u1ljeezjYIiiCK1uXH05DucFWLZWECHCYjeuTxaH85KeKNq5ZQyb\nLJwHgGZ5enx71lGLrt8Tznv4+MO4/eg9iKIIK/YqJgsTqVo0PJyX8kQxJSq+vpWCgjCKOGmMw3mb\n80QVUiSq1xfF/FCsXIWWqK02tE5UaTTyzoziDOpsTKKYUqNMTPAQO5AmUYIsQ9D0geFqUqCzCblC\nSBQbGJPhvGwmGENZl9GxyOQocmJFmP1fCnyuZgPxpIAlrwwCU6L0K/YAGKxEMQLkdFoIoxBltZgI\nR8WeKPZc86rltk+IY6kMQUwPK1KpjKhrAVHEnzVFVOBFsRLF149LGMtFGjaVymUUrrmW749fz4TC\nGkUR/NDnk5IsieLnkAhDJSecD+0lpS52TMWTC40qfq4Xwl9bgzw+zi0L7HpViyoKmoS1tsuVpkHZ\neUnikSRRqiLy7Dx2r7NgilK3GT9z7QGLBifDeTzpI0E4marLPFGMRAGxUr0R8nBejMuQRFkQC8V4\nTaYtXJ4kWc2aGcmz4TxGTriPgM5Wk0pURS0DUQTZC/hLwTqSbx99AJ8zv4JFm6Rq19dsHtvn+xcE\nPksPux3uiQJi5WepEf/GS1S9BkCXD+mfnVcrqZCj2EMFUAm/WBxZiWIhLVmUsT7iTMhyfERRnII/\nKpLmXUYadCmtaiTDeYv/+EkAQOvJx3iYhWVFFfqk/VtOgCCMuFTODLOOF3ASkfQeWDTEVVTiDCRW\nVyYp/zMfF1O/VFnkRlVNUknHHUUQvaAnnHf/kW/hm0fvQtvrwAncVCgvdb4JQtNPicpmgzF/IQ/n\nJQZm+8RxvPThP019xsJ5RbmQCHH0Dv6sUvnubZREKTJXPnnF8j5KFB8whlTKj8IQzskTUGZnIdDr\nxAo6AoC2iypRk1MQFQUSXW5Fu+LK1H6kYnFgOCm0bUS+z7P5hD7GchbOm6ikz6OUUJaSBWzZ/+XQ\n42o2EIdk+mV/hp6L1dv/DUGnA291FYIsQ91BzjXriWL3ki903CXfl9USZFGGJEhwA7e3xIEWq7FB\nu53yQzGIpRIQRdC8CAWJPOeKqCCIfAARqmUVskSM8sRYzjxR/ZcSihXW+Hp+6+SD+G8P/j5O0zUw\nsxMj7uvyE0qU3WvlSClRTEW2LITdDuTaOH/GGMFVVQljZQ1rbSdWosQ0Eer3rHMSJYkjhfMkauOw\nWwkSZfW3ogTcS1fgYe9+ShR5diIEiJ+dZXu08TDZN21Uf+uVjsuKREW+j8gjITGFzjKzWSvnCrbr\nY3k9fnAZicoayxk5YT4CgXa0SSWqrBShBAKEKB4o2IylZZEHuJWI9bMCdgAZUERNSy2VsGo3INDa\nIA1KWlYSVbXD7AxYi/1XLMRkO7GxXOHpuXEHIBVLo3ui6OxxR2kbmm57pLj8oMy8jcCUqJbl8fAV\nU54Y+hWflGvj/JiMiLE6UXaCRLHZIfNNxZ6ouDBm8l65oQtREAcsE9FbnC9WoiQ+k1clFYqkQApI\nxRdOZmmHLNPLaTZI1WdWwZmfbx9jecf2IUtCasAu0zBmm5OorBIVn1fzoQex+tjjaD8Tl9GwfAuq\npPLsLAB9vV+nV7pQZZGviahrEqkfFEWJ7LxeJYoPrkNIVNBqIrRtaDt3oXTTa6HtuYorWACgXbkH\nM//ppzDxgz9M/t51BaRyJaVWASRUMkiJSprKARJ6B+JCqABRokq6zEk2AzPydyyPv3NJJUoO/TSJ\nKqSJbRLNhx7C8le+hPVvfwt+YxXy+ASkMvWNZZSorGLtMhKlkWujSSqcwOW+SfZc86w6x0PQafcs\nWQLEZQ50J4QmU28oC3kJIS8eq6sS8UR1056oLARRhCDLqfDoiysH4AYuf8azSlTS18XASNSbXxUn\nWaRJFO2rV2l5g/GxnhUcNIWQqLbloctqePWE83pXIUgpUbIYk6g+JQ6AuGq5myJRw5WoZDgvSnii\nUsZyIQSEkHtC1+w8nLdZbLgA8SsJLPtEKhRHMoeeDVjK61tfMwtJFPBDbyUz2dgTlVaiRF0nYQI/\noXaIdOCUdJRCiW8HxAOkbZHOsONZYJx4KRGaCx2bZMjQl99zLLTQxo7SLE53Frjyw8IBk1Ud4pqX\nOoagagg6Hdx34gF8/cid+PU3/r+w6fpZuir3Tc8VS6WBK9dn0XbbUCUV04UpnGjNoeW1MYvehUVT\nvzlDEhV7olzYdEFURpoYeLFNO342QsdGy/KgUg8D0L/EAfMpsMGQe6LcAGBKVCJ86QQuVFFNLxPB\nPBSpujJxcT6AhvMiDwpiJUrxiVeJZ0myul0B+Zwt45FVogp9shG7toeinl6+olxIh45C2wZEEWK5\nDEHTUwUJ2UK+1qGDqH3P95J9+haKcqxEAP2Xt1lvO6iVVZ4woCsSsd35YVybqo8SJYgiBE0bqkTx\n+k3VKmZ+8qd6ltgQBAFj3/cO/vf2n/05hK4DQUqTHalUgnt6DlEY9oSvsllq8cDr4vbHj+OhvfOY\nX+mmqusz8MQH24PCFGHmcVM1yKHPvTqp7fuQqM4LpB6ac/IEgvV1qDe8ClKlnGojA+sbmRLldTvA\nWKzoaJJGjOVuWolihnC33QGiKGUqT14rANCdiN93HvISA56cwpbEynqi+iG5uHYURTjVItXzj66T\nUG1VTVf+TmYY8utDJzzffdN2PPESCbHvmOz1RHmNBhR6beLK8Q4gMBJFrRWUVPNyI2w/G4TzpCjO\niBaHGMsBwOnEfdJGnqhUOC/xTrAJWVGXIcjkuNtL2zDXnh/dE5V4b9fstb6LtV8uuKxIVGAnZE6e\ntTD6EhGbAfNDXberhn/3nXFNnjhtlno86GyK1GTSIAYkhbmgyTycp0kqikGGRNEZi213AI35TUgH\nkFxLK3QciKrGB1Sr2wKKZN20pW6dK1GsttHsZBHycTYrYkqUitBx8JXD3wRA1l5j/hxNlfrG86Vi\nkRR589yBHQMDWYC3hJpGOj7yIu8a+htOVgqbe4SZKbxt+bB0BwIEroowsA5XXYxJYNDtot31Uuv0\nMVUoaSzPrjmX9ET5NJyVzBBi2XVJcJWmnxJFfViqLCKkMrwmaVBFBQolSzwMSxUQmZKrfSsvAQCv\n+5M932SxzY7t8/AdAw/nJeoYiXqBZAvOTMNdWuKdKVvE1jp8kP++69t83TQ2sHgZEhVST9me7fFg\nzNUOLxjqiQIIgRyJRJUrI3X6UqUCCb3EQCwWSckQujxS6hzorJ/1MayA4qFjdXx5Md4uayoHEj47\nJ0isgxiH1ZUogJLgc3E4Lx0WDT0P3QPkfrf3klpo6rbZRMp7VoliS0olSBTirFFVUtHxOnCQIVGU\n1PtcfeslhoxM6m7IJwicaIghSU4Buc+NpoMgTHui+oHUQCPPTsNZ44VBjzdJsshURm3tF1LrJkqW\nvO/HX4vldTtVLoVZL4K1NUKixsfje+G6gEZ8U6wMR4Nm7GX7k36qq5eITIQRRlCiyLPkd7oAyHUZ\nWidKEEhWJytRY6fDeZoiQRQEqDppx2xxhpKo0TypyevoRwE6fm9ZicsFl1U4L0zGivkiludm8c4s\nFqgvaftkuiNQpKwnyiEKlChC1FRIvkfSXmUJEKl03odEMWLiWKSzS/pZVhOhuchxIOpxmrXrxMbL\nilpB0yGDSqvrQRQEzIwVuLLESJGgakAQQKBrNTmBS0kUCUfwzJIEieIZep3hSh9ZN6+DslLmJGoU\nc/mZKlGMdLUtF3ZgQ5PUVHkDIJb+C4txrD/sdnuyAUVRgKZKqRIH2Xapiew8lolmBw43hZMKx5lO\nt68SlQnnKSJXKlWRhsgCmoKv9VeimCdrqhAbpoFeY3kURejafqq8ARCTqLgYpMWfR2VqBpHjIGg2\n4TebnKx49TopJRJFvKYVECsRXiac17V9BGHEjfkAEunvAc/I6ldsk517dqmbJPpV1T4TSEPWz4sr\nudNyJPRdXV9Lb1vUeicAnHT7AQ//8fdKpmFkIS5nkMw2TcI6dJCr3CyjUd+zh0zWFKWPJyqTgELP\noayR8+ThPD9dbJMRXJ+GB8U+6hEjAJob8VAX+78kh/w6MCUq6HRIlp9e6NkX36eq8KzTk614DUe2\nfFSv76+3VlMn4fu76epJfF9isps8x3CdhvPGxjkpAbVdsHAeAKzTvq7HWC72TopY/y9LZA1ChZOo\nAZMDei18qtLpqtSTic2vQbcLsVAk3lS27l7CE8WiCACgqKQdNa2KgqxvOjuvQJXlzRRJfqXhsiVR\nElsZe4A59GzBBtbsIK8o6XBe6LgpuV4KPF5fSKCDpCIq0ELyO5FvSzMrHDYwk/9Pj+loWyQVmXlI\nhIQS5dLOsaQUUZB17o7kKJAAACAASURBVBFodV1UigpKBSUxK0oPxkzpsHyL1iySoCfWfUqqA6MU\nJASIEuGHPopKAWNUpRg0G4qiCE8vPod7Tnw70QFu1hMVG3Ed3+GDehKiIEKVVOgr8Wzdb7fheEHP\n/SxqMq8+DKDHN5UscZBc5oT5wJzA6yFRCv3bGxLOIySbqgLUZ1IIss9ImkQBwM7ydswWYw8IQFQB\nWZC4J8p2A4RR1HNtmSeKh/MsOyZRM9OkzfUlrkIxomEdOgQv9BAh4qHTOO07raCst0kbeP2xxDk7\nbkAGA1qRvR8ETUvNugHguUPL+P/++mEsrVnwWait0rvQ62YwrIwHm5iJmUxaFn66ni5B1E8Ji0l3\nyH03fBFwSqI0KS59wYht0n8JAN19dP3LRHhN33MVBEGAVK70lKPIhvPY33E4T4UXevw5jJUoKXUd\npD4+JtaPyEHEFSh2/0n5qzhsG4QRgk6HrBcoDh6eBEXl2XknW3Op70RB5H0JQ79VCJiCXBzQhzBP\nVERLZhAlit5TemxVkbiStm4xJWq07DxZEgnREQSoGLzsCwCIxXS9p+mxwlBPFNte7KtE+Xxioqjk\nuAVZx5hW45GJjcDCeTMF4ofcTJHkVxouWxIlaCQNP9vhniu4bnrGxtAvO49JxKKqQgr9HiVKkRTo\nEfkdC9Gw2a1IZWE3JJ3Dzikina82SYYQwjBV8M93SGdXVEjqMnuxm10PlaKCsi4nwnP0WGwwpoJL\n17PgeiEKanrdp2SNk1GVqG6idlBNHa5EfengbfjUvs/ha4f/FS2HDAJ6xpi7EVSFzPw6lgc7cHr8\nUAy6pEFI1FfyqN8hS6L0jBLFyF2ZqjjJNOluoiYSM5e7odsnm6ePsdzJGstFCLQYq0Z/r1OizbO5\nlF4S9Y7d39N38NZkjauZ3cySLwyVhOpBCLrNVQZlmhAzr16HM0cGtYk3k6V03MUFTtCYIsCUCC/o\nrbEFxCVBgESGoxvQRIn+KhRABo3QdVPFJ//iK3vRaDl47tByHM47R0pUXxLFw3lxTTcg9j/+wo/c\niH//pt340e+9uue3Kn9e4nAeIyERrQWmISZRk1Ud02M6njywhL0vx8tYdc0DgCShcvNbyT4UBep2\nsqyNVC4PVKIUqkQxc34lQaIAwOLkgS5ezUhUYqmRLFj/RkhUWomSlfg+MbIcdLtD/VDkmsRlV1hG\nHlOUx7UxSGK6X+ivRJEVD1iIPAvmiRJalESNjZM+ThC4dzWpRLXYNRyh2Kbnh6lSFZpA7umwYpsA\nUTkLmoRqUYHrhbzkRBKh1eW1zPqVOHASSpSkkOMWZDKJtXyrZ6WGfmDjxnSRqNq5EjUEhmGIhmHc\nYhjGo4Zh3G8YxrUDtrndMIz3bk0zzw14EbJCgUqd+tCCeWcDx2dZLOkXtF+dqNjArUIJfWiKmArX\nKKIMNUyTKDGTeeXSqrMsu2S15cR1ZjSdH8Onsm6Jkig/CmC7HizHpwuBKonwnJY6lkQH45bLJGUZ\niiJCDft5okarWh5XsU4qUf1nQ3uX9/F/d+jvstlNG0EQBJQLpMpzMryUhS5pEBPkyKdkMFuXqqDJ\nKU/UMCUqWViy5bXhhz7CKOQdPMNI4TxZBFtbkXXSOlOisuE8nwwsr5q4Hm/c9roB56tzosPCBCUt\nq0TFnqjI94AgLrkRk6gl2MePAgDG3/B6AGTJEdYxM9P+QCWqO5hE2a5PiNuAUB45d7JoMFuJILlM\nhiKL54xEsUlCv9pYPeE8RoI8DwKAsbKKn3jHdZio9p5H8nlJFtsEEkqUEJMoWRLxi+++CZIo4KsP\nHCFt6nbhHD+GwtXXQKdV17XdV3D1TipXENo292MCCRJUKpFJEw0lllQWzkuXwWDtZP9nxTqZApJE\nPAmL+ASBe6MSj5iWULUGZeYxJIsNd+nCuTNFooZO6uM927P2Zz1RRU0euOIB67uFdhMQRUjVKi16\nqkHyXSiyCFEUMFZJk6js2nn9MgO9IExlWWrYoGI5W4TZsVHUlNiH1U4TnigIiFeRXj9W6Z6FdKOI\nlM9g901SqcJNlSgAI5WZYX3TNFWichI1HO8GoJum+VYAvwngo322+SCAiT6fX1RIZucBZNa0Vcby\nuChd+hL3VCx3nYSBW4OICLpE1qYSxABCJJLwEh0gI4VWpqYqEVMZfDgQBQHbxsnLtrpuc4OtoKl8\nNhjQ2W1RLvCXe5UOBNWSilJB7jGKZ4/VcWMCIwoCdBpeSMbz4+zH4SSKpf0X5ULKExVFEVHTWEX2\n0E+9qJaX7sw3g3JBQdu24UfBQCVKkzVIlERJlQoiSsD1zPEKmgw/iDgpzhrLU54oL61EsQ59oBE1\nQTCY2lVI1IniSpQ0QIlKhPP+49X/Ab/8uvf0zND5ecg6V8oGKVFs3b5W14vVlgyJcudPo/P8c5DH\nxzH+hu8EAHirK1wB4OE8rkSlQxLNDq1infREJRanjWynb3kDBmaqZxOI5w4n1Bnb4wux9qtntBmw\ncPVQJSqTBALPg65JQw3tKk9ECHuKbQZUiWKhH4YrZyu4akcVp5Y6cNwA1kETiCIUjBt4favCtdfF\nba8wc3n8PjHPjKjrEDUdokPuAyuKyp5Jm9ZZYoSH3ZsokbSTBQtHKgF6svOYEsL2KUYh4Do9Zv0s\nBIXURYt8H07gQhEVTp4mC71DEUveSJU4cHp9f6nf0L5b6jQh12o8vChqKrFd0Hs1Rgl/hy3hlQnn\nMXtAsoSI7wcpEqVsFM5jXljXQVGXMUXLfyyv9S7XA8T3QRAESLrOn0nXDxFF8X0TaR9SkDROokYJ\n6bG+a6ZIw3nu5bsI8SipTd8N4A4AME3zMcMw3pj80jCMHwMQArh9lAOOjxchy5sf+DaL6enemaZN\nw2PjsxMYn67gVKUEZ3ml77ZnDdpR7tg+BkmMO82ZBpV8VQXT0xUc8jxopQKmpytYKhXQBVDVBOzY\nXgOEEEIkYXq6giLtQAtjZNtosoolxMQmEF0UdBlXX0GL5QURxkrkN6WxCqa3T+AowGXoXTPTqK5S\n3xIlQTOTJeycreE0JVHT2ycgl0toVctYBzAhl9CAA5dWuB2r6qRtImlDbarGr6WwfRJLAApCMPT6\nnqBj6HRtDDtnJ1BSi1j3mvj5D9+DhZUufutn3oS33rQDi+06IsTSf0gzF7fPVjE9tbkBcbyq4+Tq\nKgoAqqVS3/ZV9CJkPwREEdrEOLqLdfLbWiG1/Rgtlliq6KiVNbjUfH/l7nHoqoyA/h1BgBXGHV6k\neiiPkc63Wiym9jnlEDKpFkT+uUQ77G0zFUxPV1CrFoAF0gHOTI5herqCAsg2tckqpqcrUKdrmAN5\nRrZPTQ69D5PlMZxqn0ZlXIW8QDrymalyz29qZQ2W62OsQJf9GCPHCscLOCaKaD35BGnnO94OuVSC\nXC4jWm+gUKGhlgppf0MgHbasC6lj0ERCXLFzjH8+PUEzxHQFketALc0OPJdGrYIOgPGyAm26ggMn\nD8RfiiJE6iHctmc7xAG+qlEgzU5iAYAu+D1taQrU3Lx9EqXpClzJxzEAYkDKRgy7DzN0UJQVCQpV\nnKZ2TEIdq+BEsQAbQFWXevbxmquncPjUOtadAMVTRAnc/pbXY+w7bkD1Tz6E4hVXQKYqUXvHDFoA\nKnBRoftZoORo265pzJWLkJokM1WXNVSnVYydpKURqPq5c/sYUfaonUCiv5/cPoVqpm2t1TGcAlGi\ntk2NYbpawfgqLaSqxfd/olaATolGgT5Xg7BcLqILYLKqIYCPgqJh+9g09q0cwBWTvc+HbFGyJof8\nu67jY/dM7zPO0LB8UuTYakPfcRXf7kSxCMlqoqDL/LOSLsfqzHhv20tKAV7k8s/9MEKlGD8LTF2c\nnB1Hod/YFUzhBADZd1EuqrhqFykB44QRpqbKaL64D5UbDLg0s7E0EffFxwoFCD45dqNFnq8a7bsV\nLaTXvgZBD4FjQKi6qfZHQQC/04FSjX2E4jHy/+u27wb2A3bU3Zpx9BLAKL1IFUCSZgaGYcimafqG\nYdwI4CcB/BiA/z7KARuNrQmfJTE9XUG93ur5vLXMClMCfr2FUNEQdLtYWmqe8xoXrY4LWRKxupI2\ncHY65CFeb1pYWlhD5PvwBQn1egsOM497LlZW2hCkEIjIdyL1xDQtF/V6C22bZncwEgUXuiJCosrN\nyYUmVsZJh+SEIlZb5AX3bQeAAKcVAT453rF5MluXBcDuOjyct9pyIVghmG+6EmlQxABNWpsqCkLU\n6y1odNBo2wFAr3uH7ru5tAqlz71gWFghnXXkiKjXW6gqFdTbDbRona0DR1Zw7WwFh1aJWVkRZXih\nj2a3A0BDt2WjvsHiq1mIAC8fIfpy32dFDGUoXgRB0xBpBcC2IEQhPM9PbS9QYnfy9Brc8SIa6xYU\nWURr3QLbSpFFtLo2uq4FWZThhz4WGquY1+m5+0Jqn1abXM/Gept/vkLfG4fef8/1ebjXagWoiy3I\nLlUKnQj1egt2l5yj7EdwO1Hf82TQQQbYo6fnMb9Es/T8oOc3RU1Gfc3C8mnyzLiQ+Dbart18cV/5\nRhI2lMbHYS/VsV4n5xo65Fy7bdK29XYndYwFum5elLjOLlVF6vUmdrsuAqn/PQMAl3oH66dXoEYq\nnj9U59/VV7uwVxsQiyWsNM5Ogbbo892qN3ra0mkQhef/Z+9Ng3XLzvKwZw17+KYz3vl2q9VqSUdC\nA0ISIDGWhY0l24CDy+WEYEycSjkh/gNlO6GogOOCcqoChgyusk0IFBjbkVUSMoMAgSQ0oW4JqTV1\n9+n59r333DOf8417WFN+rGHv/U3n9FUrRfryVql0+3zD3t/ee631rOd93uftZxqTgyHUxDEQwvqM\nLbsPmXvvST9D7lp8nAxLUDHERBhQWKZr+juurFkw/4XHd/HGZ54HAOSrF+37Nq+hGEtg7ComU9fv\n7dlbyDesg3kxGIEkCQ6PJzBRAlZIEBBELMLBwRA+CzbOM1CS4OR4FObMiFOYvr2eg8KgmDq3wj+H\nymB4WuKgGCKfeDatus9aKsROsCzccReFMPbYB3eOMS4zxCRGyzg/Kt2Z+axn0AYT+7xJpVGUaun9\nGI9yREaCagWdtKvz5BG4kuC0GrdJzFC4lHU2kjPfGdMY4yILfy9KhdU2wn/7OfdkKDDis+cj3fWK\nVGnd3x2J9dytU9zI7+D2L/48Lv3dH0X64IMAgJJW14+mKcTIziW+mwUxdj5QxF6XcV+BO5b4hcNd\nHHSrczj+vd/B0W9/EA/8s59D7BjnvjfWzSJElGN/eLz0fv3/PZYBxPOk8wZAwyiFbm9vexHIjwC4\nDuAjAH4UwE9sbW29++5O8+sfgep0WgWatiwlPNUX7qWIUqqZVB5Qb2qpQxuI0KDU5cNTLzKkCnDA\nKnL/L1lTG+U1UYaWSGOODZefPx7U03lJJfp2v7UTVa03+i4lsdKOnFBcwhACOINB43bsLcPR4q3g\nJ+TpaC90JV+jJgoA1pJV28vJAwSnN/KuuNe6dtL31Pi05uw8EUc0uMFPu5WH97AIkdQgSRJSk7EW\nM+nDdq3tBWA1UZ2pFEHMKQpZwsAEe4FhOQoVLjPC8jl6IS8sb8WVT9R0Os9bHJjpggCFYHK5KFZc\nf8ZBOQru1/PsI7qtCHmpIMZ+LFW6nms/9g+x8h3fiZVv+w6kr3rIHntjE6bIUYwssPCaKF+lNZPO\nm6OJ8qmH0qWd56WMfJCaGeLtwzGGE4E3PGjTOzadN99V+8UGDRYH50jnec2jEmcWQiR8VhPl76Oi\n89N5APDgNcsSPHdngHJ3F6y3slCc7Svw6s3XrdbMz4spuNSIKQ9Aqa4pSmLa2HQmEQMt3W9eUp0X\n1TRR1Dh9Fm8Ky+NQ6btY9wZU11SLEoUqkPAE77z6drzr/u/EN15848z745qwXBwd4fmf/Md45WRn\nrs1E+EzE0HLzTD29SF37naSWjktjDunOfVpYDnjNYcVEC6nnp/MWNSD219BYx/oLqy6d189DL0ix\nv1e5ldcE/qzVCmuB11Z6WYDXVRLD0XP9O0eiOWcXt27CCIHxl79Unb/yHnUxVuOVc7frejnGeZio\nTwH4PgDv3draegeAL/sXtre3/4n/99bW1j8FsLu9vf37L/VJvlQxnS+u2xwsMu+72yiFmrvAh7Yv\nStd8YFwZahCOukmSakA5DYH7k+LEfaYSa7Z4CxOTIYltH6ZuK8LRoIAuK98g3yoBQoKSFhKWhKqu\ngZv0e+0YccQQGQVVm0CVA4MtE6HFOQauMq4CUbPVecw1VK67WM+LrFadByBU6JEohyk6oS+dB1HX\nO1dwY3AzVCPejSYqiRiImzwWaaJiGiOWBujEoRIr1WXDLRpA0KA9uzOA1lbTc3FtqhdfzFBo59GU\nrmN3vIdM5kEnNKuJmhWWe5DmzQDjOcLy2LGS2l0TWqvOay0Q0PvoxXYCHZRDHPbt8S+szn7GV+iN\nB84XqOblE124iCs/+l833u+b+ErXXikAvqD7aoKo/tgKdutgw99j5TrYs2X+QW4cf+Qzz+B9z9u0\n1ltfexFffe4Y48y2JokuX174+fNGZXEwT1g+BaI4t/0rtQwVaIsirvVaNGUJEkVBi6Mot6aPZhZE\nXVxN0W1FeOH2KcThQUMDNR3eC6reUcD3FAWquaVtqvGc1HR60/NaGjNw4fRb86rzato8D56JSz1T\n3tREhe4HCxrx+gi2EUWJQpV2MU9W8Lde831z308JRUQjFKpE9vRT0MdHeGBtFyZ928JjJJwidRuZ\nOogicQwGg7rPbxozSCPBMB9EJTyB0BJKKxBQKG0aIMozUYpHmDejeYF47Nr+rPcSMEpw2M8gjHVb\nV4NB5VbeAFEpTFHAaB3mET++iLfL0Bwt7iswmzorb6Q6efwxrL/rLwOoxm3krvuz/RtQWi3UXL6c\n4zxM1AcA5FtbW58G8IsAfnxra+sntra2vv/re2ovfci+Tef5nWhluLmY2tfa4Nc+9ERDoHqeKIRe\nDqLcJAnUmCgHosJOkyoYx0AFATlzwKi2QF5qXQAhQJLY92yupDgZ5NVkHoTGCYiQ6HBrxOZ3l4Pc\nM1G2mzrXCqomjnSZC6SGoR28pUwAFP58Ta2yhK+tgbY7KG7dwu6v/DL2fv3X5l4nL2b2i3xoxOv8\nFComyt47z0QJXSKObHXMi40kYjUmaj64iFmESBggjsPuOlVlKO328eaHrLDytz7xHH721z8310sq\niRhKY+/Feuo1a8WZwvJ6p/RpEBVFbIaJqoC2YytrBQHtaHm1k2eihuUQhy41szkHRPmdezFyrNCS\nSjkAoUelcgu2B62LzDYH4xKrnak2ON70sFZduyj8s/6Fr1YGjG98cANxRCFHY0Drl4SJYmcwUSSO\nQ6sYQghIZN3Gz2aiKksM6/FWPRvCLVDRHBBFCMHGSgLSPwKMWQoU+bpl5uRJzUw2r+wq/DWcB6Kk\nmWVj05iBy8IaZM7ZjNY3fP6+E9/GquZ5lcbzPefmhWdsZJG5CtezN8HeMNSDx5YuljLZccSQujFK\n60J3t+n1WlB/7sbNg9M+UYAVbgPeaNdJMepMlJEwAOSCJZkQAkQxIiMRu6rAjZUEh6c5yn1rgy+H\ng/A81hlB5psml0XFRLlx7L0ItSRoRfZ99SpioDKozZ54HEbZ9xeq6vm5mqzAwDTaWd1LcSYTtb29\nrQFMWxc8Med9//QlOqevW8iTE7CVlTAAvY+LWgKidg7H+PgXd3DYz/CWV1+YeV0bjd9+9g/QjTp4\nx9W3o+MWq1KoULVRjzhU5+lal3a3q3KDLzHWKBOkDqLs5xXzTFS1QK7EqwBuBuO0jZUEN/aGyIYu\n/+2tCpIYVBZhQfWL9bgoACTotSMkMUVkJCSrHg3h5plUM7R4CxoKIBUd7aloUWuiSwhBct99yJ56\nEmLP+rhc/pEfnbkelU+UPacAptoG43FVKXaU24nvascuDgLlXbFQgJ0cyRnpvIhwRAowMQ9gO52z\nC99cTfGKS128sF9NIAdTFTNxxFAWBRhcM2nKUcgKRC2yOBBTTBRBVRUVscoCw3/ePyOS+mekqoqa\nLruejsBEFUMc9a0NRGtOqsP/rRy5yfoMEMU37YJtjvvAhXo6b7Z3ntYGg3GJV15pghw/ZoKJ5TlA\nVNctzn/3e1+Li2stdNIIeuz8fl4CEEXiGCRJIE9nO9jrPJtNR0URuHP5Xxb1ak7rIVc9n8qNr3lM\nFGBTNMnYMrbx5asLj8FXVwFCApgwyh1ryhy0bapzrYOoaTY2iRkiaT8/zyCzMutFxVR43zs6BaKC\nXcpyUOTPsXC+d+cDUbb/n2fHU1VALJlDIk7R0rPpPOMYm5RW9yGNOSArc+TpqLoC5EjgvbKqa8W0\n1cYKtVjfSeIYUVE1oL6w2sLjN05QHlkQZZmo2SrJkHHJi1DlG6oqiQIMICVFi9n3TWZAlGWidJYh\nv3EDrVe9CkKViKntrVlZIwxmTE7vhbhnzDaNMaGTuQ/i0gI7hzcWfu6OE+L5XnjTcWu4gz+88VG8\n/+nfwXuf/K1wrHIhE1X5RIXeWFGzhDky0rYvIIBWHkTZyUa43U9dE9WmdoB7zw/vPzMaeLYgCZ+h\nUqPj2J7KQM/ZHqQcjDoQVaNlBbPHjDWt0kJchMHsfaLEFBGd3P8KoCb61nmO06KPP3z+o1COvvZl\n/56BSt1AXlulYJQ0mKjVuBf6M8mvAUQlEQUCi7PAbNNbSsRR1UBVlw0dhI9vdOD61c6J+h1vaLIA\nScQgTdUmIWEJclVP580356sbA04KhbTmaRM3fMSm7C64Zysds6nJmYUTnonql0Mc9vO5LBQApA5E\nieDKvXzxitx4IwMnwGVNTVQ9ZTmYlFDaYH3KP6nyIjqbiQptOcoSr75vFX/prbYHYzvlMC71Nq81\nyYsN2y/wEsT+XsPYE/A9BaeuH48QGRl64y2Keq/FGSbKgygt5362lXBsCLvgxVcWM1GEMbDV1QAm\nptOPHsCkqjrXuM5Exc0xkEYMiS5B5qTyAJvO1ASI69jPMVGoMVFJrfsBOYOJ8vNfmXsQtTz9598z\nzURFc8azD84oWm7c1vVlOvLtd+ogilUdJuYwUX6zlqsi2KHU1weulQVRcj5Atl8cgxuJyDGcF1ZT\ncC0DyysH/bnO8azW+mW6Byec/lZJAkYZEhYH2xkAMFpDjUah2nzyuPXqK3TVrqrqeXpvekXdMw2I\n9WgEI0TQAwDAvh6AA/hPj/0Wfvxb3jX3c7tHduLtj8uZ3mlA03fkxKWclDbQxswVlod0npwjHGU2\nHx4ZFRqzGkWhtQlGl2IqnRdrggJ2gHoQtekWoWw4QYwaNR5FiKQJrE+1WLuyYrdAcqOQkerRKKhB\nAiDRJAjACat2RH5nLKa6lyf3NZsIy9MT/Pwzv4qT4hSbrXW87fJbZtJ5DK6FSduez6SQOMqOcZQf\n43Xrrwk7OmXEizbaDOdVY6IWaYUSz/zVmKhkDhMFAH/lm++HAfBXv+V+KGVmmiInEQPh9n62eQsp\nS5DLYqGwvMVTEBCMavR4VjQXYO9YzhAFgBSYKD8/hsXr7JTnSmJB1Ek2gJDrc/VQQJXOE1kGDljn\n/yXhAYtxoMun8wghiGgEUUtZngztc+iLI3yEdJ73TVrKRNnz4VpU4lkAnYRDObAwrzXJ3UR06TKK\nmzchT0+D0zdgGTM+1VbG8AjcZGcyUZQScEZd25eyMV8JNybZAhCVJgzrDkRFS5gowIrLy1s3rfP8\nlMeTcefY0jUzSHffDJWN6woAScwtiErXFh5PchrSzQBgHIgiNTanronyvnaLIrSxelFMlO3Q4MFj\nSxVQZ9jtdF2T73o6z2cMWmiCKJQOHNHZc/ebw0zmiOA7UTSZqJLwALDmhYlixHoYWoetdROs1eYI\nNRyGQp5GOi8wUTnyws4F/h4aomA0QSkq5/I6iNKTCaA1Wq95LbKnnsTk8cew+de/D6USgd0+q9PE\nyz3uGSZKOLQebVRM1MixEbFYTKH6RsKATe1NRz0dMXLOuYWY3/IFADgjIAAGdAd/8uzHAFQTgvTN\nObVA6dphGM0gpA4gqvRMVOwF5wTcgSjKq3QeAGSjZjpPRxxMmZByrLdCSGIGziiMMYi0RFlLzRW+\n/YwiQQBOuAiTgN8Zl/OYqFrkR4c4KZzNhKsAmcgMKUtDywbtcodJy6CdcExyic/uPQoAeNvlbww7\nOk3EjPHleSOua6IWCcvdOqVjXgnL1XwQ1W1F+MHvehU6aYSVTgw2ldJIatWAraiF1OnKFmmiOOVY\nTVZwlJ3giwdfxad2HkZeyqkO8wygEqy2D2JuApa1UxScNBavRdHmLVBCcZLZiXARiPJATmVNvd2i\n8ClzFL7tS/X+mEUoa4DAN85enwFRLvWzxNAxHM+dT6SboLOdRogdYFv2+RcT8eUrABDS1YDduZta\nOxwfmnNwfbYmCrDPSykkTFk0rm/ppmum59/QNOboSdcEd3Nz7nt8ROsbMFJCjYbQk2bVsjf0TRsg\nyj2jVAU2Mhw3oki0AJYAaskJuKzmWS9TQI3NSSJWq847i4ly/SWdSej5mKgEyqiwFrRUMXejW4+2\nsfN7PZ2nXDovwVQ6r9ZhYjoCEyXzAJTqLBhVlv33YGZeGMdm+nl3pRMH0GxPTEEcWu1uXeAfWr8U\nBbKpzgeGKECzsGa1eauhifKi8vjqNST3vwL5009Bl2WjcfqaN0ku/wJEvazD7z7q6bxT4hpGnhNE\n3T6YFc7V0xFjBwz8QJi34BJCEEUUh5sfxxN7j9m/OZAjqU/nVUwUNEUhFagbeCXz6TzPRNVEmryZ\nziunytANp+Aa6LhdUai4UWVgGIy0rSnqqTkPomJdY25qTBQLIKr5OMXXrjeYihduPhb+7avtMpk3\n2CBZ+saYGq2UIysEHtn9PCLK8U2X3hRAj6HyJWGiFgrL3YSvIhauX6zFjLD8PBE3mKjUaTPKwADO\nWwA20w2cFn38+NFcVwAAIABJREFUxyc/iP+w/QHHRFWTc52J8lGxlfa/tdGQjCCSZ/toUUKxEveC\nONSXUE+HPwc1lQJa+L2+4it3juU1DVpEIwgl8OHP3cQkl8EIcAZE+R5mwVX77HReZJqVcJ2UBw+i\nlwpERZdsyuzOUzfwyONWlxJS9FPXRbMI3Mhzgag4YpCF9QNqpPPcmGRqQTrPMzmEnFndxtctayRP\nTqCyZgpIu+udzAFRhKlgs+GjTRUIAB0vAVGMhAbmgGXYAcCQqXReqM47SxPlhOWue8IibWM9EhaD\nagPVt9q4eRrH6Wg7TVQ9BaxCD8PZdB4nfG7q3DNRNp3nwFYdRHlN1BlMFDca/vKvdmKsSjtefaNp\nsWefw0Y6r1X13cunClQ0FGBoJTjnKTKZQxuX5vMO/ys9tL/hG2CkRPb0Uyi1mJPOuzdtDu4dEOVK\nrHmNidpXVqfRkvPTHcYY7B5PguP47XlMVL2hpZhAm6opZLwg3x5zBhjmZTkVE1XTPFQgiqEUCkz6\nlJlufIYrANpVWrgv9OkQ4UWGbkLy1HXHNMvMhRGh/YFxtgt1VikjlVleyzNRTITfx7SEIAzl1ARA\n4xgP/E8/gyt//78BABzsPhteO8osiJqIrKrIA1CW7jsjhXbCUaLA3mQfr11/NVq8BU45OOUgTH5N\nwnLPDC1KA3hgLSNagShzd8dspg/bSHliq1lK+zxNM1EAcKG1AQODk+IU2miYKGt42tjeeSr47QAV\nE+V1c6USELz6+1nRi7uYqDEAs1AT5c8hpNbOYqKSxFZtFZWvjI+YRRiXOf79Hz2Fj37hVi2d1zy2\nT3ERp91jC7Q39fOJ5zBRSWCiXpp0Xuwq4B77/JP41x/8KrJCzuiLfCjKXFn82anVOGLV9Y3rTJTb\nLC1M53Fwo2B4dKYGrqrQO6m8hXzFoe+LV0sDh3FC5UzBgWdrzBImyj6HsyDK23QA9ndX6byzqvPc\nnOnYyfOk82KWoJ3poNOMjJrruVWP1hyLA+nSWJ41AxyzQ3WDGa6HB3lfPnwMnz/8MwBNiwMqBSTh\nSzVR3gLHH7fXjoKPVXzNNpcuHStaf/4qK598pgenhoTRNDBRLd6CgQl6zKrX5ArSh6xtRv7CDUgt\nQzpv5S/SefdGeDFhnYm6o121TqkC8q7HYFwiKxRe98A6CIDnd2cdWevpPAODiczCA7lowY04BS07\nYWfmfX28pogpUVVmGYpSaBC3EBa+rJYxaGIrXrQXgDo6ea2bgBIC6SZ0vzuXbtC2HXtRr7gJi6Nr\nSlqABcFs7ih3a9roheUyiOSZsruoopy9hvGVq0gesP270K+u31F+DG00cpU3jCBdVw4QZpuDevDh\nq8cAIKEJwL4GJiqmZ2qifOpBTjNRd9GyKIkYUGOiPJs2KL3YehZEbUw1USVx3mAxYgeiSG3SplJD\nUaBwk6zQApKTFwWiNKwT+sWF6TwPtn067wxTRGpBKCsFOGHgtVSH1UTZc905nAQQNc1EATbFxbyh\nY2vxMUM6z0xpolJuU0546Zko3j+CAXA0yGcMfX0ot+Ck9Ox7kUQUWjT1kgBQuOmaSjH3c63YGeXy\n5ZWYQNMratpbyNuoxLpmM+GZKDqbkmzB3kMZzb8vxhgIBttGyYX0xrCoM1H03BYH/rrIcjGbOx0J\nj9GdNK9/POWJNPOZOSDKz9Nxbe736TxK5oMoP898bu9R/PH+h8CvPB/SckZrUK0g6OxGtB56ygJn\npRMHH6v4qtPAaWsQTGotjZILtvBFHh1W1XmeUTYunVdWIAqobA4CE9XrBZ2fcMa5viAm5QlSlv4F\niHq5R5XOs5PHsBzhFG4XU2qMRdPvxRiD3S8/ARiDBy738PpXruPZnQFuTAEp4RB7cHstx0vTeYAF\nUZqKsFAfOkbMC0e5kgGcGZevplJBUkC4ScbAQDICrgy0E8EYt6ujlGClE1UNTBPPRDlRoUv/1XeX\nIZ3nJqX6gJ4Qt/hIHdJfdWE5VRKC8NBUeTr8NecD3239Ao6y45q9QbXgZBM3cTOJVsrnapdimnxt\nTBQ/WxMVOSZKcBJSktFdp/PqoK0VdqUeRM0riZ5uokqSJhNFmAGhBkTXQZSCZCSkmEslIBgJLOZZ\n0eFVlefljflsTdDDBHuOsxkAmrbAShnsDXzENIJyLMbu8RjHwwIEwGp3jjVIxMCWGDr6qO5VkzFp\n10AUe4lAFFtZAUlT9HK7GTs8zRcyUT5Vn5KzQVQcMcAxwg1NlLcFWJDOS2OOSCsYNn8hr0fdtXza\nW0hGDkTVDhNAClMzTFTq7qGK5j8Lyij7HCoDo+3v18JpIEl1EM5oYFnOTOe5CjlVvghNFI3RzZyn\nndMtxuXy9j+pLFASDsOquab01bBTTBShGnQREzU1z/D7t2GYvcfGbVzlGcJy790XO03caieumKir\n18L7pgsnWvddt+d9507NsdxpG420khH393bwirLX1WuieG8FrOsqo0du3qpd87Vk5S9A1Ms9xPER\ngGry2B3vIXMNiNJShwXNx8kffAjkV34R3zTYxpWNNt79LVYk/QePvNB4nwc7njkYiTEK6YXli9J5\nFKAiMFGZY3q8mJsqMZPOI0JCMRLSh1JLSGZ1MEZ5kWC1M+qkUdix+onYa2Vaxplk1naXIZ3nFkdJ\neBhYE1ehwqQOuX1MgShFK3HidNBWGyRJkIwKxCzGxdYFTGSGP7rxJwAq7ycAGDssq2B1WvOcxWMa\nWybqri0OmGVxDGkwI/Xgwum8OAkLYmIkOHvxQyaJGcDsNUx5UpmcLmGiLswwUVlj8dLunswHUfYe\neiaKKhNM8paFZxk31unC3+mBHBHWXJEsaFNRD9pKEZVqJuUSsRggBiAad44mOBnmWOnGc48dRwxc\nni0M91VdsZZVGTfseEheYmE5IQRmZT2IuQ/72UIQ5Y0yE3L2fbCGt7PO3XkAUQuYqMRaBOhzMVEu\nnXc8m87zFcD1ggROOSgs+zkNopLQ724+kPHPIVADDAowmlhNjgtCSNAZnZnO847lpfdaO58mqu16\njhZdO76iM5ioWBbIWNwAN6Xb7EY1MJsmzKXX589J09pLQgBJLYCrQBRbuBEFKhDl2bpWwkO6Mb5S\nVWNOP9/ppUsgnKPcvYO8kGAuPQ7AtqoxFLmoNnlA1Y5LjXw6rwfasUSBHFkdVt17bjVZwVhOZsxz\n74W4J0CUGo+RP/M04uv3Be+c02KAIibQBGgVBsOyKRo/+fAfAAAemOzhymYbb3hwA5c32vj8kwdQ\nuhpQPne87sp7x2Jc00TNH1CcExhWMVE59SDKDk5aT+dpK/ojboH0xyuVgGK24sUzUaq2q2ulHEwJ\nEM6Dc7IHUbETjNZ3l+3EXhc/KQlSgaIJ8c16VWBR6kwUUcJqohZUlhBCwNfXkY5LtFiKzdRO4B9+\n4WPoRV18zyu+O7x3MJIwmkAYJ3b3fk41FoOTGIQpJNHdNY1OYqtRoogXakeY+y2CVwtiauYzAGce\nzwnLY5KAEjqTzpuniZrHRNWrojzriBqIss9I1XNPaBEWRH2O/pDUaeU21xeD09AuQjhzxXM07qat\nNqJSI50q/Y586oNo5KXCwWk+Y2/gI+G0AlFLxOz1HmP1dF6rkc57aTRRACCiFKkuQYzGYT+v7AKm\nQZT7rckCo8x61P2S6mCi8CBqQTovTWwFoFqwMahHlc47CSlIz2AIB3j4VEECQwTCZjVRsQftc/yR\nAKBUMqQItWO6S2HTSArNMZXgxflEqXK26nNRJDwJv6loW083fgYTFckcOU3CnA7M9+tKI+42ZgtA\nFJt9Zg2197E+5y5L5/n7yt1zTAhBBwKSMCT33x96nU4bwBLGEF26FEBUGjMQQqCNhjLKZjtqwnKg\nls4b+HTeSkhpKtd8uF6FuBoq9F6+TYgXxT0Booaf+yyMlFh5xzvD3wblECAEIo2QFnoGRPkKjowl\nuLJh26Rs3b+KUuqG8aYHOxsORI3EuNJELdDsRJEBIdUk5YXbleahEpb7dB6EZZ58RVepS0hGQJWG\ndNS4QjW5thOOSMvGZOQr+3zpcmN3Oc1EUR5+h9dEGSEqRqgGoiDtQF7ERAEAX1lFmiu0aYLNVsWy\n/O3X/kBDWD4YCxAdIZc5WjVNVJ2J4s5LikXn0/pMR8yt5QAzi3fs1O3MisjqegTlSMzd7bJ8+jAi\n9jd4QLjIsRywjZgpoZWQP84b6TxNKqbSB1nARAFVmnZZFLm9n6uri4ERZxRxRMGkOFcqD7CAghqg\nhebv9F5BqHkFXV6fD3DiiCFSi12xfRDOoSmbSee1YlYxUWdUFL6YyFgCAlvpddTPK1f1KU2U3yDF\n5wDicUTn9pDzTBTEouo87oxyzwZRNI5BO51mOs8xGG46manqZMQChenqPP+bigWu+EKLAMz8/FJK\nDWgKPXU9YnM+JqregBiweqezImFx+E1ZalkVWsy27fFhlEIkS+QsbmwQ/b1kNdYljggINY3xWI96\n9eAqsxolTVw6rzbnLkvnVRY4tc2yLpCxBGxlNfStbL/+G2Y+G1+5asHyZBjGhfTfo60vGVBJK3w6\nT7mm36zTAWEMJG3heM/ZBdVA82Rkf/fO6dHC83+5xr0Boj7zaYAQ9L51CkQBMJ0WWoVu9P0Rhwfh\n3ysogsHmg1ct2q4LzP2uPzBR5aTSRC2ozuOJfXi7blHxIKp0uxgqy8o/x1dOSDmjd5HMioaVB1Gm\nYhs8iEKtn50XpdfNFzmJQJhCx4GoeUxUSRQ0sYPdAwBCFWJufaWIlFCENXZr0+FTBT0d43Xrr8Hl\n9iX8V2/4Ibzt8jc23tcfl6A6wkRmNsU4p4rOl/XT8xggzQnPRNVTYTPn6wSYhZsTBY0ak9eiEAcH\nobKqcTwugp9Xq7Yr5ZQHj6zG8QnFX3/we/EDD70HMUlBkqxRbeYd0I2s/QYx5xnh52eisrF9b6e7\n3BKhlViW8yxRuQ/iXM07svk7PaFyadOVSosRvueNs62VAAssElWGLgPLQvMIsWmm89LYMlGKR4GZ\nfSliRJw5rCpw2M8rQNJpgsHCVdZF5wBRiWsCDkxpopSBAgXk/HuZMIDCzIAoocSMqzpgU3p1Ybkf\nowW3750uSKDGzhXTPlGR2/AVC1gYoUXFRPnqX2EZEIlpEGWLVJYBZaCyODClr/o8R3UejYMh7cSZ\ny9J8Sd9Udy9zmjTSbIXPGNTuA/ONlBeCqGqsrFMrX9CBiXI61DM0USIwUdU1S2SBjMbIS4WVd34b\nXvFTP41LP/TDM5/16b7O8DiwyWVNMlJ4wTlvtn4JfSCdUF2lLRDHXNa1nI8+bkmHTz1+c+H5v1zj\nZQ+itCiRPfM00gcfbBhteuaJd7tIC4NhXoniJtvb4d9rpsqZexD17E71Xr9gbSQWRA3FKICJRZod\nv/i3HBMyCUyUS5XIejrPUq1GCJfOqzNRNsUmBIUx1qrARyu1u1JTE3sG08zaOGUkAqiqhOWi0kSV\njuL1gG0eE2XcSijOYKLgFtKu5rivdw0//Y5/hLdffkvjLVJpDCcCjMSYCMtEeZaiPglR7ZqYsrtL\nr3kmCstAlCvJL5g3OeWNapx5Ue7ewXM/+Y+x+6v/V+PvEbf2E55Bq6cml/W0e/cr34XvvP4OtEgP\nJM4a5qKhBNkBE2MMIAQUJ6FxcT2dZ84BooZuH5G2loOodsLBlTiTLfChPYiaWmDK0p7bG161isv5\nEf67G+9H+yO/Nfc7Ys4QawFyDhZJsdgyUbV0XpowJFpAnsNP6MXEqbLHuN4hVhPlHKPZVGuZAKIW\niMLrEfNa+5O6T5TQkJRBlwvSeU60LmtGuSf5Kf7JJ/9nfOzWp2bez9fWofMc4siyB746zzPW0wUJ\nxMxnorj7TQVZAKKUgMf6FRPl0nlTG5NIy5D6XBbe4gBOT7SoQKQeCU8CEzV21b4km9/OCwCUA1gF\njZpMFDyIqu4Di+z3Gj1/Sa2nvlbIRfv9aDJRgi7fiAbH+mDErBHJAjlNMJw4H7YHXwW+Ousc76v3\nuuOjAII9E0XBkNfMNoEqnaezSYO5LVmCVPlOC9XcFVN7/Q+H9564/GUPosrbO4DWSB54ZePvQdS7\nYu0LJoPj8FrxQtVLr1Nzb712oYOYUzx3pwai3MLqmaiP3PwEHsseAbBYWM4iN/CdIHwEP7EYSxWX\nRS2dR1GUEqYs7QJZ00RJTkC0gcgloBnEFBMVawFTE/7mDkTVtQ7MWPG2F5b7naKgPFC8pSqhOYUp\nSyvENrbajDMadoKS8qUTgHaaq65azAIMJ25wkhiFLJDWrAjqkyT1abi7BFEK0raC0osBDHG/K3O9\nvQoShR33opg8bs1ER5/7bPMFJyr3mqP6bzlPw87YdECYBomq4+cOTCsvdFMKMMZWcNar8zwTVZyd\nzjs5tb+VRcuvaxoxRFqcOy1mHGvQmmKi3PqHV1/v4O+JLwAAhp/507nfEXNi03HnYL8ks89+M53H\nkagS4hxpnxcTHkRdSjTGuUThkCidqpDKHEtjFrBI9UhiGtiGBhMlNRTlYaMz8znH6tS7DTx58gxK\nVeKZ/vMz7482bFq93LndYBtyD6Kmx7NmVos41TuPuXGRL2Ciylo6L2iipAYMtcLmWnAtUVIGqZan\n6j0T5VOb5+2d54t5Rq4HJ1nSfN7kvlKZNzaIuVs2Se0+UDdP+F6nyyI2lgWTLp2na8U852GifBpR\nTyYgAHIWYzBePjdFFy4BAHpiHJgo4cAYqxURVZooSx7oLGtoCMckRqwVmDKNdJ5nxO+c9s+8dy+3\neNmDqOKmBUTTLUgG5RApS5CuWnaqGFRuq+XuHQDAYbSKpBgHKpwzildc7uH2wTg87F5/Uvf12RYP\nA3Rx9RhxzuJe4D12g0kojZI2QRQ0Q1kIwBgYxgITJVRFkcuiABQPqUUAaMcUkVGhogOo0oao7WQJ\nuBOWNzVRdWZJaAHFK+8aqiMQLm11Ur2yZEnLApXMX0jr0R97kajrfxaryoqgziB4c1F6dyDKX0Oz\nBND565AxDaU1SsIRKRFKtOd+7835VLan7T2DVk891CsTFwXRroqSV7+3kPY3eD1cmIhrxQc2jdL8\nPYvCGIOjY6eB08srlnqRAQEaqeJlEe79VA+/0vfxOrgNurcDAOAL2pWkzIDBAMnZ6TxBI+dYXk/n\n2dYkiyrI7iak0jhxIGrD5Yky54U2A6LcWDfnALMxr7U/qTNR0orGzQImKnKVbWWtzP6F4S0AwFF2\nPPN+X6lsyrJxvp6xptOVYm68MD6llXKMTI6z03mBiRIaRjEILRoefVwLCBIt3ZABlSbKg6h5xRnT\nkbBKWD5krsVNvlgTFQAfiRrgxoPFOojyVYbLQNR/vvWD+OHX/e0gI5DGzUNhzl0OoqrCI8dCO71S\nRhOcjpY/V2zVbtY6Kg8MrV9jGOGBiQrVeYGJyhrVfn03h6WFtho5AKNMIHd6Somykam5F+IeAFHW\nkiCdBlHFECtxD3HPPlxF/yS8Vt65A9Hq4TheAdEKelxRvpfXW9DG4MQ9tKUSICDoRk36nrRGC32i\niGMmuPMiGsIBI6FQ0gimyBvVeWVmX9cRC6Ct1GXY3akiBzRvNEPuuN2kqu28PYjStcFPNG+ULfuJ\noy4sr5gof048NA7VIf23PJ0n3YLWXgKiTkf2u+qtZcg8Z3G3cHlw8mLDszgNPdFUGFeqnjOFUugg\nml0GRrJnngZgK4fqGhQvAid+AqqlJs8DoiA981Yd2wMl6RzeQxqWk2Z13hQDsChORyWyif2uTCyv\nWOr6Xfc5QZS/9+nU7fKnFJ9UYlTV78/V77S8P9oZ/kGAXYwioxDX3MGZ0WDQC8XPdxODcYnMPZdr\nbkznA9eGYyqd50GUZ3qXRdPioPq9wjFRegET5am9evslD6J8m6V68M1Kf1Z3gfeFJKRsjme/6fCd\nEXz4tNZkAYAQdUa0kc7jMDDBcBWwqcE6C74oCOfWYkNa5+x5usLpqAvLB9S1QpksAVFuDhBTLHuh\nCTQIULsPfszpJfPbd15/B9557ZsBZZ9B4UBU0ERRvrQ6zzOMHrR6EJWzGHsni38HAPAVK0XpqAwd\np/H1IIrX9KxryQoiGuHpk2ehRAkjRPBVK0qFU/cMpKVBWdpruXcygfFzFBeNVmn3QtwDIOomQAji\n6/eFv2mjMRJj9OIeuOs5VAxObEfzooA8PsKgtYaR263IfsVSrbvmvicDN8B0iYjZNgt/9YF34ULL\n7qRpe7hQWB7SO9L2NvOo3zJREUyeV2abxvXRAmA4a6TzwsSUFyCah9cAoO1AVF1k6rVXDSCgua0U\njO3g9cySZ6KMsZOc5qwSJ6tK8B3SeWeAqNIvpEvIo8HYfn8n8k2OZbA4qDNRxoEoc5dMVO6p6iUT\nni4KaALkRqKUOhjs+Yl1OtRkjHLntj0vIYJYF6iqcPzkmb5IJkrL2d/rgaAoCYwx1X2oV+fVhOXm\njMX79uEonN9ELgdR/tnS50yNCXfv4ykQ5S+l2dsHANBuF0bKUHJfj5ZLVetzpPP8YlNnCoz7zpy8\ndEzUyahA5rQgPQeUxyd2F/7cSfN6TzwTdY4qySSuWRzEzXSeZnwhkPd/91V8SivcGlqGbyTGyOVU\nwcP994d/15moHAKKAkQ0b5jvjCCm0trEpSgzswBENZgob3GgAygLzLDWtlsD4cv1lbDl/SSOQYWa\nMXFdFAmLwV06b2IoChqFQoB5Ec6V8uD9BwBCmZAxqP7mXNsXtBBrfK8bz6VnogovLGdL277UNbMA\noCcWsGc0ORO40DSF5jG6MsMrr7g+ew68chohL+1cH7MYb7/8Fhzmx3jizlfdZ+18fOtwFJ73tNBw\nTQuwf5yFjS1hEqPs3vKKOhNEbW1t0a2trX+1tbX1p1tbWx/b2tp69dTrP761tfWw+9/PfP1O9cWH\n0RrFzRcQX70KGse4M97DZ+58DsNyDAODlaQH1rMPVJQLfHrnEXzii78LANilPai2MxfrV74b666v\nl29RUSoRBHbf/9C78fff8EMAHIhawER5fxAqFBSnYdHyi7UpigYTJX0KIOINYXkZFsgcxHDLGDlq\nvEV8rz3H2hiNsa8GKSog4Ccy6tIRdbPNUihILWFgoDkLbIdRHKDS9nRzE62ifGk6TzhPp2RJs+e+\nY/e6LmVjiAwpuzoTpYLb8V0yUdLriRYzUTrPISKK0kiUQlXXcQGIyrafCD25AEAeVekTAc98VW0S\nfJwLRAnvA1ZnonxK0qYAPDthOK2q8+pVUWcs3jsHY0BTULBgtLcoOu7ZUucwdQQA4TQ0Se35MMZg\nkrnrtW+rYdtbr7PfO5htZNou7K5btXtnHs9XT9V1YDqAqLNFy+eN02HFRLUdE1EOR8hphC8+U91/\nrU0AUWfdB8A34nVsUFJP5zkQJeZX2/lNjq+S25scNNpSHeXNlF7d5bque/FO99NWCn7c1RlvoJoz\nxguYqFLLmSrRUlR9H/14DBs4Wml0lgVNEjA5a+K6KBJmheWaURTSoOTJGUxUVTVXn9uEVFbkXc4y\nUf4aLQu/KSpd2lzXLA6WMlFobg48E1Xy5SDKGIOd0S6KpI22yvHQNde+xT0bEeW2MMkd+7uu2yr2\nz974DIDK+uLm/giZS5umpQ7jt85EES6CyP1eifMwUX8TQLq9vf1OAP8jgF/wL2xtbb0KwH8J4NsA\nvBPA925tbb3563GidxPi6BA6z4Me6mcf/gX8xuPvxRPHTwIAVuIeWM8CpVah8R+e/AAe/crHAAA7\n6CB11XyqAaLsgD0eFjge5I1u1gBwtXMFMASkPVgIohR12iIhoTlFJnPL+EgdvECUX6w1g3SDGZxb\nVshoO9F5s8myCGX/noVIXY7eLyi5zFFGnrmqgSif0poqt5XOgTxMwhEHtIaR0gIvYo8VgBVfvnss\nfCuJsjkZ/fSvPIIPPWx1a6eOiVpNbSqk0HmoZKwLR72Y+q5BlHItDZZMeKYoIF36tBQKJVnORA0/\na8Xk3be+zf62WooqaB/ctQ6TvjHBeHRZSOFLkqvFKyw8yl53vwAZzhtM1LQ/z6KwzbUJWryFiVy+\nq207zYw8Z2pMOEY2qt37SSHDfaT7x2Bra6GCqM78+kgdiBKdlTOP57U5p4MD3BhYnZpnBicL2nLc\nTZyOigCi4jIDge21VtAYO7Vm5XmpgkHjedJ56RwmSmkNpQ0051YfKWdZ2KDjcz3vPnHbLoKX27Ya\nbDqlR6MI1KUdWa0fYalKC3qmnhnpmNu69hKomJTRAhZGqFqVqGddpA4FIp5Br5f61+eSJ46fwm88\n/t5G2g8A+oKAlepconLAMVHSQHGKUmoInjQY4+nwm82SNjVapdQQNGoAYr/pFQJzAW49lCQwiqHQ\nL04TlTvQSWSJP3z+o/jQY78DAIhWetg5HOM/ffI53D4YzXzukduP4uce+RfoM4qOynFlo9U4Z29V\n4HVR3U9/CW+arOKF/WcA1EDUXp2JMhi7PoR7J1lgscEkRpN7i4k6z4zyHQB+HwC2t7c/s7W19fba\nazcBvHt7e1sBwNbWVgRgqSp1fb0NfhdNXF9sXLzYw8GTXwEAPCm6eNOFqoHtzdxOrFfXN7EZXcZt\nAA/dLHDzUoz1gR2oR/Eq3vzAVeAxIJE5Ll60O+CH3ELwu3/6PN73sWew+W0F1tsr4XUASPQK8vYQ\n16700E5nBziNFFAAVCmYmEMbje56BG0A6SaEqFad57u2szQBUKC3HiM6JGGBJGWBiMSQADprETZa\nPQxWIuzCaqIuXuxhf1yidNWCsVHhfI17+DurES5u9tD3vkiEg3KG3poTNbtqmI3VJFC3ndUItO0e\noSiC0qZxHepBVlx1HqXhPTfuDHDrYIT/+NERfuRvvBG52+3dd2kT2AN4C2BcQWuOy5dqVWyuyi1q\nYeHxlkU8dqyAZFjf6MxtM/JsWUDHDMJItLtpSOetpASrU8dURYGnv/Qo0iuXcfW7vx1Pff7PkJaT\ncG7RobshWTPuAAAgAElEQVQGxt4LP8n+rT8+xeGXfxFv+rl/tvR8PWNGk9r1fdZN6oqh02uhNXGT\nWBxBQeLixR74LRIYgHZEll6rw0EBSglWW10Mi+HS9661nClsuxXep7XGjf5trKY9bLSqEuuLF3ug\nq+4Zo9U5TO4MYBRHJDRYf4Tum9+EtWuXcAyggxIXpo7fM86bZnNz6bkZY0Il3PufeD++yI7wS+/5\nGfQSex0miHDhQvdcTutnRakNchoDhICLHBfWW0ifKXEadbF7koXzPDzNApOZUH3mM3tlUOBZN+Yv\nXN1AcqGHSe50dU6HtrmSgHc7EErgf/jDf463XnsT3tOyILQAQ58c4xM7f4rrvSv4z77h3fg/H/41\n5Gw8c+zbly9h/NxzYKIIrylqmSPigJr/uxQUDEDaZY3vuaMlFKEozfxnLD6i4Tlscft9UhvbgBpA\nu2e/L9dO1kA5Wp0kfNd//5FfBgC8/RVvxHe98lsBAMNJibGiWDMG3bR9rnnAGINIAiqidsMap9Cn\nR7iw0Z7rHeY3nYJyxElUPesGUIwDZXWPW5lLuWuG7koL7XTxBsMQAigOiRIXL/bgPmpbA5HF41Q6\n5jchBh989kP4loEF6msX15EdKPzWJ5/Do88c4f/4R3+p8bmPfcXKDAYxcAUGmy2CaLWHVma/r+1S\n5N1eC92ijyff9168C8D7vseO4+7mKi5e7GH3JINwes601MiFPdeD0xxJFCFmEXIuUKjF68DLMc4D\nolYA1LeGamtri29vb8vt7W0B4HBra4sA+F8BfGF7e/vJZV92coYA7qWIixd7ODgY4vajjwMA/mQX\n4B99Krz+hR2X6xURhk6QePlY4u98+ARP3W+R9lG0iu6mrV4Z7Ozj4MCZc7qJJStcJZMowQwLrwMA\nLVdAWn3cOtjHejpbwh6Eu6WAadtJ8YU7B8gLEYTg+dAOEE448rGjfV3/rdt7RzgZjsIgR1mGxpc7\ne0dQHYaib3ckE0lwcDDEreFhSP9NTgfhfEVBgB6wc3iEVb2JifucIByn/Qx3DuzuVbtJ5mDnGEow\nMAC394/QPXCPBoswyUXjOtTjuCyxCkAN8/CeW3eqx+or23vYOxqDUYLIVa/sHh9b7ZVqXt/J2AA9\noD8aLTzestg/ccyi4ri9czp3wlNZBrUeo5QldvcGKNwieLx3gvJK85jDz/8ZdJ6j/da/jIzbtMjp\nCzvg7twOHbNCTqvf/g+v/ADY/i9jsP9V7O+eLjWAzDP7jB70T8PnB47KN5pjZ7eP9QP7mwxjyESB\ng4Mh+uNJYACGx4Ol1+rwdILVToyUJtgV+9jfHywEGsbt3gclcHAwhDEG//yzv4Tbozu41rmCn/rW\nnwBQjcMTIdEFoAbV73/2hWNAMawPXNrqwmVk1E7Qxzf3YKbO1Zza5/BUJ0t/RylUqE7bP94FLkZ4\n76O/h++fPGivJeG4faePJGJ4/9O/g73xAf7Bm//euYTJ07GzN4QhFKTVRn7Sx8VLMRIjkLMYu4dj\n3N45RRwx3D4cB4+fSf/sZzaflIGJOhkJMDPEwKVIlJsDDu4cg69p7E8OcGtwB7cGd3BVvA0prD7x\nj7cfgTEG73ngr6Cl7AbyxuEdHKxPHdt5Co3v7IXzGuUTKE4DG35wMLSidgei9o/7OGDV9xSjCSSN\nMMnl3N921O8HJnp41MfBwRB5IUM6b/foBJsYorhj042CMOwfjHCw0azE/Mrtp/D6jnXjfmanj5Jy\nRIUBkfTc80CkDERCUJQqeIbtvbAP1u3OvHd41Hfnw3F8OgnHyHIBySKoyUkYJ4dOCwdNcWunHzIW\n82IwKmB6Ecal/c7Rqf1ezSKMJuXC3zJ0BE/mihdSt6Fvr/aAA/viYFzMfP4os3PDxGVs9569jeQ+\nimN3XOK0bDu7fRSD3fC52EkvcsOwtz/Aszt9vG59BdixTNSdkxJ7ewPc3B/i2oUOcpaiYBJHx5O7\nmpf/PMcyUHiemWMAoP4NdHt7O/CqW1tbKYDfdO/5sbs8x69L5K4ybz9ex+9+5vnw99PCDo5X9O4H\n6zYvzit2SxRJhCFvY/2yBVG+V9Bz/RvYK26CM7+4GGgiAx06+PSnMP7ylwBhB9BYjJHLHL/x2Hux\nN6lc0AVyGENsVUvkxbwT6wPjQJSvDotZVFkLuHLnQpUoVVWdFxsBTqrXgIrJylxqI5NZSP/VhbvC\nVXeF9FDIzzMUQlfaLMdEyaIIAtNc5SGNhChaWlEzcQ6frKgo+WGN9v3Ss0c4HuRY7yXoRO1wzqAK\nWjLoGkVe5CQc/27CC8ttKmz2nI2y6TEd2eqhTJZLheW+ArS19TpwlwIWJ5X+ZCIzPLBT4O986rdx\n+tE/BgBc+Eplh1DX3AF2x3zwvvfi9E8+ZnV97vd67xb7G1wqwafz3H0j0fx03lmO5eNMopNytHkL\n2uggXJ8Xvv+bL7kuVInbI2sLsjPebZSsA0DuHbBrpfknowJGc6wPXZ/JK1fAXAXRPE1UNLaLVJZ0\nZl6rR1YqK/oFsEHtex/e/TwmY/udJY2Qu2fwj1/4OL5y9DgeP35q/pedEb6snHW7UOMRrvZcuovG\nMADuHDnH61IGJuosgT9gjUGn274I/5zyZuPdcU2/9vie3RwKynEwsenk+7rXQsr4OK+es2f7N/Cr\nX/136LzT6l/qLbFyWUBFrPHM5KUMbtyFnNZEFVCMIy/l3FRWocqZuScvVWiDFNJ5PtU3VQ13qW2r\nCJ/rV83f944nKBkHNQAtzw+AuTIQHDAAZGxB+yJxeSOdV29A7GUXxlQ6rpolzaRYXvCSlwrQETJl\nZRz+OrMksa8t+pz3GitLdHgbiauOS1erNWzetufEg6iOS8O7fnheqpE4Cckv/D+P4uj2fvjc2pFL\nt6ctHJxmKEqFjcv2WUpLjfFE46CfQUiNa5sdtKM2CJeNef1eiPM8fZ8C8NcAYGtr6x0AvuxfcAzU\nBwF8cXt7+x/4tN6fl1A7tzBkLUx4C8eTpnfFhdYm7uteBeIEj2y8Aadd12VdGByspQAhWLnoQNRo\nhJEY4+f/7F/il77wr9ElEg9M7gDOIViUFNlTT2L3//5l3P7f/gW0sA/lUIzwyZ2H8Zndz+F//8K/\nCccuTQFaMhCjwyQ5ERmk1KFsXOcFKKFIoijoKLxLb6lKlFoEJirWErEDUX7xC2XHTtCayRyKERjG\nQpNUf+5ArWKt9NV5HFkha5ooVxab5SGdl8siTCIkWu7tMnSWCDSvJuZRVv37S88coT8qsd5LQi+9\nicysCF83haYBRMmzRbrzIgAENV/H5SdzbxA6LnKIJSBK7O8BAOLLlxGt20lGHlcgKpMZHrxtf+v+\nb/4GAGDw8GfC63UROgCo4RAnv/972P+NX8Pev/tNyKICwj4KVYCAAoYER3t7EhFKbYXHpS7P1TtP\na4NJIdFJI7Qck7ZMXO49jHLMnheAmT6UY9cSg+bV5Ho6tN5mKyN7/aOLl8Cdl42cA6LYeABJKPIz\nKrHyogIsfhFURmEwtKCiJNHMQvXRm59Y+p2L4nRkm2TzbhdqNMKDa/a4vU3L7tw+tNfBaqKaFiLL\nIo05uJHQhAQDTN92xFs8+DFcr6QscstOSsJxlB2DgGAjXUMnaoMSikFRsQOf2nkYn9t7FDuvXMUr\nf+5/wcZf+xvhtVzlMBEHlIJ2z1VWyDDu61XAgKtk5XFDnFyPQhU1PWYGrQ0KUWmZqg3cfE2Ur3x7\nYXgrPJe7xxmEY29pvlyD5MMYAy5N1ZTbgahF4vJgPEyaoE5IDe1Sa17jFaqpNbPXakkUQoHqCNpo\nFKoMwJom8dLPFspAg0AXBXJVIC3stX7V69fwmvtWwSjB8bCYMbs8mjgQ1XUFIY4Z947lXddRoD8q\n8fFPV906rh36itgIN/fss3zpugW0aWEwmuig/bt2oY02TwEmMMzO3ii8nOI8IOoDAPKtra1PA/hF\nAD++tbX1E1tbW98PKzr/bgDvcZV7H9va2nrnsi/7/yrUaAT0T7CfOGaANCf6b7r4JhBCMCkkPrLx\nNnzkTZfCa7sbFATAynoPYAxqNMKHb3wsvP6Dz/4O/oudD+P1bftgFbnB3r/99fC6zO1kMyxHYVfu\n2S/ACoRZ6USCHkTJzJYwuzYtpsiRsARpxMMCWWei6ixDrAVi6l9reo9MdHOhM0kUmqQKqYK4N3gn\nuc9pyjEpZGA1fJVQMcmCxUCuisCSEaeJWuRWO6ElNAFIUdoFfncXo1oVx/YLpzAANlbS0HpgLCYw\nRMEo3phc8twAhnwNTFQlyp43aXmg5J22R0UeWBc9p9dWubcHwjn4xiYI56CdTuh+Dth7myfVHlEO\nBo1iBXHcbNqpxxUIGT36+XC962AlVwU4IgAEhVBhN+s1M0KLhtnmMkGz3zl3WlEDwC6KaMqhevq9\nJ0WTWcuJhKSoPA1geyQaxbAydiDqwoUAotQcYTkZDTBkbZRy+YKZlVXbkLqxZRaYKI6stMUZxO3b\nHz9+EiOxuP3HojgdFVjrJbbCVym8+YKTBly1c05gogoFSRgMyLna76QxQ6wlFI1CStWDE+P0K/4Z\nnYgKACgHGgVhOC1PsZGugVEGSii6UafRH3RvbJnxvckB4stXQjrZGGM3R1Gzg8E4l6Fh9LSw3IKo\npji5HnkDROWW1UJVYBHmrMy3WYkbIMrfGwMTCgUsE+VsIybnc8g2UoKaqq2NcVXAOpugUOXMM1Ax\nUc3qvFIqaOYZwcr82P6BBqZzUeSlBPN9U2UWxi5P0nBt5kWpDASLoPIMyiikpYEmgGiV+Mkffhu+\n9RsuwxjgeNCcF48dE5U5LaPfpPhzfsurLuPH/uYb7bkdVcUH9/nnl5vgQ3X56iYMHBM11ri1b5+p\n6xe61qiTGBSyXGrV8HKLMzVR29vbGsB/O/XnJ2r/fulaor+E4ZsIH0cr4IxCR/Zh70VdjOUk9G3z\ngs2b++8E8H4AwO6mQWdIwRmzVP1oiE+6ShcYg0ulfQgfahV4HkA8Uihv3wrHjkcGGYBROWoMzExm\naPEWcpUhKuxlY0kCIMdIWBd07X1hihIJ69oKP+HSBm4CLVRh2Shf9VSrEPRUu59kR2oqFZQmAQhk\nhQpVFRUTVYJEEdqtCFkuA03te5bJ0bjakcoiLAo0joHC+r/ME2pnqkDJCdI8x/CRh7H7y/8K6du+\nF8AVtBMeFvKNXhJA1IlPPyiGSS6xsQJoY5CXGh0TfQ1MlLsWC0CU8RYQcQRAYVwUIZ03z3Fa7O8j\nunAxNE3lK6uQtR5SmchwubZbHvyp7WPG1tagTk8brBXQTC/o/inoJgUMMBHNdF7kgXOpQpVkxVYK\nCCVr1XmLr9XY+bq0XToPALIlFXqRlihQtTLxC3nMYpSqxGnet0pKF4UuUcYEaVadwzi3zMaqY6L4\n5gWQKAKJ45Bu8GGUAhkPMUounulknRUq3KtI2kbO2mgU2QgprJt5VihbEYvqnhznJzOGuctCKtvm\n5f5LXTDuhNeOkWytrQBHVbovLyVACEwUnav9TswpuLHu5D5COsmDKAc4xu4+ccqDB5JkBGM1xPXe\nQ+HzvbjbcC3fd/KC/clh49ilFjAwYQNhgVlsx6eaTedNxAS6LGC6rtKuVEDTrN3KD3iVzvNMYBo1\nJQh+XipY1DD6rftSeYC+dzzBmgd+43OCKM8aMQAwMM7/SI3H+Ldf/fd4fvACfvbbfyro48L7Ka+Y\nQFdFXc8Y+Otm/3B2Oq8oFSLEULDzsh+bUStB3s9sU/c5ekTpKgrt/BBZcXdMkJV2vFxYtc/GQT/H\npXXXB1EJjEq7Bo1T5x/mQZQ753aS4LWvu4S3vPoCOvvVhih1z1zGDYZ9+97VXopJwpEWGkZTPPGC\nvR/XLrTR2rHHtzYHAhsrX/8Csj8P8bI12wyW+CzB/Zc6ILFdgH7goffg5779p3Bfz3qk+Ac+7m6g\nz+0kur8RobvqLPG7PajRKDA1l06qAfL6FafzmTQn9nRoJ4WhGNsFxcVz/RdQKgFlFLgrr+duNzQo\n3C7RDU5SlI6JYqCeiUo9iLLpPK8ziI2s7eqaTS1HktqKJccWkDQNE3BWyIrlcMDClCVIHKOdcIxz\nEZgoX+Yqx5PGZzxLxlyPr0U7qYnIIGIKnWUYP/p5AMDlL38SAPDq+yrx/XovQcpTEJAAooyqQJZP\n61ETNTRCLyaaTNTidB4c8zcui+B0PZ3OU6MR9GSM6HLl98R6PejRKBQhTGSOVm3tHHzagqjWq18D\nYJaJUjWHfBiDrszAEDeYt0LZikzA7v692WZDN+fa9QDLNVHj3NP6NSZqSTqPlvY8xk4Y7Jmo6x1b\nHXZSNJmkXBbIY9pIm4xzARiKlbFG3o5A4xiEEPCV1RlNlOz3AWMw5O2lXmRAM53HpcH1rj2n0jUG\nLqnV7oynWIeTfJb9WhaTvGLvWM8ixnLPgagVC6r6zoE/pA+j+FwgihCC2FS/A6iYKL+ZCZYNDsBe\n71wNLU1k7Cr7WpV9Ri/qWkbILaoefO3XtJpAtZmCY57VxM0VuYRxBR9FjYn6+HMfBzGAcJrHeZqe\nQpXWXTxJoPM8bFx8Z4JZJqpq+Dt0AGA1ttf0pLCO9rsnExDf73NyPtbDjwHBYKUYDkSJ8RCPHW+j\nXw4burGg0SLV+ShtYAxCT9LwHnX+dF5eKkSw8+WkxkRF7RQGWGgVI6SG5HG4Tm1BkCc0rDEX1+zv\nOTytxm7IgIgEk9QzURZ0ecsI3xz5G1+9ia6aHfcjVumceq0IIuVISwNohqdv9xFxigurLbSdFAD3\nmOHmyxZE+VYtOY1x/WIXxDFR6+kaVuJKiOcnw/sudfFnq1u4df9lDDsUadvZCnQ6ttGjthPUAzvV\nBBK5psVs4kSgDkisuAduVI5wWlS76mf7zwcww5zOJZoGUW6nSQqBhMUN92LuBr0Xlpe1dF7LaUU8\nGPKLfUFY2HkDViSo8xxG68buMoitRQkaJ2ilPp0nwucAQEwmQWCayyJoJiJn5eAX5OmYyAwy5tBZ\nBuJ+Y1xOAGPwmhqI2lhJQQlFK0pxXFRVdB5E+UmaI14qfl4WYaFQ8yc8f+08aJ2ICQrqF5Xm4ls6\n9iG6VANRKy4tNXLVPDJDu6hYD89aehAlZ9J59hi0Y0H9ihwjInED2BSqDJqSslQwTgPnG9YKbXfw\nPl28bPEeOza206qYqGXpPFbY10YeRLnzuta9AmA2nWc1MRQmy4LweJJLcAL0xgqjblUdyVZWIAeD\nRo9C6Srzhry9NN0BNNN5sTQB2EnXI60kEfJCBUH2erI295zPinDNUg7uQJTYs5VNyUoHaczQH3sQ\nVYnEz+NYDgCRqbylAIT0CEl9Csqn86pr7/xyIV1bgM1W1Yew5+a8YTlqFLnsZ00mKoyNlmeeR9Xv\nDQ7j1Ry4d2LL50Vk7+s8k8xCFogoD3NPFprdTqXz3LgrScVEebB73W16T/NTDCYCpdCIXQWcHFXP\nhM5zHH7wA3O9xoLmihOAKRBnMHp0vBMARR1U6jwHKLX2De76l1MC/+Bqrqt03ryNmQ8hrd9XTKri\nI1MWIJwjdRrMeZ83xlhBO08sU24M4kKhiAhO3bMbmKjTWtrcgSg1XAuSAuWaZFdmm/a43/y6S7jI\nJUAZ9EOvC98xpDLonHrtGEXCrB5LEwipcXWjDUqJ1UTBtjW7l8TlL1sQ5Re7nMW4/2IXJLYPex1A\nARWIuv9iF4+svxF/9Ka3AoQg8SDKOZqnpcF93Wu4dlA9HPrQLn5s7JrkvuIBewy3YA3FCKdFP2gv\n9iYHYXGKnKA7Tu1ADqJPt+gxIS2Iihhi3+Oo5UwoVWEHrWskGWs5IwiuG9eNchGO6/sg6aJAXmOi\nPDuja0xUKTRy19KBtR31PclqAtMqnZe4SXeSzx88E5lBJRw6zyGPKtCwqUd45dUq97Ph2up04nbQ\nkxllU4sAAujhJEbuTEpfbIzlxLE4dCmIYmnFynhTRTVqiqaFYx/iGojyfar8jm8iM7QK6ylEau01\nkuv3gSTJDIjyz643iV2RY8Q0DUBYaAllFGJ3TnlNE8Wipm6O8xhgbKkWx6fzOml0LhAVLA50k4ny\nIOp0itUpVAmRMGvUWlYam0usADXAoFuBBba6agXNNdbK68vGrHVmqsSm8yom6nLnIhhhQS80zUR5\nRvokf3Egys8b7TQKc0S5a0EUbbWx2okDiPKLIomTc5ltAjZFX9bc1f3iHUBU3kznXe9eReTSeSq1\nx7hQa4rei+3cMRJNEHWSn4aNElArugjMs71Ok6KqzitrIOpwYJ//0hUP5GL2/hSqQMIS0Fbq0nnu\n2sVuU+jmGFXXRDmg5eUQ93XdfSr6geUwqXPyH1cO7nu/+es4/u0P4vAD75s5j+AMzgkIlcGl/fik\nKuuvpzdNWVhXdEarZuxB4N/cnNSr85aKw4U3D7bHHosJdFGCxAlSN5/P2yhIn6qNEhADdDINqo1l\nooopJqpfjV3PCuvRGgQnUIyGzV3dsRywz/IFJsDXVpG+Zit8x4AUGE4EIk4RRxRlwsC1BfoAcO2C\nfbZajsUGl/eUuPxlC6L8JJzTBPdd7IBEdhJdS5qOx35SvnqhDUoIDg9dOXbiFqWO9Q9JC43r3atI\nCw3FKNjaGoyrqmJuUCceRJUZiKEYlCP0iz7u710HIwwn+WkAOZFz901a9vuHbrLwk2QsDFKeOBDl\naFc36EtZWl2CY0piLdB1k6RfHEytXHg0EWGHGTmHYp3nmBQqAKJ6Oo/GEdqOKh87MOYbqqpJlc6b\niElI53kQNY+JUlrZljRJDBiDwvWYA4DXyANc26y0KBuurY7vn2d/S7V4Zm6CiWnsmpe++B3PRPy/\n7L15tGXXXd/5OfN05/vmmqukelWaR0u2ZMuzsPEQO2AEtgOhg4EmdC9CIN0r6SQkKwmr02kIvZrQ\nnQ4kISYhwcE22LIt27LRYFmDbWQNVap5fvXmd4dzzz1j/7H32fe+eq9KUgjpxrCXtKT33rnnnmEP\n3/39fX/f3wBX1kUcbDNhlROjKZ93lA2VqeJ4MWoYZ6JGiQmjVP2OqF+Xp7jDjNBw0CfGwFarhdVq\nk1yhiSr7rrNT1DarpX0c3SHKIqHvkYC3rMEnHMulOFVq6uIsIc4TLN1Cd5zXFM7zXRPfevXsvCwM\nydHoSAfrEkTN+tMiDHtlOC8bkspdtgpDRQlTiM9tBCP9hylZvHEmQY1lw1bg5WptMExJpLu8nRZU\nrICGUxsbDxaDOKMvw2A7Zbjv9YKo8pkFrqned5mlabZa1AObbhiT58XrZqKKLMMoclUDEEbhvNJZ\nvAzplO9pR2VmFM6TIKo9Hs6zxTzTibuKbZkJpikoWBpjo8rNVFlLL+1JEDUmLFfFr/OUTk9sACJL\nMsXbsCgla6q7HvkwUsdUZHZcpJgoWf5KtxQQKUFU223imR7rww21USsccT1mUtANE4o8p/uNJ4Gt\nmx0YmxMlE2VVxLzT7Yzuf3EwzkQN0RwHzxmF/UttWlkYWonPX2M4r+wLrj6WPBPH6I6NJ+9nu5Bo\n+f4z+cxKLWHsmGq8NSoOuiYy9Mq2ISMheRRgaS5D1yDvlUyUXFekxUFRFGSdDYxaneZNh0fnIKIX\nJlR9kegQOWLcu7IflCCqDOdpZvwXTNT3QhuvcL1jSoTztEIXGQRjrZyUq55Ns2qTDaUmyRp5wIAo\nCzPtT+ImBbFjCOZhfQMjK3AiubsoQVQaYuGx0L9MWmQ03QYNp8bacEOF8xw5IZmOi2u49GXs35ST\npJUWOIYAUWU4z5aAa5gN6SchnuNT6Dp2nlC1RQfuycUhV6JIi94gIVQgSpxD7QhzAw3tCibKwXck\nUJL6l5IFywcDisRW31Vm57l+CaK2Dp5ykS1kKu14ZtpMskGjIsKWpqFR8aW7tT1ibIqhPwrnycms\nzEYc/BeIy/tpOBJQb8dEyYnRkixhlEagaSLrrrvZRK6crMvMMhgDUd2OeO5FgTtMCQ0XJkZgy2y2\nMFst8n5/k9aq7LuKiUr6uJIqj9JILTplDb5hnClrCkNOsnEumCjbsOTi/RqYKO+1MVF52Cc2bBWW\nKRfyih1Qd2qbMlFBhHMyaWia9UNRNy9KaefiPlf9UamM7byiSqF94bivzkTFmzVRvuXTcOpokgGK\npXWHAn7BDLqmbwF+r9bKhXyciSqbNTFBreJQFMJZu1wUDceRZZOureEpAXGMqbJdy3BSCexL1iZM\nQ3RNZ9qfVsLyzBPX1nLHQVQZzusr0HRTW4RsxtmXUndnShCVjTNRYwkl5ecMyZCFRgwU2+p5opKJ\ncl2KOGYgEwwCp5QnbNVElfNICXYrVkDTqbM+3FAANpegw0oLVjoR4Usvqu/MrkhOgDEmytBAz/Ck\nv1LS71G1KlueRR4P0R1XJL7I61ECf7vMor6Sidqe3S5bybCNZyCX7L8nmajtPl8+10KO7zKrFd9V\nQEnXNeoVW9iHyNaJpUl04lAxq4Q2Y0xUqYmSG5wwpEhTzHqd6oFRUkIn7dMdxFQ9Oefa0n1elq0p\nQVTJdmpmoorJ/3lo37sgSoZEUsul5tvodoKWuluyHsLhKDOpXfeUUWZmyJBOpWSixITsxRDZgnnQ\nCqj1Mlw5MOzpabBs6kkPW3PVjq3h1Gk4DTaGHcU4ubJYp2bbVOyAfip+b8nJy06KkSZKDtAy9DfM\nYvppSGBVyC0Hq0jVTrNkokaiSJP+IGGQDrB1S4Wo8mggFyQNS3NEaCxNIcvQbVsxUQM5oVuSkcuj\nAaRiMHXjnhI0u4FcfLdhCkrx63BmFF5wrz8IQD3to2kab7pxhrsPTaPL97MJREWemljK/5ZC+tdr\nc5Dkwrah3DVtm51XGp1KwBkXEZapY1aqyni1bCVLoo+F6RSb0ukwSEPspEAvRLX1rCnqmBmVKrpt\nj8w5x9ioXIGoERPlqay5SIX1fEsKc8ey88pEhTgTFgeKidrGmqFs2wvLr56dl/VDEstRLF5Za883\nPcP5PLMAACAASURBVLXQjRtuDrMhudTM5WFInAhdSFVOwl1PU54123lF5aUOzfVelYmKxsJ5VloQ\nmAJEWWkhQjCaRhiNwnlVu0Ldrv3JmKjqiN3W/QDDD6gH4n43+mMgqmSRXsXmYGQ6aajPKiZK9jMV\nzksG+KZH1Q6QZSbJvSEUulrUAKoy87Abd9kYdtE1nX01AdLHCxOXm6mSgVfhvCiFQsPQDAV6LvUX\nVAhxaORgxVtYlKIoRuE8yZzHfQm6HRtd08ey86QW0fPoDSQTJT3HAiug4dYZpBEbsj9kMpHZTnNW\nNiKGZ8+o740vj0J06lrGNFGakSoQZQ4Tmm6dul29QhMlwnmlPlS8h7IwdOnXJUPs2Vg471qGmfJv\ngTkK5xXxEN22cR1z0zHjrQSVmgyz1nrSe80PRGa3/P56YLPei9WmRGWHJxZVq07oiGvOk0R9xpTj\npWR/zXod3bJ4Ye52vnO9x/qwQ5zkaoOrQFS2GUSp7FYrVpmpfx7a9yyI2rK4mTF5Ym3R0KhQhmNy\nz+EpCgmiEk18vnQ094Y5vu5ixxmhBVpbLH71XoYrd2NGpUJRa1BP+7jaaFFtODWabp2Cgkt9Mbht\naYKp2zZVK2CQhUCBFYzCeYKJ0lU4z5GL+nrcIS9yAssnNy2cPMFzhCi43LkVwyEFGqlm0B0kDBJh\nr1Bm2eWDgfIzcQybQRopkbhmWYqJGkh7BcVghSGg4WgevaSvBM1+cPVwXrnrjw/sVL/T53aRaAaB\nnCQ//uA8P/H+G9TfS9dygCJ21eJZLtzeGDPzeloJDioSpIXXyM4bgagYzzbQpaniuOi5DE8ZYyCq\nZCayzobMzCt36y5pQ5jVleDJagnxbzrmcF5uAKyJCTLLoZb2VXgzTAfKfqAM4Q6TTE3mpjfa3Zfh\nvDI54mr6sXGR9GtiogYhqeUSJzlplismyjM92l6LvMhVtluap6RFRl6ykGFffZ+P+O/Q1hW7pkT5\nGyMmoWSiNC9Qm56rtXFhuZUWBNYIRJWu+50wVsLywPJpunU25Jh6rU3dg2tijjFR1qQAyY3KCEQp\nHZ+zmb24WlNZZJqpxmgJosxgNH5B9Gff8oQxb66Ta5A7MUbmbSplU2pBu0mPTtylZleV8Hzc+qAM\n61uBtG0YB1Fom+aYS/3L4rkigInu9rYwUWmRkRe5COeVfVOe03MtHMMeMVHyPdu+q55vCQIqtmCi\nxPUKwJvLsJKV5ax2ItVPjGqNvN/fEtIrx3VqCiYqqAWCARpkuKbHlD/JarROkgmNVamJKvWhaZaP\nhOWlvEFuquI8wdAMQLt2OE8+n3KT2E9Dxf67tvT02+bz5fxXPkNlDSI3+WUCU6PiKPsNGDF5RWrT\ndOsM5DPLej21cbElE1WyvyUbfPbmt/LoLZNsROLc1RJEySQCNx9iGhqTDVl7T7J5mjlkvfcXTNSf\n+VbS0GYlEDsdPSOLrS2pl4MxPcibbp6FQqdILCIZatBl3NyNc/xMRysgsjWihhgEjW6GKweGEVTI\n6m3cPKaSjvQMbbdJS4o8L3RFeQw3L5koh4pdIScHI8XxPdDKcJ6N71rKIbrUT5XV2APLJzNtrDzF\nsQwqVqAmnXw4FCJ1TaM3SBhkEZ7pqiy7PBqoOL9juERjInHNdlQ9uVJYbstJtVysXcOjl/TUZ7xK\nyURdPZxnzM6o3yWVBhtmBS/avsbSOBMF+pbsvBGIen07nnJSqcnyIdsZ46l79ORCUgzxHFOwkkWx\nWfQchjJ9e2SXVjJRWacrvMGkR9TAcBjWN4MoswRRY2L7XJ5Tdz2GXo1a2qdqleHavgIAVUeGG5NM\nhC80Da8uzlcavVqGhRFURBjpKov3eDjP0i1MzbgqiMqThCKOyaQoOIozwnQgFnHDZkKGkFYiqZWR\nC6RWsjBhqBYEVzKsQ0tTC+m1mCjD9xkMM/L86skEI2PLEYhqug2spCC3TTSg248VExVYPk2nQV7k\nKizyWpqyOHAtYbAqQbQ1Id5vrWSieoKdMQ0No7QneBUQNa5nLBfdMoxk+yMQVRSFYKQlq+HmhmBZ\n7Ag93SxbKJnqblyCqAoTnpiTlseYqDJUZ1dkckSpiRomGLpGxR7NMavR+kiHZWpobn+LKFrp98wR\nE5VKJsq1DRzD2eRtpzkuvu+MgahROK8hQVQZLpaEOHaasdIZqnHp7hN1Eq9ko0YWB4KJqvoWeqNO\nZZDhmS5T/oTUiK2Iea0o0BxHsfLhMFVgVi9B1Fimm21Y2JZ+zZBzGc6rWj4aGmHUVey/9xqYKFN+\nb12G85xK+UwEsGzIjMWSCeolfVEbLzdouQ0FovJeVyTY6JYC2yUgLImDVs2FxKaX9IBChfP6tnjn\n007BvtkahvTHKzd1ppP+BRP1vdDyfp+hZuJ7jqKEi9RmcW3z4lB2eN81cSyDH3vPISx8wkxO3IqJ\nKnBlQcahrasyMfVehpckFAjNTFITE9PMQHS4/fW93DJxo9pFXehLEFXIsKJtKapds2Jcx6SwbcVE\nVX0LK0/IDZOKI66lpJwDyyc1LOw8wbVNAssX7FBRkA+HyjOoO4gZpJFkokphaqRYHdcQ4bxych8P\n55WZM47toVkWyDBCYAaEyUBpooLKtcJ50tfE9kGG64a5Rsf0seLBtouKqW82auuW6eLl+5KhrMHr\nDOeV4KBiBxj69rvG8npcCRwzTbyXsi+Mh/TyMET3/U1hYkNl520QJoMxJsohqrVpvfd9NN/1IACW\nCueNQFTW74lz6jp9v46bJ7Rz8S47w64Kn9WcAA1hcZB2NjCCChV35KcDYpdZWiVcGYosWz9K0TUN\n1zbQNA3P8kZFsq98NhLQlM7Z4TAllBozTdOYkOzG0kDcT9l/UNmdIybKluG8oa0pbdsIgG7VRJly\nQ7NdMkDZBkNhbJlZBlZa4JseU/4EdlqQmjoV36ITjrJVfdNXG5yVaO2q572yjbN3MGIfrUmheasH\nspRGf0g/SvAdE90pM7qu3Wc3MVFxCaKks7tjC7+lwUCESYtcJQM4qQxVaYK9HW9lqGUpXCHJE2p2\nFc/08E2P1cHovpXeToKoss+EUYrnmFSsQJSQyjPCNNzMRHn9LeO/BMcinCcz/uT79GxTgKgynDcY\noHsuFVcwP0ma0Ut6aJIBa0g7ig1pdpyUICrLWRljotx9+8UzW9gMoopxJspMqHgWWq2GHxX4ms2U\nL1jExcHyaC50RvrQQTQGooLNc0Gcxdi6hWeb13QsL0Gm59p4pqtK9QhNlLHpmPFWPlcrEO+63i+L\nD4v5Y1n23ZIBLUFMPwkxChfQmApaShSe9Xp04x41u6LmrpK5KyUszapDkThkZGCkVHwRyelLJurd\nN7X42b98i7pG13AwNQPDTjbpsr7X2/csiEr7fSLDJvAsVe6gSLYBUXIBcSzRgd9y6xzXTU0RZRFx\nlihtgDfMceRiGNkaS56Y1BrdDDdNyGwHTdcZVkWnnk9m+dnbfoKfu+OnsAyLpismgLKumCM305lm\nUrFLGjTGtU0K28JKcwmibKwiJTdtLMMisHyliQmsgKFmYZJTdXQCK1DFY0sqGqAzGJAXOZ51JRM1\nAiQFBcOhDJtIiwMYZeLYMrtGk0LzihVQUJAOh2AYBHLRuFY4zzc9dv/tv0fl9jtZ3XMjHUn/Jisr\nWz7Tj+VEa3rUfEtNCqXeoOaMdtavp5VMVGD5eGNO6eOt1Jt4vljQc10sguXkMh4myAfhplAeiIlX\nc1yyTkcwUbLfDAyXKM6Y+PAP4M8LUa9iojaBqFBlQ3Zkv5mQNhrdpKdAaWD52LahmCijVqMiF9R1\nqfGxDGt03VdkFqpnEiX4rqkmU9/0r8pEZX3Jwsl+NIhSwmSgtFQliFqWIaJyEVXWGmNMlC0B1tDS\nR8eVAPTK7DxNw5Yg6mpeZCAAlmMbpJaGnRZYhsWE28ZKC4Ym1HyRNddP+li6hW1YavG8HC5e9bxX\ntnGLA0DpospwXn2MiVrtDIX/WakrvMp7KNsmJkouqGUBYtvUld9SyUiW+j5rmBJJvUo23Fxj0DIs\nPNPjopQTlOG9ttdiJVpTod4yPF4yHGm/zKZM8V2xUSsoCNMBYTJAJuUJ8Ob2t2RllfOHY9iqD2SS\n6fUcE8ewN2XnGa5H4MmalVFKJ+5SsQIM3VCFiDuZAAyxXMydImOlE6nQeslEJVdlokC3hAQir4l3\nUo1gyhPnXwyXFNDVHXcTE1WCWbUxGct0s3RLZvK9OhPlWAaB5TMcyIiHbSuLg+18ohSIqoh3XZFM\nVKMxra4ZRDgPYL1bFqjuo+c2GjBVaTGQXlFpt0M37qmEg/F7KeeLVtWhiMU70+yIqm+R5KkCYlYy\npOKNPN40TaNiV9CsmH6U/rkp/fI9C6KyMGSoOwSupWzvSW1VA6hsVy4gADXJ+HTiDmZDLGJBmGHL\nATC0dS4XHYauSaOX4WUxcWl2GYjj/V6XQ63rFVVamvqVzZFMVKqbionCinFtg9yzcYcinFfzLew8\nFVXDQVHaIBbRoSwCG+iZ2m32kz5Zv48hB3pPgiPPcDdposrBWi6Aw4EYRONMVCk+tHUL3ffQpTiz\nLp9RFkfoloVrG+iatn04b2yyd/fuZe5nfpbVWKMjHeLT1eUtnymp4T3VnTQqjhJLlru8pieeQ+d1\nhGDEs5EiaMvHc65itjksyzD42LqNZqS4trEtiMrCUPnNjDezUSddW9uiiepeEU42W4IF2SQsD/tq\nkl6zxX1WOwN5v10FcDzTw7UMkkiEMoxajaBkHCQT5Bi22ghsl/YNYrEKxiZD3/RE8edtNFRK5C3v\nOZQeZOVCXrpkL8vvVyav5aIThgoEmcmQwtDJjNHirTsi7HMlE6W7Lr4Upw+uAaKiYYZnG8SGhjTu\npmVUhLDfyKgFNv0opZ8MlO5uJpAgqr90tdNuaeNaSkAZbloTEkRJRuDsYo80y2nX3JFW7irvoWwj\nJspQ2aiJzNKzTF36LYWqHwSWR5HnaNGQoS3mmyS0t7y/KX9CZZEpEOU2SfKEjtyMlIygZwdojqvM\nNkWBalP1r37Sp58OqEgDTtML0Lw+3XCzFiYaY6JKt/Uys1CE82ySPCEvcslEeQqY9qOUzrCn5uNp\nCXb7RQmi5PylFax2ImGKbJo4u0SW9LiVCmxmoiw3RdM0spoEJWE2YqLCZXWsNsZEhWNMlO1Y6L6v\nsnXjLBZA1TG31Vmq51H6RNkGgRUQR+XG1cGV2YbbMa0l86n79qbft1tCZ3q5LzYACkT1hmS5LG+U\niutqu00VzhtsrJEVmQrzwjiIGoXzSkZTcwZUPfGuFFDfph9XrIBcH8pr+POhi/qeBFFFlkE0INJt\naoGtMuK2ZaKGqQIMZavbYkLcGHbRHYehZ1Lr51hy4hw6OouDZTpVk2o/I8giQl0yMXJxNzc2sysl\nE1U2T9btGqJvYqIc2yCteLhJgVPoVH0bO09IZQbFlSAqLMsfxrFaFLr9NYo4xqxW8RyDbgmiLG8L\nE6VrmrJHCAcCkIwzUUmeoKFh6ia652PI+m11GTbKkxjNEiU7fNe8ChNVApeRTmO1O1QgKllZ3fKZ\nv3zDe3jP3nfw4zd9lEbVYZhkRHGmmKi2ZInKFN7X2sprCUxP7Bq30R8Ush6W7ro4hqhMvpmJkmnD\nWUYxHG7KzCubNTlN1usS9TYIBmLi7Rvulp26btkY1Zqqn5fHMUWSKHbrkiaekbXalffbU+L4wPKp\n+BZZR/zNrNUJpNaiNFRs2DUFprdjQJI0pxvG1P0xEGV5ssL8Vkq+FL2XmpDuULCcpSC97tQwdVOB\nqFK/4kuGVjBR0o4hGQrBuaZt+i6jXr+Cieqj+74KnW1no1G2QZziuhp9uxD1vYoCTSZM9PVUimML\nunFPjZdpX4TgXh8TJZgMXZdVA+bmxAK+YwcgNFGOZXDigriPVs3d0n+u1jYzUZudsi1Tx/B88sFA\n6WCqdlUAiALFNGSxu6VEzow/steoOiWIKjVsm5lDz3QwfJ+03ydJM5I0x5fhPBBapTAJacg9qdee\nQrcHdK7IAh0P55WZwWX2q2MbyqYjikSZJN311Hve6IdEWaQAX9WuEFg+kb6BpkGkZxSAr2V0w4S0\nL/qJWa9jVKub6pmOP/eBo2NKhJ1IGYIfpkx4LTQ0yUSNhfMkqBNMlHwPli40sL0eUTokTAfU7Rq+\nY5BmuQJbV7YSFHu2IRICSmbLGVkcbOe1VTJRmb8ZGNcbk3imOxrvlREDWhqx5onw/Wt7TZLSpkCu\nT7UxEFX6R5WbrlbNoZA1XkdMVDImTt/ajytWQK6loGV/bnRR35MgqqSgI8NmpuUrTZSeO1y+AkQN\nolQBhrK1peCy9FPpV21q/YxCLkJGUGEpXGY10DBy0CnoFiJe3LOr5GgY65tBVGD5HKjvUz+7mhgM\n/VRTE5NmiXBeIjPdnFDE7a08VWnb4yCqYvn0pd9UHkXqPOGGNAGtVKl4lvKm8k1PiTvzwYBBnOI5\nBg1XnLPXF5OyYKLExJEWKZYumDrD8zDyDIOMhhRdlwWLQehDriUsH/foWutEbFglE7U1nGebNu/b\n/6DIrhrbXZWJAdMV8Y42XieIGmeifMcUHktXCJXzYQSGIRZF3UEz082aKDnZlBlSxjZMlC1r6RVL\ny1RklfmuGWzZqQOY7Tbp6orQspUi6iAgSTNOyZ2gvizeaTfubgqP1gMbXTKIRq2Grun4lkcm3YTr\nTl2FkbbbOS6uhRQFzLRH93CtDL28v1mftBb25PMUn9E1nQm3xZIM55XlVOoNscsXmiiZaRQPwC2t\nKkYTrtlskXW7aiHLQxHe9NwRI3C1NhimWF7EwNXR84J8ECpQHBk5ni8SOOI8piU3NoHlU7UqLISv\nj4kKxjZfrfe9n73/6JcxG035HDSmWx6Z7FvtmjPqP91r99my2kCqjYXz5GJrmwa661GkKZc7Ilw1\n7U8qbU4ix20Rb/XUmg1GRq/lRrE05FyV70uF8wwH3fdJeyOdk+daCnj2kj5hEiqBc3VmF2jQTTfr\nylQ4z7QVE8UwUsx1aVUS9gXY1H2PQN7Dcih+N15lYsafIjN6eK7GsIhJLA0PcQ0liAKwd+wkWVra\n5L9Wsr09X0ezZFKDBB1OL8HUTdpei8VwmXRd9FuzVh9johKSZPQejGqFvN9T3lJT/sQYi7Y90B+O\nM1FmoIT5mu2MmW1usxGV7zL2RuDMqFQxqlWm/EmWBitkebZJWF7OdUlkErhCQF6V4zDqiPe0OZwn\n+qVRlZqoyng4b8BE3RUmvpZGapsky1ePIGhW/BdM1J/llsoJJdJtZtq+0kQ13CqLY+G8JM2J03wL\nEzWjdqZiUu0GBkYO8aWLAHjVBhtxl7XKKATY1x3hCZMhChmvbp2Qf/DgB9T/O7KIZzfV1USmOX08\n22AoWQG7H6PlGSY5ESWIGnnS2JpHn9LEsKcy2gbrEkRVK1Q8i1CyR57hqnTstNOhGyYErkVdArO+\nnLTGmaiUGFvWaCtZrIZZUJODpUhSNJk67rsW/SjdEkYoRcrjTNRad0jkSqfnpWsvXkos2R2y3hvi\nOyYNr4Kpm6NyOa+xKYsDqYmCrfR51uspYGRpNlwlnJdt4xFVtrIgcbRwkcogB13flokCIS4v0pSs\n21WaI90PuLw2INQdEsslvbyIZ7p04u5YeNSjFtgEpUGi1BMpvxZEfxlporaCqIVVca6Z1ugz1ypC\nnJW6E+mxc0mGESbGjB0nvDaDdEBv2Ff+S426eB7jmigtilTW3ngxaXt2DoqCeOESRSbsG3TfHy1m\nV9GcJGlOmhUY3kAVW8063ZGrtKmhewM0R9zXuBnldDDJymB15PfzKq2UAZRNt2ys9sSmY2bHnfhr\no7H3akxUuTh1TV8xpYoBkeE8gNX1MRB1BYsgbEE238tMMGKiSmBSatjKuS7KImGLoRsYvi/Cr7KE\nxzgTtRatkxYZQS/BqNWYqovM24HWIR8b/+Pu+qUmijhSY09ZL3TFRkp3PQJP/G01lKn1Y2zJTDAF\nGnjVIcM0JrUMHFIoCorBQDG4zg4R5hoP6aWrq2ieR6zZYMiSPFK7ZvdFH5nyJ+gmPQZL4tma7dYI\nvI8xUbapY1SqFGnK0rpYFyb9CZoSxKxdRVgdjWmiKpaPL0P9uuvivAaLg4E9+pu7bx+apglgWWSs\nRKtUPAtD11jrDZWMJYtN1VdbbcGU9taWtjzbrN8Tm8eytqllqHBerZHRqrkiHKxpxHWfZGV5y1xf\nmpZixn9uxOXfmyCqV7qVO5KJEj9PVuoizi4zvUaZedamz0/LyaaMM6/7AixFZ4SZW1Wmqa9XR5No\n33BZXBsQJRlrVpWi11WLbNl2VXfwYzf8MJ+4+UdxVy8T6RYbuisWoEJH9/q4tkEkQZTVi9SuNJLa\np8aYtiqPTXqyfEm6vqb0CkO5yzAqVQLPItelDYHlolcqaJZFvLJCpx8z2fRU5mDUlbtB18W2dAwd\nEr2vspeUR4mZi8FXFGjRUAGOwDXJ8mJLGGGcOSnbaneI0WqjOS7D82e5VhvtrsTAbFQdNE2jZlfZ\niF+nJqq8FssfE3KOJqas1yNZvKyMLk0cNK3AcYot4ZjtjDbLVtbSy5aWqQ/AbDbxXHN7ECXFyPHF\nCyQrYnIzm00urwpBddacIF5apGYGdOOeyIrSLSzDoubbBLLyeumxFGwCUfWRJmqbcN7CqvjddGv0\nbq7NREnfnqYAbIsDsdjsrO5Qx5SMx8m1sypLsOW3hOP7xgb9YYKRZ5AmSkA/bi/gzIpSLPGliyO2\nzw8UQ3E1JkqBYTscgahuZ2ReaWrkVleBqPZYbblpf0qlt79aK/2CgivmjSvbTGvUL9p1F73y2jRR\nw/PnAFi0m2quUlocS1ebmfWNRTRERmQJkHdNH2CXfgMkNmtXhFNm/BETVYKX3fK9neqIMRhlQxVi\n030fioL+umQbpbAchG5Iywvc7hBrYnIUKnS7m97PKJxnq8VZj4fKE6kuN4VdWcxdZOeJ51p6H13J\nRAFYFRHqyywDM40xiwwtz5Q+sQRR8flRSC9dW0WrNylSm8IQ1xX6UiTdFX2iFJd3FgX4stoTmzRR\n42C2HFdrKxfUZ0vW/GogqmSiymzq6ZVRyTBDF7XptpMY9KMEDejpozHp7BWRjVFixBK6ptGui7VI\nlQBLbcWaTk0Ig9XhxtqWZ5t1exiV6iZ9cBE7FIWGXxXXWcon8qYopXTlhmAzE/UXIOrPbEslXZ47\nLhXPUr4m102LznbkrOhAJVKu+psnw6pVwTc9FsIl8iJnVcahS0fcXdPXA3Bil8PSG+fp3PNOnm7c\nyNL6gGGccckVA3Fw7JUt13b3zO3cFOzFWFtiwWnTCVMM3cBKK2huXwwiT0wwRi8kl6GIQW6Q58Um\nJioZmvSkoDdbX1e7xKQrJh+jUhFZQkZpUCnS0M1WS1Hb001PhQhzyQhZU9Nomka9mYOWMyl3q7pM\nU6+ZORWrgpMU6FkuisbCqN7eFTvgMB3gGq4S2SdpRm+Q0Ky5uLt3E1+6dE3vnHJiWlof0I9SxUzV\n7SqduPv6TBLLcJ7pjVKXxzQI0amTALiy7IGBZOHsdEs4ZjujzbKVTFR9I8YLU8xmi6pnb1uY090v\nvis6eYL4krDAsGdnWViVobPZHZBl7NrQ6SV9unF/pEEKbALJ4pSZbdUxEFV36iNN1DaL92XFRI2F\n86yRm/KVrdwY1Frina9los/skoV8Aa5vihTzFxdfYS1aw9IFg2G1J0hWV1heGygmtvQfGy+7Ys+J\nhT2+eFEBP933x7KktmeLFlYkqPUGSreRdjojV2lTY4MFNHsriCpZmvO9i9uee7yVvlpXMthXtvFn\nukkT9SrhvOH5c+jVGqHpqYUoTjMMXcPQdTUOO51lWm4D27DI5cZx78w8b24/CGisbGy2Umh7TVVs\ntmQgqnaFKW+C052zZHlGZ9hVILwEuKfPiJqAOyaCscSFZVUE15qYYFd1BxSgV9c2haxH2XkOhkzP\nt+JIbWDKRTzsiTlZH8vOKxfs8YV+Qs6taeUiwywm912KsE9dT+U1l+E80YeGUheVRwPywYC8WofU\nItWGFEVB19EoAL0jnt/uqgBfvcsCGJmt9hU+UTKcZ42Y6Y01sdme9CdUAfWrMlFyw+bahgRRcm6W\nc4Bnm9v6RJXZketjm8bSykH13a7ou7smK/QGCYs9eWxqKaJgR2MHPU/H3pCO/dZmJqq8p7LdfWiG\nInZIDTG2So9Coy3WhGRpc0hPSVPMWM1f3+vtVUHU/Py8Pj8//xvz8/PfmJ+f/9r8/Px1V/z9J+bn\n55+dn59/an5+/n1/epf62tvK088AkLfFQtaL+1i6yS37xM8vnhIA4vSC6GR7pjfXvtI0jWl/iqXB\nMmE6YCMQj6kstnvdnCjOmJoa4TvfiPeu99I3PRbXBgyTjDOe2EmHL7+07fUNJaN1yWnTkROOnlTR\nzJR+2qfvSSPObkihqs9b9KJEAR7bsAkHOV2zZKLW1cQ47IoQilGpMtPy0Qxx3aVBpdlsQb+HkWdM\nN30FzPRl8Tl7WlDztabMhHPkYiNLilT1lIod4EvBdOntsx1TkGQJa9H6JgfycoJp1RxRb7Ao1O57\nu9aUIOr0gphUS1BVc2rkRb7tYn+1FiYhjmFj6iaeu5U+H5w8AYC7X3RzLZcp7GaGHgTorkuyKCZN\nJbLeRhNltdoUhs7cYoJWFFjNJlXfohcmWyhw74D4rsHxY8QLEkTNzKlJqHqL8GLZeT6koGBtOHqe\nIpwnQIF5BROla6L0h37NcF6IrmmqAjyMMklXt/FNKuseVlp1DF0j1FZxDVexlQAH6nvRNZ2XFl9h\nLdoQtes0DWtigiKOuXj2Moenpe6vInRcG+MgSjFRlzYB1XFGYLt28qKsIeZewURJEKU5DheHp9Ed\ncc6WN7rm+aZ4By8sv7ztucfbd46LhWPHRHDN42alzsw0dGHsaFki8/Aa4bwsDEmXl3F27ULXXyBh\nfQAAIABJREFUNAWikjTHNGWVA8lEJWFPsRDlu9UrFdo18WxXOpsXcl3T2VXdQd2uKrYJYF99D4M0\n4vnll4iyoWKnSob12LEFNA1uPtBWi+RiuKTqt1kTk1TsgKo2gV5ZY7U3YjzHs/NKvVgl6Sn9Tzn3\nDHqSBfc8BVp6UoYxDqIm7TmKXKPvCObMbrYhzzkYSODmjjFRhqE2suWmMQ3qgolCJE5ERSzm2zXR\nrw+3D8rjV9AsURdx3CdqExMlw7P9jWWlBSzDeavd7b3AxsN5TbvOzHJC0qwq8OK7Jr1tdJNlAtR4\nXcrSyuH6xn50TeeFlSMA7JwS51qQuq5xJmquMstGxaAa5hhZoYTlRZYJ7eEVIOqvve8w+yem6cQd\nsjxjVYbnPcm0pyubQVS5BnlBpubr7/V27a2UaH8JcI8ePfrG+fn5e4F/BnwQYH5+fgb4H4C7ABd4\nfH5+/pGjR4/+f8bjJd0ul778VbqWR2d+gpdXXxGxYqvC3pkagWvy0ulViqJQL3nvTHXLeaaDSU51\nznB09RidYLPxY1AdaSkKCqbkAnR5LWQYZ1wOptBs+6ogqmQ7LrkTBGWhxmEFfFjoL9KTCwBj4tpE\nF6GgpmR9AtNnox/TM2S19fV1ptyWqG3VKUFUhRktQLMl4yZ3HVazxQCoZiHTLQ/XFEWQ3dXL6J6n\nGA2vKtmCQuqoLDFBVEmEg3AsrrM8vvTGWesN1UB+/OI3CdMB983do+5/VU7uzaqL05DpyGfPKjBx\nZWtUbPQiZ+XMBaaGfWaHNoOTJ5hbSlhajFk78l1MyZZt19I8Y5AOONe9SH76DPN+i8GxV2ivX2bn\n4DL9o0cZRGKCL4uYljvDldUUKlCv62iahj03R3TmDEWaqnBeufvtxX36SZ8oG4rvrHlU16RzfrNF\nVbfJ8oLBMN0UQjYbTcx2m8HJE9gzs6BpRJUG55cuYuga03fexunfMZg4sw4HxOe8MSbKl5qokhEs\nKfW6LQBK4bpgGMTdHpdWhFA4ywuKouDSSp/JhotpSCfjJKY10JheSRjoxxkkQp9EUZCur9N99hnM\ndhu73aZe1RmYHfZU9m0qMeKaLrurOzm6Ivr5bDAt9IIyo7Ke9rlj9wR8U7AdNbuqQjeiP9XR/YDh\npQubmCjDytDskOX4Mic3RIHfgoKiyCmA5xdPotfW6BfreIELdMi6XXRZLHaiMUM3XUZvCBDWHtNE\nzQUztN0mL60eJc1TDM1Qof8ozoTovyiIsgFf+OOXMCt9DlxXcGrjDHlRULDVDiLWM/TqKrWKw4n1\nUwAUvsews86xtRNbji8ATonNxGCiSiXrsJJ1eGWtQWhexqynvLJ2HGyxKRpPy1du00FAqy41U52t\nC/mP3/hR4nzE5EVxyoQlQOvDJ74GQJBNcOz8OoWsurByaZnrDh6m5tuEiejrK9Eah8rSI1ILNmPv\noRsvc2z9JDfuEexIqYnzLQ/dccgcn2oacmi3GG81KXCP+iUAHgnLB1kfjJHlDECeWuTdFkZdhF3r\nk7PEnGS/KcbiSqIxi5Ak+IdvJHzheeLLl5UX3QouhWRue0nIII1YappULq6TbqxTqzfYVZnD6jyP\n0ZpUWccgmShpNeE40JM+VdHGKq2ZSQzd2FYTVRQFeb9PtLrG8PRJDtsGw5PHaV5eIEwKlsbWn3bN\n5dKKWEdKjRQI37zJScEAvnywyh3FrLLVEElLezm+fopO3GXnpJh7lyQwLVJL3UNg+WStOvrSMtV+\npoTl5Ti7EkRZpsGE3+R09wzrw47aWFWmd9ADkuXNetZSY1dpxCycHbK+0SdIhYeXijYUYu6JsiGr\nvQ26UUySZnIsyzFNAfLnazXDsLjtnvtwXe/aB/4pttcCou4HvgBw9OjRp+bn5+8a+9sbgCckaBrO\nz88fB24BnvmvfqWvsX39859id5Lw/G02R70vcvQ78kJn7kDXNQ7vbfHskUXOXO5y+lIX09BVAcXx\nVsbeH7vwFN0xEKV7Hpph8M7dD/Dls19nb20X7bpL1bc4cmaNYZrTaAR49kHCF18gWV1R9dGKPKf3\nrefYeOJxABa9Sdpy15GHATRhIVxkQzpx5p0RiIo1sUOZazeo2VUmvBadfkzfHGmiDN0QItOumKCN\nao1Zx0cPNtAKndmKYJjKkiO1pM90U0yKTatKpXMWe89+FRM3vBBS0GKZRVdpyM/10DWdHUUNWEaT\n2RzTMnyxsBrSmBzypTNf5YXll3EMm3fufoCXT6/yyLPneemM2BW2aw5uW4Co6OzpLe8gWVlh7ctf\nov+db/MLS4uoSP05OPcwHET8G335/+LqPNaoVYEfBGCNc5/9x8wCHwP4D2z6vDUzg1GpcH6px8pq\nhlWBIBDvxJ7dQXTyJMnSogptfXP9RR59/KtbMgUfrKcckmSO2WxSScTi0A2TLTo878D1dJ9+iuj4\nMdbsKr/8L74JCDbDrgR4111PcfQIQdim74tQQB7H+N95nH2hoPFL4XLJUjWcOqudiD988jS3aBaD\n80v8y3/5zS3P5eBcjbUvP8LG439ELBnBhwD4I87xR1uOn/jRv8pjC0+T7H8cNNhZmd16zuYBTkud\nzZETET/3pce5c73Lu4BW1md+ymEZMZ6aTp0z3fPkRY6uSbA6O0t06iSJZL6+vPQ0j337SdzbCo4B\n/+y5LV8JATiHYD2GXY0JYJG001ELw0xzF7CM7oZoublJo6dpGjdP3MDXzj/Brz78KKdfcaRmMsdo\nL2BMXECvrKMZGewCC/iNl5/c5iI2N+cwDIBf/fZjAPyQ1mWim/J/fus3lHv/eLv7hT5vAr4Yv0iy\nX4DQf/7tJ0BKzv75t7/B7tUhH0IUoZ2VoZysN1oEW1UHje1BVNNtEMUpn/vGaZ58YYFLKyGa18W9\nGS4MxLt/+GsdPt//Fjd2urwfaCRdrrteACXPFGH5vMhV/bay1M2eYB/H4uc42TsO3EuSpzy//CIN\np85sMM1ad8iq7tGI17n5dhH+Lf3m9EUBcsxmE0cKy6NC3NM4E3VhqUe2No1RX6FqV6hOzLEC7DVC\nMuD4csxN8tjq3XcTvvA8j37yc5zuFrwNePZijNaW5UuSPoM04tKkxb6LMYPjx6neeRc31A7gD7/D\nUAIixxKZhGv5BfrWCdzbFvn7z36BAxcj3gdoYcSMX9ZMFM9+rTNkePEiq3/4GfrffV5p+x6S13bu\nlz+j7ulie7S+tCSLuNyJaNZ1vnruMZ5Z+DbGrSusAkRw9O0H+eBdP7vpvd48cQPH1k/y3eWXuH7q\nZkA68JtAam/S703uug6OLtPoZio6oTLzrgBRALOBWDfOdM+xGq2hodGY2bMtiJr2JzEKjflzp3n3\nuVe4/Av/Di2/ttzi2nzuq7dHXniW9//M//QnPMt/eXstIKoGbIz9nM3Pz5tHjx5Nt/lbF6hzjdZs\n+pimca1D/kTtLR/+MF/srxEdnON9e9rYls6hieu4deYGNE3jfW/ez7NHFvm3X3yFM5e7zO9uMjuz\n9ZJv5xCfPvF5jq2fBFOj/s4HSI6donH7bUxOVvmJiR/i/Te9ndmqmMTuvWmWR54Wi8b99+1gzn0L\nx198gc6nf4/5X/x5Nr77Amf+zW/TOy4ATvPO29HzBmGUMTlZJQml03S2SmznwgG436UqWalYN9FM\nk6mpGv/gnT+PbVj8x4fPkWs6erVG0eswOVllb2sHVnQUgKm9MzQ9D+07Hay0ydy02P1lu+dYBWp5\nyKHrJjENnV1FgJFDsGuOyUk5sXkRdMGmxuRklYW5OSKgkfaYnKyyQ5e7mJbN5GSVwwfEpPpC71k+\n88xTgqUL2jx08wf4+rdX+NSjxwFBN99z4wzvffMBXFPjnOMQvfwS7YaLblkUec6FT3+WM7/9SYo0\nxfB9FmtzLBUuA93h7htn2DFd40znIt9aeJE7525hT2MkbE7zlKfPf4eF3hIaGk2vTmD72IbFztos\nbV88h/XukC9+8wzX72xwx6FR5lLzrjvJXZt/+8WjFImYZBIzYnKySnxwP50nHsPprapSC093XiKv\nt7hz7mYabh3PdDANE9+4AKe/CkBrzw6m16TWxLbUMy7bS9N7MXkKgJ7f4o03z9KuubzpVvE+sne+\nlRNHj/D2Z7o8cm+Ngy8vcea3f5F0bR1DMzlz+D7umxX3NdcTi5pvVvl7v/k0/Shl3nCpFkMevHcP\ngWthGBq6rmGmCQe++kmWvnQczTSp3XQjzkSbry5+G9t2efv++0RtwBJYH9jNb4SP88orJ9FMnazT\n4oH779t0P0VRED+5W/0c2B533TLHzrUhPPoMH7y1SdvXWQbqUy2man1Odc7i1DQa0n+sd/MNXDxx\nnGMP/y51YFnrc3jyRl46OsA1Pb7vnv3omgZo6JrGYJjx6a+dYMdkhbfftZtb/T0s/Kf/BTMOcRHM\n083X3URw4Qj9ZEBOTnuiiqGPgIz3wh7gCU4U36Baews75rqsOC8wkFNcRW8R6HV8vcK+2Sa+a6Nr\nOrqmqWvZrmljv68/+2XMlfP84PXvpnDGgHRRUP/8M1SeX6QwDW69/0HWzmxwfrHHh996HZ/++gla\nVZd337sHY2oDvvafud3ZyZtufAue5bIiM3Cnds9gt+o0ay7r/XhLP1tcDfknn3yac5d7uLbBLddN\n0G7s5Ih2ivVCgPG/9IY7MHUD57ILn36C+3aYvPmd8wr4V50Kk68sctfLIeg6szcfxGlXuW3XYR65\n7HCKFxk6PS52LjNII9554H4WNmL+0W99k/fqHpPFCjsbNlatSlFUcAyb+rlVNMNg1xvvxPQ9GhWH\nYRFi6AZ7ZqdU/3vm0y+QrU1h7T/GXTtuoRXOsgIE/VU6wNmNjNNLfQLP4vfOuzyATuuV5wgl433T\nHddz6G74wxOnMf2CVEtYnHKBPtrFM0x+39t46/IhFoDTxgZ3NyzObVzEPfwsyxUBGPTE5abpefYY\nwGOPcVt1H7fc/REmZcZqo+rQPvsiZ//Br1OkKc70FMEtN3F0Nefk0oC33LGbiabQp37h7JM8t7vg\npydE+ZXdczX444tcHFzmXx7/jyyFq7imQ7bRZjqY5N13HOLOuZvVd5Xt7d49fPrE5/n86Uf4u2+9\nCXfuLBvmGWpGk8HQZWaqqvrCTbe8gRNffop6L2NqSnoiLgqgU51qb+kz9+q38Acnv8CZ8DQb8QZN\nr86Ow9dxHtA21jYdP1xZ4Ue+0qW1GJKjEU/vZOfhfRi+z4nuRV5ePk6hQZGZGIWDbTjCg1DXNo0T\nDQ3xz/ZjSjVd5+4Pf2TLNf+3bK8FRHUQm/iy6RJAbfe3KrB+rZOtrf3pis1sq8aP/62/y9LSZlZg\neVnQ3bvbPm+8cZpvvFiKJf0txwK0i2mm/AkWw2UaTp2pH/oxNZDL4008lmQB3UM76zzytPjs4V0N\ntJmduNddz8qT3+Cpj/2YEvVW33Av7Q98EHtmlspvPs3l9QGLix2iDQ8vt3ny7HPEWUzkW0Qrq6xf\nFgt1olucubDOwbkqFj4FcPKc9HWq1RkuL7G01KVltrFl2uz6oOD08nE0vSBZq6nrDuUOfMYYsiaz\ns5rr0hCyWlHHdZN1ilzj8kLK0lKXy4mFB9idVZaWulRD8TxORx2mlrrYWoExfYbj+cvU7SofO/wR\nDrcO8sWnz/GpR48z0/L5ifffwL5ZMXD73Yg+UHvzA6x/+Uuc+MzDVG69jYV//VuELzyPUa8z8eEf\npHbPvTz16Em+8pwQid7z4J0EO+poK6/wjT8+Q33PXg4f+D4A8iLn1//4N3nZGXC4dQc/cugvb9Lr\nbGpRwmPHH2Njrs39D96qfh3mOb/8fz/JiYsdbr91N0d4npNL51lqdElqglW8+NIRnjn+TQ4Db9z3\nZt589weVaLdsxWTKsd8WICrUHMqtw7mL60xURgvokTNr/PMjJj8vf77h0A7e8f2H1d+Xlrrot74B\n79DX2X/kZX7yU8vAMqnj0HjP9/NLRwJ2zczwLvne8kgA7xeP9hgOMz727oPMfnGS6ORxPvKWfWiy\nYGiR51z4tV8lPHGcyp13MfWxv6JCBMee/lUWwiXe98AHVb9P8pT//blf52z3PHdN3wYXb+CxI6tE\n97os2aMx9AdPnOLhxy7TOjjPoHGUH773Hu6cPsTwfMCZR3+XatRh7fKqfNY6HmIDceLiBXZXxXdZ\nd94Ln/4s9UtdUkvnR97/izQn5viH33qWc4td3v6BB1Th06Io+I3PvEh6UeONh6/nzZO7KLKMBU0j\nXFolkVXqC7fNRw5+iN968XfIew2eP7KgQh9/9McX+c8PrxIc2Avt0/T3fZ4+YGgG98/ew7v3vE1Z\nkfxJ2sLEMTqvnOdN3q3YkyPgvvrFh1l+8iXsuTlmP/HTzO/cxZmzRzl94QI7kluJz2vsOjTFW6dv\nIm/FHOc/0+xq9NYTeiQMVgXQW4sK9KUuzYrN6YUulxc7EuBBnGT8/d96hoXVkHfcsZMPvWW/CvMc\nX7f4lW/9C0zd5P337AUg6zU58WmYzntirEqdz3XrNvc+2SEzNOyPP0Qnt2Gpi55CfPoGnIPf5u88\n8k/VvTXjvfzD//BNsjxnbv9O+O55Fo6dwd0tgE2r8Gksnsc5cD1r/RT6XaYmTM6aXdpWTc3dq52I\nbx1dZP/sFD9z7y+IEljHxKa0f0awaLFp8w/+1Yht3bH/DRw6+RT1ZSGteOD+QzydCU3qheVlulGf\n4VQV9DVWv/sSlaUuxmXB/i/aKT/++39TeK5VQOtOEp8/wO7qLn7qwbtJlpc4xWPsDD2ceDRvzscL\n3H/iq2i+x+xP/jTBbXew3ov5nf/nKaw9Bh996D5l0rr83XW6Sy9w4sIl6k4Vz9DBjPnd4/+OqOjz\nnr3v4ObKG/il3/w2+26d476JQxCzZc3ScPjggffw+8c/x9/4wi+h7YQiNZnuv5nLxGRJqj6TBKIf\nvyu4ZTTXnxPr4VCzt5y7mjdxDZdvXXyR9eEGe2u7WOunGI0G3RMnWVxYRzMM0o0Nzv2v/4TWYsiR\nvQ5ftt/B3NwB/tZH7+Azx77EI+e/RT41QbtzF59469vYPf1fD/hst4b/12zXAmmvBUQ9Abwf+I9S\nE/Xdsb89Dfyj+fl5F3CAw8AL/+WX+t+mffzBeaabPmcXezxw245tj9E0jfvm7uH3j3+O6xv7N6V9\nbtdu2NcS3h+exb5ZkSY6+9c+weJ/+B2i06eo3v0Gmg++B3fvyHCzGticXezRGyQUuUFtuJ8NXYgD\n7UaT7NziqMClZm4S6r10epWj59Y5tLuBs9Skf+EceTRgJphmMMzJXRvNNDnTEZPLcL1KN4yp+jZ/\ndHrA9cCOMc+R9qqstST1XUmWsJ6sUgw9lkOZDlyY5IaL05Pi4qHIbLmki+u6NLiIvfsIpA4//8af\noe21uLTS51NfP0GjYvM3H7pN0dXjrfV972Xj64+y+MnfZunfC/apcftttD7+48r76IY9TQWiGlJ7\ntbe+Cw2NV9ZPqnN98fSjvLz6Cje2D/GTN/8ohn511tN3LXzHZPmKLKYvfPMsJy52eMPhKT7+jn38\n4uN/qAz17DkRhjh59Bl0KVh+83UPbAFQAJpp0njnu+g8/hj2jjmqkdB9dMaEo0ma86+/cIQMg+Lj\n/z3G7/0WtTe+aeu5dJ3ZT/w0j//bf0p2aQHtun285Qf+Oma1hvlrj6lUeBBFr6vZLMtL03z03Qd5\n2+07uPRcm+jEMZKlJWUE2vnGE4QvPI9/403MfuKn0YzRs2p7bc71LtKJeyrk8unjn+Ns9zz3zNzJ\nxw9/hIe7Z4FV1ntD9si91MJqyB88eZpm1eFXfvgnObdyXmUPldqZZHlZhYB031fJEuvRhsqO+lZx\ngXDaYtflhMl3fz/NCfHcZ1o+py51WN6IVCj6Gy8u8MyRRa7fWeftd4jxrBmGcJTudtV9WRMT3GXP\n8crpHl/5zjqn9nfYOSnCtp985BUC1+R/ftvHeK7zDc51LzAbTPPWnfdtqTbwJ2mjDM8eSBCVLC2x\n8vufwqg32PFzv4DVFKC/TKAoXc/bUuukWzZGo0EyJurN+j00x0GXxretmsuJix02erHS6XzmiVMC\nQN25k4++6+Cm67qusY8fveEhVVpFXGsFs1ohvnxZ/S5PEu599Bx6AX9wf40fu/U29beqb5GvTzM9\nvJ2hc5KiKPjAvrfyuUfXGCYZP/Ohm9lzMmT5u08Jh34JovYtF+gFeIdHG4d84jiannJT/Xb1u88+\ncZqiEPVN1TuRZbnKcNRfeueNuCvC3f7eG2c4tPttLP+nBt1nn8aanMKamCSQZaZ6Mpznuj7unr1E\np0/Re/47rP7BZwHYdd2tXAxCJr02C8emOPmKeLbNWZmg055A9wMimbUNoqTNvccfJUej+YmfpXLT\nYYqi4N984QiDYcYPvPU6BaBgVMrmcrhI3anSqjnY+77LoOjxvn0P8p597+C5oyKRpRZsLvlyZXvH\nrrdgaAYn1k8RhzbPPRHwfCyqYIwnQZRFsq3VUaJJ5xtPAGDv3LnlvIZucLB5gOeXhV603JRWbr+D\njUe/SnjkZbyD81z89f+D5PICG2+6iS/uucx0x+OVoxv85mNf51vpV8iHLofi7+enP3wXtvWnF436\nb91eC4j6feBd8/PzTyL46r86Pz//N4DjR48e/ez8/PyvAY8hMv3+9tGjR69dovz/B821TT5w/75X\nPe6+uTdwvnuJt+2671WPdSyDv/nQbTiWoQCXNTHJjr/+P171MzVZB2lpXTyyyewQGxyhYgVMXLef\n7tmv0JdCZ81xOHlJLMJ5XvC7Xz2OBvzQ26/H+KIQfqXr68xWp7k4LBi6JnmR850lgXnzfp2XTq/h\n2gZ/+MI6Pwfs9WUpgV6PiWdeYWhqnGglHAa+dOZRoixC7+5nUXqobPRjIrPCXHeVIs9xwpgIOJYt\n0kv6/KsX/h1QMDx+C5W31imKgn//lWNkecFH3zW/LYACMBsNZj/xU6w+/DnyYUzzHe/iwIfey/LK\nKMtnfveITarLxcUzPXbXdnK6c5YoHbIarfH504/QcOr8lRt+6JoAqmwTDZeF1VCUB9E0umHMHz55\nhlpg87F3zxPYFhUrYEmCKLPVBsfBPb/E/gSMRlNkO16lTf7QjzD5gw+hGQZVX7znca+orzx3nsW1\nAe+8ayfzDxykeMvdVwXsZq3GvT/1d3jk7Ne4f+4eTGlWWgts1sYysVbWMpaeu5UdkwEP3CrAh7N7\nD91vPsXw3Bns6WnyaMDyp/4Tmm0z/aN/dROAgpFr/0q0St2pcqZzjq+ff5Jpf4qH5j+EpmnKaqL0\nIyqKgk8+8gppVvDD77ieVs0jG86ocxqehx4EpMtL5OFu+buAhtQAluLyKB3ymRMPU7uzyfUbB2i/\n573qHGXG28JKyHTTJ81yPvP4KUxD4yfef4MSyAMYtSpppyPK6NQb6La43jfuvoUvP/ospy91ecPh\njN/4zIskac5PfeBG5iZqzE08eNX3+Sdtqn5edySkX/q936VIUyY/8pACUDAymT0hsw7bY+PHak8Q\nnTpJkWVohiEMYoORnqU8drUT0aw6nLrU4QvfPMtkw+UHHjiw7bW9YeaOLb9zZ2fpnRh9z8bXv4a5\n1uXbBz3OzjrKDkNcr3DdHpzbxz/5xA8D8KWnz3J+8Tj33zLLnfOTdNbFWEnXRqWe9h2XipCDImV/\nfbjBJf0FithhKrtBPoMNHvvji+yYDHjTTaM+VdY2LduOXRP89Svub/IjDzH5kYfUz6VT/VK4zCCN\naDoN2h/6fi78yv/GxV/7VQBqb7qPt73nv+Ptku3895ePcVIqJ0vfOk3TcPfsIXz5JbLBAMPzWPns\np/9f9t47TpKrPvf+VlfnNNOTZ/OudrelVc4RgQgiCSGywcbX2L5O1y/3dYSL42teg69fggFjbOAC\nujZXAoMASSChnFdhozZoezbP7OyEnunpnCq9f5yq6jDdkzZr6/l89NFOd3X16apT5zzn+T2/38Ff\nyfNc7DLeGFtGN/DC7nFePTjNRatjvOmKZdSjnkRtjF1AorwNOZYkrA7y9jW3AfD0ThFmvbbOctAK\nkiRx28pbuG3lLeiGwf+z5xVGJvP87l2X2oQcRCKM2BZnBEPXKR88SGHHdvzrNxC8aFPLc1/Ws8km\nUVb2buTa68k8+QTZ554h8/STlA8eIHL9jSh33gqvfpcNG2DkaImt5RfA5eL64Lv59XdcZyujrxfM\nS6ISiYQO/F7Ty/vq3v8W8K2T3K6zAgF3gN+4+FfmP9DEBcvntIPNQjQkVjbWpsgd7hif2PRROnwd\nRDpy5J54nMKrO8V7/T3sThUplBW2DSUZmcxz0yUDrB6IMGWmDqvpND29G5ip6CRDCj89IDxdG6Ib\n2FMN88MnD1CpamgeP3R2oRzcj16tMn3/T5CKZbZd1cHBwgGuzY/xyNEn6fR1EDGuZGi6wPBEjie2\nHeMmb4TllSmxTUk2h+qROVwe43MvfYlMNccK/Sr2Z7uZmCmSylXYfSjFpjUxrtrY0/oimAhfeTXh\nK6+2/7ZCThaCfjcresMUKwoed+29eGw9R7MjJGYO8MsjT6AbOr8Sf19D1e650NsRYHgiT7ao0BHy\n8sgrI1QUjfffus7eobw30MPR3AiariG7ZEY39bF8uzmgvvFNs9paD0mSwCQovZ1iYjs+JchhVdH4\nxYtHCfrcvNck9fMpnn63j/esa5zk+zoDjCYLTKVL9HQG+M+nDmAAH7qttuq1QieV4WEi11xH+qkn\n0bJZut7zXjvxoR5WBfLpUoo10ZX8cOhnGBh8ZONddgV7a6K2fs/WRJI9h1NcsraLq+O9s84JIvW8\ntH+Iwm5B7uWODjrNVam1RcxTx54jp+S55Yq3smrd7Q2ft2ovjU0XuXw9PL9rjGS6zFuuWkFPR2OG\njhyJUj1+HD2fx1+X+bmiN4xblti+P0kqW+b4VIG3XL2CKze2bvPJhHdAmPArw0cJX35x/kZmAAAg\nAElEQVQFleOj5Lduwb92HZHrrm84NtasRNWTqJ5eygcPoKZSuGMxtHzOPjfAYI+4TvuGZ1g9EOG7\nv3gNw4DfeMeFDVlf8yGwbJD80H6U6WnkSITUg/fj8vsZu3EDbm2qwZzvckmsW9bBnsMpcsUqbtnF\ng5uPEvC5+fBt4vpbCw6r5EDl2Ag9ByYZ73LjXdZFL/DzQ4+io6Ecu4gJj6jn9MMnRJ/+tbdtbCDK\nLn8AyecXpWBk2S5yOxeWhQeRJZm9qSEUXSHkDRLadDF9H/s1spufJ3LdjXTe9uaG59q6noCt7IFY\nnBRf20tl+Cierm7STzyG3tHF5tilRPYn6Yr6ueex/fi8Mp9454Wznu/VUVHU96WxrSwPL+PR0Ucx\nqj7CqetwSS6S6RJ7DqW4YHmUlX2zTd/t4JIk/uCuSzg6keOt162yQ6IWwldeTeaZp8g89QSpXz4E\nkkTvBz/cdvy5YfAaUuUZHj76BGs7xFgSWL8Bd1cXuVeEjyUQv5D+//IJIpKCV/ayZfpleq8KkVEV\n3tzzTj5w2fUtz32uYyFKlINTBCsrcO8RMaD4vTLXDAj5Wg9WkNxuDFXFO7iMzgs3wovD7Dmc4r6n\nD+F1u3j/rWLlZg0cpYMHcPl8yDpkgy4eH3mGkCfIJy79CD9Pj/PYlmPILolPvOtCuoamSf3iQVIP\n/Zz0U0/i6R9Av/lipqd38S87v4NqaPxK/H1Ue3oZOrqLf/rPnaTzVTpWLoO9h1GSSdRsBl9HjLAn\nRKaa4w3Lb6Q7ezX7OcCWxCQvvzaJS5L46Fs3zksOFoK//o1rZr22sfMCHjn6JHfvvYeKVuW6gau4\ntKf1aqoVrBDJVLqE7JJ4fOsxoiEvt9atGPuCPRzOHmW6nEI3dB64oMwnXnPjUww6bn3jgr9roCtI\nJOhh6JggC8/tGiNfUrjjptXzVr+eC5vWdLF9/xR7jqTo6Qyw+1CKi1bHuGRtTSHzrRTKT3n4KLpS\nZeaRh3H5/cTednvLc1pVx/dM70PRVY5kh7mq7zLiXTUycsHyDgI+N9uHpnjfG9Zxz+P7ccsSv/q2\n9vc7evMbKA0lqAwfxb9+A96+PgaVEC7JxWupITvrNeQJ8pZVt85uV3ctA1RRdR544Qget4t33bh6\n1rG+FSspJcR6z9NTI0get4s7b17Lfc8cIp2fJr6ykw/f1lqdOdnwr6/VBAOYeeRhALre9e5Z18xS\nD6zaQlZfBfD0mqHR6SlKhw5gVKsE4xfa71+9sZf/eGSI53aNo2oGx5IF3njFMi5aszhfl9+s2aVM\njJPd/DxaPkf3Xe/nD29+F6q5qKjH+uWCRB0czTI8mSNfUrjrDWvtBYnHzAy2NtyeflCEzl66NERp\n5gB+t4/NY6/QH+jjyNQyRiMFdhyYYv+xDFdu6GlQpC1YtfQiV13dMrusGR6Xm+XhQYZzwh6woUOM\no523vYXO297S8jPL6rbwsRRCAN9qc3Fy9CiZp58ETaPv/R/A85LKi3smGE0WKFZUPv72OD2ds9Pw\nB0P9XNF7CTuSu/najm9hGAb+8atJmyL8Y1uOYQBvamM7mQv9XUH6u4Itn8XYO95F5tmnmfw//wFA\n9513EVi/oe25JEni3etu5/Y1b7atC5LLxeDv/gHZFzfj8vnofs97cXm9hPHysfgH+N7eeyhT4W2r\n3sRd629bdPvPFTgk6gziYnNA2z4kQkX1GyG7fD786zdQ2vcanW99G+uWCZXruw/to1LV+MAb19nh\nsdBll4Msk3vlZTtFXbv2cq7sjXDX+nfT4YvywTeGWN0fYdMaURCuErtBkKgHRKpt70c+ylWDMlum\nd5GuZHjTipu5tGcTepdBf1eQiVSRng4/F8U3kN37POXho2i5HP51F/CnV/8eRbXI6uhKEQ7bfJQH\nXxA+gduvXTlvUcKFon4FamFj7AJuGLiGlye2sa5jDR+Lf2BR57SKTE7OlNh1aJpyVePOm9fiq4vZ\n9wXFhDVZnGLLxA4qXgnjd36VFb5B3B0L98tIksSGFZ1sG0oyniry0IvDuGUXb7l65aLa3IyLTbK0\n+1CKZFqEXj982/qGwVMOh3F3dVMZPkr6scfQslli73iXXZW6GRd0rmVZaIAtEzvYPb0Pr+zl/esb\na+m6ZRdXrO9m854JvvyfO5nJVbjjpjV2qYtWiFx7Hckf3INeLBB7qyBwYU+ITV1xdk+/xvf23kNJ\nLfO+9e+206/r0RcLIklwfLrAUztGSWUr3H7tygZ1wELwok2kH38UqJEOC3fctEYUL8xXufPmNS37\n1qmAOxLF099P+dBBlGSS3Iub8fQPELr8ylnH9ncFRXjMrKjfHa39Rk+PCO2UDx8iv30rSBIdb64R\ngKDfw1Ube3lp7wQ/e+4wsYiPD72pdR22uRDZID4z/eD9VEaGkaNRYm97Oy6XG3cLH+D6FWKceum1\nCbbvTxIJenjbNbX+7e6M4QoEKO57jfLwUfJbXsGzehXDyyvoyV0czY5gYHDX+nfy/Z0ZEsNpjo7n\nkF0S728ThrQQvWU26W6H1dGVNom6sLs9ebBQXwYnVhca869aA0DqkYfQ0ml8a9YSu/FGrkztY/Oe\ncWZyFS5aHeONTWG8erxn3dvZM70PtyTz/vgdvDDmZSifZmy6wDM7jxOL+Lh+0/wK22Lg7euj8623\nU9i5g+jNt9D1zncv6HPN3s/ABetb1ve7duBKZJdM1Bthfef81plzGQ6JOoPoivoZ7A4yZm5Xcfn6\nxoG++93vIdvdQ/TGm7nEJXPJ2i52HxbS7juur6WQy6EQoUsupbBzB9VjI/hWruTOd/x+wyTq9cjc\nfGlN7vctX0HgwouoHjtG7Pa3E77sci4zDP7iuj8WO9CbdbJcLon/9r5LODKW4/pNfZDNkPuRl6kf\n/yfoOr7ly+kNdgMiJBQJevn47XG+8dPdXL+pnw+d4hW+7JL5+KYP88GN78Hr8i7IB1WP9WYI9uGX\nh5nKlAkHPLzpymbfgrgWjw4/xcH0EZaHB7n00jctSV3buKKDbUNJvv6TXUxny7ztmpV2kdKloj8W\noDvqZ+uQSMG+8eJ+VrcoIOtbtYrCju1M/+w+5EiErne8a9YxFlySi3eseQvf2fN9FK3Kxy78YEuD\n9VUb+9i8Z4IDxzJ0R/28u4Ui1HBer5feD32Y4r59hK+seXCuG7iS3dOvsXc6Qaevg1uXzzbXg1CR\nVvVHOHAsw5GxLEGfm3fe0Po7Axvjtc/1zPaTvPmq2Sba04HABRvIvvAcY9/6Boaq0n3He1qGhD1u\nF1dt7OX5XWJ/wvraYuHLryAZCDD10/tA0whdcWVDth/AW65ewZZ9kyzrCfHx2+PzblPTCp1XXUnw\nok2icLAk0febv43LN5uwWlg3GEWS4KW9woz+62+P25sNg0i2iN78BtKPPcLw3/0NAL13vp+4sYXX\nUkMM50ZZ17GGS3s28fHbU3z1x6+SLyl8/PaNbRdjyz75R5T2D7X187TC6uhKnh3dTNgTYkW4PcGx\nEA54iAY9ZIuK7YkCsb1T9Kabyb7wPC6/XyRouFy8/bqVTM4UWTUQ4c6b187pAxoI9fN3N/0P/LIf\nr+xBuegYiZE0//P726goGne9Ye0pIfl9H/kofOSjJ/28Fq7qu+yUnftsgkOizjA2relibLrIhas6\n7dR/C8GLNtkDgwv4449cwehUga6Iz07vthC5/gYKO3cgud30fvTXFjTBr/zTT9mGahBKybLwwKzj\nVvSG7VRwurrovvMupn70Q9w9PfS874Ozjr/mwj6+/MlbiAQ8JyWMtxAE3EurWLt6IMI1F/axZZ/I\ngPmNd15o7+tl4ZLuC1kRXsaB9GFckouPxt+/5N+1YaUgIqPJAgGfzB03zU06FgJJkrj2oj4efmmY\nlX1hPtBmxR67/R2UDx5Ay+Xo/dCvzBv6uLLvUn5N/zCrIstZ3qKgJsBlF3Rx3UV9BP0e3n7dygYF\nrx063vBGOt7QGAa9tOdiVoSXEfaE+NDG9+KV24c3f/vdF/H3/76VclXj9++6qC0Jrd/T0N2xOL/i\nqYR//XqyLzxH+dAhvMtXELn+xrbH3rBpwCZR9ZAjEbre+W6m7vsR7liMvo99fNYx65d38G9/+qaG\nbLDFQpIk+n79Nxj/X9+i4w23ErnmujmPD/jcfOCNF7Bj/xTLekLcePHs8aTztjeTfuwRQKjoocsu\n59pxjddSQ/QFeuzn65J13fz5x65iKl3ihhbnsRC+7HLCl13e9v1WWNexGgmJi7svbKi2PxdW9IVJ\nDKcbTNqSJDHwm/+VyA03IYfDePsEkV3VH+Evfn22/aAd6guKvuGyZfx881FmchXWDka57crFh/Ic\nnD5Izft4nWokk7lT/oW9vZFTXjfiZOHwWJav/2QXv3vnxWxYsfRUasMwKO7ZjX/tOnvD2VMFQ9PI\nPPcMwYsutgeNk43TeQ8n0yW+9qNXuenSAd55fWtSM1VK8b0993DTsmu5adncE8lc0A2D/3zyANlC\nlTdctowLV7epYbWE85abtpNpeVy1ijIxgW/liYUQF4JTeQ9Hk3lm8hUuWdt+ux+AzHPPMvPIQ6z8\n9F+23Cj6TEArFpn60Q8xVIXON78N/5o17Y/Vdb547w42ruzkrjesa3hPVxQyTz1B6LIr7LIVJxun\n6h6mHv4FhqLQ9a47kGRZbEFUmGAg1LdgUnOiOJA+zGCov2Ffz7kwnioylSnN2+dOBnYfmub53eN8\n9K0b7CzupeJcmg/PVvT2RtquRBwS5eCshHMPz3049/Dch3MPz3049/DEMReJOj2U34EDBw4cOHDg\n4HUGh0Q5cODAgQMHDhwsAQ6JcuDAgQMHDhw4WAJOuyfKgQMHDhw4cODg9QBHiXLgwIEDBw4cOFgC\nHBLlwIEDBw4cOHCwBDgkyoEDBw4cOHDgYAlwSJQDBw4cOHDgwMES4JAoBw4cOHDgwIGDJcAhUQ4c\nOHDgwIEDB0uAQ6IcOHDgwIEDBw6WAIdEOXDgwIEDBw4cLAEOiXLgwIEDBw4cOFgC3Ge6AQ4cOHh9\nIx6P3wB8HuhGLNxGgD8FAsCnE4nEB0/S9xwBPphIJLbMccy1wG8lEonfi8fj15zM73fgwMH5B4dE\nOXDg4JQhHo/7gAeB2xOJxDbztV8DHgLWngECczGwAsAkWw6BcuDAwZLhkCgHDhycSgSBTiBc99r3\ngSzwlng8/qVEInFJPB7/HlAELgX6gfuBaeA9wADw24lE4gnzuN2JROILAM1/m6+5gC8DNwARQAJ+\nGxgG/g7oiMfj3wXuBv7Z/P4O4OvAFYCBIHmfSSQSajweLwP/ANwODAL/mEgkvnFSr5IDBw7OSTie\nKAcOHJwyJBKJGeDPgYfj8fiheDz+78AngMeAatPhVwFvBm4F/gTIJxKJm4CvAJ9exNdeDywDbkwk\nEpsQZOnTiURiBPhr4NlEIvGJps98FUHaLgWuAS5HhBwBfMCU2ZYPAl+Ox+P+RbTHgQMHr1M4JMqB\nAwenFIlE4ksIdemTwBjwKWA70NF06AOJREJJJBLjQAF42Hz9INC1iO/bDPwl8LvxePwLCOITnvtT\nvBOhShmJRKIC/Kv5moWfmf/fhiBVoYW2x4EDB69fOCTKgQMHpwzxePzmeDz+Z4lEIpdIJB5MJBJ/\njvAlGYCn6fBK099Ki1MaiPCcBW+L73w38HPzz58hCJHUfFwTXOa56/+ub18JIJFIWMfMdz4HDhyc\nB3BIlAMHDk4lksBfxuPxW+peG0SoUN1LPN81APF4fBnwxhbHvA2han0D2ALcBcjmeyqzyRvAL4E/\njMfjkmmG/x3g0SW0z4EDB+cRHBLlwIGDU4ZEIjGEIDGfMz1Re4EfInxRiSWc8mvAYDweTwDfBZ5o\nccy/Am+Kx+O7EOG3g8Ba03D+IrAuHo/f1/SZTwJ9wC7zvwTw90tonwMHDs4jSIZhzH+UAwcOHDhw\n4MCBgwY4SpQDBw4cOHDgwMES4JAoBw4cOHDgwIGDJcAhUQ4cOHDgwIEDB0vAvBXLTTPmvyCKz1UQ\nlYMP1L3/p8BHAR34XCKR+MkpaqsDBw4cOHDgwMFZg4Vs+3IX4E8kEjeaG4l+EXgvQDwe70RktaxH\nFJ/bAcxJopLJ3Cl3ssdiQWZmiqf6axycQjj38NyHcw/PfTj38NyHcw9PHL29kbZ14RYSzrsFs3Jw\nIpF4EbNGi4kCcBRBoEIINeqMw+2W5z/IwVkN5x6e+3Du4bkP5x6e+3Du4anFQpSoKJCp+1uLx+Pu\nRCKhmn+PAHsRxew+P9/JYrHgabmpvb2RU/4dDk4tnHt47sO5h+c+nHt47sO5h6cOCyFRWcRO6BZc\ndQTqnYjqw2vNv38Zj8efTyQSL7c72emQFXt7IySTuVP+PecipkszdPk7kaSze9cK5x6e+3Du4bkP\n5x6e+3Du4YljLhK6kHDe88C7AExP1K6692YQe0pVEolEGUgDnUtuqYNThqpW5Svb/o2/3vx5njv+\nYsN76aef4shf/wV6uXSGWufAgQMHDhyce1gIifoJUI7H4y8AXwb+KB6P/3E8Hr8zkUg8C7wCvBiP\nxzcDQzj7TZ2V2DKxg6H0QQBS5XTDe4Xdr1I9Pkp5ePhMNM3BPHjg+cP8ydefp1hW5z/YweseU6Vp\nfnrgF2QqjrrgwMGZxrzhvEQioQO/1/Tyvrr3/wb4m5PcLgcnGelKzdZW1aoN72lpQaqU8XHYGD+t\n7XIwP37y7GEAtu9PcvOlg2e4NQ7ONJ4dfZHHhp/m0eGn+Pub/4JOX8eZbpIDB+ctnGKb5wly1YL9\n72YSpaZnxOsTY6e1TYtFfvtW0k8/eaabcdrhMv1rO/ZPneGWODgbMFOnJO+a2nsGW3L244tbv873\n9txzppvh4HUMh0SdJ8gpefvfVV2x/23oOmpGqFTViYnT3q7F4PjXv8bkv9991rfzZCMS9ADw6qFp\nylUnpHe+oz4cX2laEDmoIVmc5lDmKK9MbMcwTnl5QgfnKRwSdZ4gX62RqPqBV8tmQRflvarjZ7cS\nZSH91BNnugmnDbphkCsK0quoOsMT+Xk+4eD1jlQ5Zf+7olbOYEvObryWGrL/XVBPLCt8y/h2Hj7y\nBFVNmf9gB+cVHBJ1niCnFPDLPqAxnKema6taJZnE0LTT3raFQFdqg1f2uWcw1PNDkSmWVfS6VXSu\n6CgP5zMUXSVTzeGTvYCjRM2FfTP77X8ni9NLPo9u6Hx37z08cOhhvrztX9D0s3OMdHBm4JCo8wT5\nap4OXxRZkptI1EztIE1DmUqegdbNDy2btf+tl0qodX+/npEtiHvl84oCtdmisxI+nzFTFs/rstAA\nABXt1CtRWqnE6Nf+idKhg6f8u04WdENnaMbe4pVkael+wslibUwczo02kLMzAV2pkvzhvYz+81cw\n9LNik5DzGg6JOg+gGzoFpUjYE8YrextWrxaJ8gyIQVmZOjvNy5Zvy4JeLLQ58uxGVavyzzu+zebj\nryzoeEt5WtETEn8XXr/Kw2Rxii9u/Tr3OnuYt4XlhxoM9QNQOQ3hpdyLmyns3MHI5z57yr/rZCFX\nLVBSywTcfgCSxaWPa4cyovTL9QNXA/Dy+LYTb6CJbKHKF+/dzmtHZ+Y/2MTEd7/DzCMPU9ixHS3n\nlLk403BI1HmAglLEwCDiDeGTvQ3Gciuc51u+AgC9cHaSEy0rSJTkFlU5tOK5uaHm1omdvJYa4ulj\nzy/oeMsPtcwkUdnXaThP1VX+adu/cihzlGdHNy/4M6nywief1wOmTT+URaKqp0GJMoyzW+0wDGOW\nIlNQxDi2tmM1AMnS0sN5R7JHAbht5S30BXrYmdxNST05hYmf2j7KniMz3P3QPhR1Yde5tD9h/1sv\nOQWSzzQcEnUeIGeaysPeMF6Xp2U4z7tsOQBaaeHkRFeU0+ahUk0S5ekXipl+jpKo546/BMCx/BhF\nZf4B0CJNy3vD5t+vz3BerponUxUh2vq6R4auUzp0qGV21dd3/C/+6oXPn1dFJ2tKlBXOO/WkWp2p\nEVXtLJu0DU3j+D9/hSOf+VSDTzJvkqhV4eXIktxAojKVLF/Z9m8LLg9xODOMV/ayLDTAjYPXougq\nz42+dMJt13WDZ189DsBkusQvX56/2LGh6w1WBn0R47WDUwOHRJ0HyJvlDSJmOK+Vsdy3XJCohSpR\nuqJw+H/8GckfnJ4aLJYnyjsoik2eiyRqvDDBkewwEhIGBgczh+f9jOWJWtYTRKJ9OO+XLw/zt999\nGUU9N02vxbqVfX3/TP7gHkY+93fkt21tOP5w5qhdgf9I9vyptJ8ui8VET6AbtySfFk+UmqoRkMrR\nI6f8+xaDqft+RGHnDpSpJFqhlrlqkaiIN0JPoKshnPfy+DaG0gf511e/x/6ZuX1euqEzVphgRXgQ\n2SVzy/Ib8Ms+nhx5FkU/seSWfcMzTGcrXB3vpSPk5SfPHGLLvsk5P6Pl81C3cD3bSO35CIdEnQeo\nKVEh2xNlrez1YhFkGXesC1h4mExNTaOl0xT3nZ5if5YnyjsgSNS5GM4bzY8DcEnPhQDsTx+a9zNW\nOK8z5CMU8LQM56WyZX7wxAGGJ/Ik0+WT2OKFIVvNoZ9gyKeo1O6nFW42dJ3042IXqcqxkYbjHx1+\n2v73sdzoCX13O2SeeZrpB+8/q/paSRP3N+gJ4JN9p0eJStVKKpQPz99nTyeyL9ZCv1qhdp/yZnHh\nsCdIb6CbglqkYPaxV+sUqOfn8SbmqnkMDFsdDXoC3LTsOjLVHPvqSigsBceSoo3XX9TP//2hy/F6\nZb75wF6GRtJtP6NlGt9zlKgzD4dEnQewqpVHPCKcZ2CgGmI1o1cquHw+XIGg+HuBD6Ul8VcnJk5L\nuQHLE1VTos5O79ZcsPws1/RfiUtycTgzv4JiGcsjIS/RkNcmVfV4cPNR+9+ne3+9o9kR/uqFz/PN\nXXefUEHDQp0SpeqqSIZ4daf9WnMfS5VqE/tIvpFEffHe7fz5N15YUHikHbR8non//V2mf3ofR/7y\n0xT27F7yuU4mSqogUX7ZZy6ITr0SpczU1aUaGZnjyNMLvVxuIBX1Y4LliQp5Q/QGegCx52Cumudw\n5iirIsIDmqvOHQrOmu9HvRH7tQs61wIwUTyxTOZMXty7zrCP1QMR/tv7LsEwDP75vl2k863vq2r+\nXk+/8MQ5nqgzD4dEnQeww3mmsRxqIROjUsHl8yMHTRK1UCXK8kloGtXJU19BXMtmQZLw9onB42xS\nBxaK6VLNFBzxhMlU5i/TkC0qSEA44CYa9JAvKWhNJtrEcM2zUiifPs+Ubujck7gPVVfZNfUazx1/\nccnnavaHVTWF4t499t9aU3ZmSavQ4Y3S4Y0ykjtuv65qOnuOzDCVKfPzOnK5WOS2bQHAFQigFQqM\nfvXLKNNnPnO1rJbxuDzILhmfe2lK1Nh0gRf3ji+I9Bqahjozg2/1GpCkxpIoZxjN4079mGCF88Ke\nML1BQaKSxSl2T+/DwODq/ssJuP02SWoH6xnt8Ebt1/pMUjbZJuPPMAxmyul5vXoZMzTfERZj8iVr\nu/nwm9eTLyl89xf7Wn5GTTcq8nrRIVFnGg6JWiIMwzgrBtVmFIcSIm5eB2v1GnAH8DaRKL1SQfJ5\ncZkkasHhvLrVafX48TmOPDlQsxnkSARXWBisz0VP1JRJorr9XUS94YateNqhWFbw+9zILheRoLh3\n+To1StcNkulS3fGnT4k6mD7CSG6UTV1x3C43z5+A2bZoVpR2u0T2paIrDQpIc12wslrG7/azMrKc\ndCVjh6wLdb+/WFaXrI7lX3kZgNV/+1n6PvqroGnkXn55SedaLNRMhsl7vj+rrAeI322l7ftcS1Oi\nvvfQPr55/152Hpg/Y62azoCm4entRQ6HW7bpTEExSZRVnqVeiaqRKBHOA5gsTZFIiRpPm7riRLzh\neUlU1uxXEV9Nieoxz9eubMJTx57nL1/4HJ95/rMcTB9pe26LREVDXvu1t169gg0rOth1aJpUdnZo\n3lKibFvDEsN5hqaR376Nwq5Xl/R5BzU4JGoJMAyDie98m8Of+lOKidYrhjOB3LatHPvHzzN57/cb\nXi+bA63PDAFALatHr5Rx+fy4vF4kt3vB5ESpy9ipjp16EqVls8iRKHLAInsnFs4rHz3C1M9+clr3\n1Joupwh7QvjdPsLeMFWtOq+SUFV0fB7xmEZNElWfoZfKlVE1A9klNikuVk4fibImqk3dcfqDvUwU\nk0v2Rll+lU5zxV/VqqipFJLHg+T12uFcEM+fVQNoRVhMJsdNv1mhVEcwDYOKsnijvZrJUNz3Gv51\nF+Dp7iFyzXUgy+ReOfGMrIVg5rFHSD/+KKNf+dKs90paGb9b7Dzgk70ourqoCtozuQr7j4lrec/j\nQ/MmIlTNunGeWBdyR+csTw4I9W/3oekFp+ifLCiTwoTtXyPCaw1KlGlhCHlq4bzJ4jSJmQNEvGEG\nQ/1EvREKSnHO65etWkpUjUR5ZQ8xXyeTbQp4HqtTRscL7VX6TL5KwCfj88j2a5IkcdkFgqQdOj5b\nqbauv21rWCKJGv3aP3H8619l9KtfRq+c/q2DSocOoldfH+VaHBK1BKSffJzsZlHnpzlr6Ewi9YsH\nASi+1mj2tvbX8rt9eGWxmW1Vr2LoOka1issnBmVXMLhwJapO1q+MnhpjrwXDMNDLZeRg0FbMTlSJ\nGv7s35J64GcN2UbTpZlTZtTVDZ1UOU13QBj4LY9Frjq3GlVRNbzmIBsJiXuXrcvQm5wRKtSaQXG+\n0xnOqymcfgaCfVR1hZny0pQKKzuv0y8MvFVdQU2lcMe6cHd02CUuQHimNEMj4PbT4ROky1L1mn9/\nqbJ4EpXftgUMg8i11wEgh8OELr6EyvDRJW1+XVG0WWROV6pM3vt/KB+ZnaFpVMR1rQwfnaV2l9Uy\nATkAgM9tqsr6wvvsloQgHt1RH8l0mRf3zv17KlNCrXJ3ifugl8sNk265qvLZu1SLsAYAACAASURB\nVLfwpR/u5Pndp3fvTete+NeuAxrHhIJSwCt78coeuvyduCQXu6f3kq3miMfWI0kSEW8EA4O80n4s\nsUJy9Z4ogL5gD+lKpuV4kVVq6lZhrnMXKnSEfLNev2CZeAYOjc0mUXaCTf/CwnnVyUmO3ffThlI0\nhmFQGkpYf5z2AsvlI0cY+dxnST/x2Gn93lMFh0QtAYWdO2r/fnUnM48/esq3S8mXFP72Oy+zbaj1\n91SOjVAxB2Q5Em14z1Ki/LIPn8sK5ykY5kqgnkQt1LCtzswgud24/P5TvnGxUa2CYSD5fEguF65A\n4ISyUuoL8+llMWFlKjk++9IX+PH++0+4va2QrmTQDI0evyBRYa9ZgXyecEJV0fC6TRIVECQqV5pN\notYOiHt+OsN5VsHBgNtPf7AXgIni3Cna7WBl51lZUJVKES2Xxd3VhRztQMvl7PtmZaj5ZaHoAS3D\neSDCoYtF7pWXQZIIX3Od/Vpgw0YAqhOL7+uf+eaLfOobLzS8NvPLh0k/9gjj3/7mrOOVumy47PPP\n2f9WdRVFV+uUKPH/xRD/7UNJJOAP3ncpLkni8a3H5lRjVbMithyJ4O7oFK/VhfSe2TnGyKS49iNN\nm2NXk5MUdu9acNsWC2VyAiQJ/6o1QGN5lrxSJOIRz5jskon5Om3SvzF2AVAjRnOF9Gxjua+ZRIn+\n3iqkV78wyqutx1NV08kXFTrqQnkW1gxGkCQ4NDp7QaJmMiBJePr6gLmN5VqxwOg/fZGjd/87uS21\nLES9ULDHfqiFRReKUqVxP8/FojIqkhOqE+NLPsfZhHlJVDwed8Xj8X+Nx+Ob4/H4U/F4fH3T+++M\nx+Mvmv/9Szwel05dc08OFFVnayKJri++IxiGQWV4GHd3N6HLLkdJTpK85/tM3ffjOT+390jqhDaP\n3T+SZngyz9ZE60mqfLRmoq1PSQYoqxUkJDwuT0M4z1pRSiaJkoMhtGJxQSEudcZUCbp7GurInApY\n7WxQzApLJ1HVsdpEaG2bsHt6L4qucCizdDPyXLBM5YtVoqqKjs8rHlO/122/ZsEmUYOCRJ0xJSok\nBvXxJZMoU4kySVR1WvQpT6wLd7QDNM2eJMt13xs2J0ortGiF88Im4VysEqVms5T2DxFYvwFPLGa/\nLkfE/VrsNhuZQpWZXIVssTEhIPeSacKX5VmfUevUp3qlyl4MWZ6oRW5CrOsGh8ayLO8NsXYwypUb\nexieyLcMG1nQzEWGyx/A3SlIVH1Ib3y6RhImZhqfyeQP72X0q19ecuh9NJnnC/du57N3v9JycVCd\nGMfT3YMcFX2/2VgeMvsG1J67kCfIZT0XAxC1CfhcJCqLS3LZ/cxCX53PatZn6gzlhWrrcSpXVDCo\nmcrr4fe6Wd4T5sh4DlVrDJFqmTRytAM5JNozlycq+cMf2AQp91KtFITlZ5U7xLOmJBf+zI5OFfij\nrz3HQy8ufZy0lC/tdbL/6UKUqLsAfyKRuBH4NPBF6414PB4B/j/gjkQicQNwBOg5Be08qXhs6whf\n/8ku7n188RtJapk0Wi6Lb9Vqgpsutl+fyxd0LJnnC/fu4KfPzl9csR3GUuJhsSbNZtQTGb1YaJDc\nK1oFv9uHJEkNxvIaORGDsisYBE1rWKW0gqGqaNks7lgMdyyGXizais6pgG6GN6x2ysHgCSlRpQO1\n+i5aTjzIu6eEt22imERdZBE9NZMm+YN75kw0mDK3J7GUqIinUUFpeV5NR9MNW4myNiEu1/meJtON\n4TxrsikOJdCV9oRK1w1++uwhJlJLv44WmfG7/QyY25CMF5ZIotQiXpeHoFuEqqxwsburyx7sLXN5\nqe57bRJlXkfr9/d2ir5SrCyOVCoT42AY+NdvaHjdUne17OJI1J7DtefSKk9ROT5qjxeSxzO7DVNT\neJevwB2LUR6uTVY2eZQtEmUpUQvztIynilQVndUDoq9ctUGoKcOT7fugTaJ8PuSoeR/qSNRUxmyT\nz814U19SJiZA15c8WX7zgb3sPTLD4bEc//FoouE9Q9fRcjncsdiszOKKVkXRlQbi894L3sE717yV\nv77hz4iY5GlBSlQlR8QTwiU1TpVdJimbKTfVbTJ0ckqe/qBYVBTaKFFWSL5VOA9g7WCEqqoz0TTe\nq9kc7mgUye1G8nrbKlFqLkvuxRfw9A8QWreWwp7d9gLAUjqD8YsAoRjOh5lchR8/fZD7nj5IVdV5\nbtfCsjtbts0kUWdTksKJwL2AY24BHgZIJBIvxuPxa+reuwnYBXwxHo+vA76dSCTmjGvFYkHc7tmr\nr5ON3t5I2/eyJTHQPrb1GP/9Y1cv6rypo2IC7r5oI4PveRc+tczx+x9ETU3T0xNGkmYLcS8PiU4z\nlirO2a65MGM+dJPpcstzZEriAYlcGCe3L0GEMsFewWcVo0rQE6C3N0J3VnzWH5LpRNyHUGeY3t4I\nqViUItAZcOHrbt/OSjIJhkFooA/Z56O4excRqUKwt3dJv60drN9ZKIiJKBSL0tsbYbwjSmVkhJ6u\nIFKLlfx8mBmpkVmfXqWjy0/C3JldN3QUX5HBzuULPt/o808y8+gvmXn0l1zz7X/D1zt7HVEaFxPV\nBYMr6O2NsELtg9dA9ypt+4SlqkRCPnp7I/SbA6rsddufSeUqBHxuLt5o7aVm4J0cYegfP0/s6ivZ\n9Nd/2fLcuw5Mcf/zR6hoBn/4oSt4aPMRCiWFD755Q8vjQUxcmVd3oVWqdF9/LcYhofKs6Osh5u9A\nelkipaQafs9C+3tZLxPxhenqEMd7y3l0oHPlIEomQwYIS1U6eyOM62JC645GWTNo/m5Xhd7eCIZL\nvLe8L8LhsRxur2dRz1zyNXGNYysHGz7nX9nPccCrtX7+2mH/aI2wy2ZbkvvqlNtCruF8ar6AXioR\nGuwHSWLmlS10uFW8sRiFGTFhxyIRensjxMbF5wJhd8M5FFXn8PEMvbEAsYjffn33sPj8xRf00tsb\nYe0qQb7Kqt72Nx0xSVTXQBcVWSMJ+NXaNUgXqkSCXtYui/LqgSki0QB+nxvDMDhgLuwibp3oEsa9\nZLrE6oEIfq+bF/dM8PYb13LNReJ+q8WiILsdEfpX93MQcCmiXUlzvOiOdNjt7O29mGsvuLjh/CuU\nPtgHukc8g4qmkK8WiQUEWTQMg6ySY3l0YNb1GdQFiXL5Gq9drpJHN3RWdg6QLE1RNSotr+3RKUH4\nlvVHWr6/elkHz746hiZJ9vuGYTBUreCLhOjtjXA4FESqtu6Px55+FENVWXHnuzFUlcJ378Z1JEHv\nm29DNVXbvmsuJ/fyi0gz0+L353LMbN1G7Oqr8EQaz/m9XyZ4ZnvN+zqRKlLWYdXA4u/reFYskIx8\nblHP0tmKhZCoKFBPGbV4PO5OJBIqQnW6DbgCyAPPxuPxzYlEom0p15mZEzMELwS9vRGSyfari2Jd\nWG37njFW9IUXfO7pXUKxULsHmCmoBN9xJ8FDR8lv28r4gRHcnbFZn9mZEJLq8HiOyclsS6I1H46Y\n8fFcscqRkRQhf+MKNndcfId79VrYl2DywAghMzRSrJaJ+MQ1qRaFPDyVzjBdEuco6y6SyRyK6ZdK\njkzi02evkC2UDh4DQAuEMPxCOZg8eMz+vpOB+ntYGhMrp4oh2ql5xOptYngSObzwe2chd/SY/e/s\nxBTjh4eoaFWxr6CusOfYIQJKdI4zNCI9UlMhDz/wMN3vee+sY4anRfzfXfGTTObQS2KyH5uZbttX\n7YJ7hk4ymaNs9tvUTNH+THKmSFfER2o6T8DnJpMrM3VEDHYzW7e3PffQETHRHB7NcOx4mn/5kShs\n+cZLB9r+zvHvfIvsCyKhYt2XvspMQZy7mNVwlSp0+joYzybt77TuoaFp85LdXKVAzNdp98/C8UkC\nQNkbRHWL6zA9Mo6ybC3j02IQ1qsuylkDCYnpXIZkMkfSDC9FAmJom0jm5hwLmpEaFvey7Ak2fK6q\nifbnJ9vfr2aoms7WfTW/yZFjM0S8LtLjNcWyOpNuGBMs5UmPdJp9ewvHt+8ldOllHJ8R98xQxHOg\nVoQSMDE9Q69k3ouyyhd/sIPDY1kkCT7z8atto/Iu00/ZE/aSTOZwmeHF0Yn218hSojIlDV0Sz116\ndAJPModhGEymigz2hOiOiPf27J9kVX8ErVCw1enpY5NUehoXJYaqMvbtb6IX8qz4kz+f9b1VRaNc\n1QgHPHz4tvX87Xdf5ls/3cWKLj+yy4ViEjRV9jCVKuLy+6lksiSTOYazQllx694575VREvd0bGaK\nZDLHj4bu57njL/H/3vwZwp4QJbVMVVMIukKzzlMpiGs3bX6nhTEzG89PgKA7QLrU+toeHRWE1o3R\n8n2fLPrD4ZEZVnWbSpsivKGqJIvP+Pwo+cKszxuaxujPH0Ly+XFddg0hM9kjuWsf0qXXkB4WdoZK\nuAs5GqUwOsbI1t0M/93fANB1x3vouesD9vlS2TLP7ThO0OemomhcsraLnQenefylo9xx05q217cd\nimNiLFTS6SXPh6cbc5G9hYTzskD9GVwmgQKYBl5JJBLjiUQiDzyDIFRnNdL5GonacWBxmQmWR8G3\narX9mnfZMqB9ltoBkwAVKyrP7Dy+4EJ3FgzDYGy6Rj5bhfTUVApXIIB3UAxW9XWcyloFvyn9t/JE\nWV4jK84+X+ablW7u7ujEbfpGmn1YJxPWYGx7t6wyB0sM6amZjO1F0XJ5O0yyJroKgLF8e8Njrlid\n5VNQpmvKgrUXYTOmyykkJGI+4SuxQgr5OcJ5VkbXrHCe+bqm6xTKKpGgILxBn1sYq+vS1utLUdTD\nqi01Nl1g18G69mvt09RLh2r7jOnFAiXTx2SFl/xuX8O+dyCuzYH/6/ftzNFW0A2dklom5Ana/dMw\niwp6Yt24Lc+LKf+X6sJaLslFyBOseaLM8F1vhyD3iy35YBWRdccaF0PuJXii9h5JkS8pdgp7xhx3\nNMsALcsYqtoQklEtL1hPD/7VawBRjgNqnii7TlQLY/m9T+zn8FiWFb1hDIOGWlBHxwWxWtkv+l7M\n9OPM5NqHA7VSLZQudzR6onJFhaqq0xP1M2BO9FZIr95eoOVnX7OJ/7ib/JaXKb62d1ZdO+vcAJGg\nh5V9YW66ZIDjUwX2j4g+YF0za6eF+szi+kKbc6E+nGcYBjuSu1F0xfYv5ut2emiGFXa2+qLdbjM0\nGPFGCHtCdluaYRfabGEsB+gySWkqW7s3RsVMBPLWxsFW4bz8zh2oqRTRm25CDgQIrl4FLpfdj6zx\nytPVhae3D2V6itQDtYQaJdk4Jz6z8zi6YfCRt6znX/74Vn7rjk0Ac25P0w6GqtrPmKGq52S9v2Ys\nhEQ9D7wLIB6P34AI31nYClwSj8d74vG4G7gBOD2bqZ0AMnUl9VsVNGsHQ1UpJfbh6e21TZYA3mWC\nuLTyRWUK1Yb9zO5+OME379/L9x5aeH2pbFFpmAxa+VjUmRTurm7cXUJmtkiNYqaDN5OoagsS5bLJ\nydxGUCuWLXd02HvuVSfG7dXhyUazJ+pEyhwYhoGWzeAz75mWz9nZXus6BDEea1Pb5ZV9k/z3rz7H\n3U33Tq1LEW7n/5guTdPl70R2mZl25sDc7MfQdI0fDd3PSG7UNpBbk7Df/H+lKkhSwQxLWybqkN9N\nsaw2GGyLu1sX07OIeK6o8NSOGvkvzUE66quG6+UyJa2M16yeDaJvVZrS7cuHDmJUq0zd96OWkyXU\nyhsEPUG7BAd58Rvkjg7ksElgzM/Xe7EAMVlZ2XnmNemxPVGLJFHp1iRK8vmRPB47W20h2LxH9KO3\nX7cSECntUCsKaRdMrOszlq/O092Df80aoLZfXf2WL9DaWD48nsPrcfHnH7sSSYIhs5q9YRgMT+YZ\n7A7Z/cnjlokEPXOOgfWeKLflTTP7geWH6u7wM9hlkihzsVe/sGh13+tLw7Ta8cDKQI0ExG9c1S/6\nQN4McVup/a6AIDOuYMgeD+oLbc6FiDeMhESmkiVZmmamkm74vFUANtTiPFbfs8YOC1Zxzqg3TMgT\npKiU7Nppx3LH7bHFCtWHAq0V/66oOH89wbXqKkler/3bDVUVClUdMk8+DkDnbW8BQPb58C5bTmVk\nGEPXxQJbknB3xvAOLgNdJ799q120VG2qBTZt9o/4qhget0w44CHkd9uvLwZKKgV1AsLrwRe1EBL1\nE6Acj8dfAL4M/FE8Hv/jeDx+p+l/+h/AL4GXgPsSicTZscnUHBBxfNF551qFNaN06CB6qUTwkksb\nJEhrQq4en61EjUyKQbevM9Dw+rOvji04O9DKgLEMoc1mQ61UQi+VcMe68JgkyjIPWjWifO5mEqVg\nNGXn2eRknsw3q+O7ozUSNfPQzznymU/Zq53FQDd0/v21H3Jv4iet3y+bZM9vttMcROYzwLc8V7GI\noaq4u7vFlh65nH2NeoI9RL0RjmSHG5RC3TD48dMH+cZPRdfetr9xpaZMT4sByOVqqGdkoaopZKo5\nuk1TOYi065A7SK5ppbo/fYgnjz3HP7zyFaqWEmUW27SUKItE5axMNLMIZ9Av5Ha1LhuqtL91ZH2y\nrsr53iM1taodidKr1YZVr14umwUva/3a6/LY+95ZqCfWM4890vLcVnmDkDuA1wwpUxW/zeXz4Qqa\nmUjmJFmfnQeiXERBFUUTC2UF2SURC/vM37PI7LyZGZDlWWVCJElCjkTsRIT5UFU0tg8l6YsFuGKD\n8MhZ6oOVWeq1Jq36Glimguzu6sLdGcPd00Pp4AEMXZ/1u1sZy6ezZbqjfsIBD6v6Ihway1JVNKYz\nZcpVjRW9jVlmXRE/M7lKW2Vct7Pz/Lh8PlH41CRFUxnRH7o7/HR3iDalcuJ4JdWeRBm63tCXlIkJ\n9HKJ6Z8/YC/s6pUogICZmVo2+76lQssmiRLJJiUMXa8jUY2/tRlul5tuf4zxwiRDMwfs1y0Fyqrx\nFGxBoiz1dbYSZW2xFSHkCWEgCsPOlNN8/pV/4gtbvi4+Zz5nQV9rR03MUqJytfPXStLUSBQ01ooy\ndJ3S/iF8K1fZ8xKAf9VqjGqV6vgYaiqFHO1AcrvpvuM9uLtEpmHsbW9HDkfQmtR06xkKeGsh+a6o\nn9Qc/aYd7MxTKxLQYrw81zAviUokEnoikfi9RCJxUyKRuDGRSOxLJBJfSiQS95vv35tIJK42//uf\np77JJwZN18kVqgx2h/B6XMy02eixFYpmzZPQJZc1vO4x93NrVbSsbHbA9StqfqFlPeLhtgaE+WBJ\nupvWiNVxsxJlqU6eri6b1Fgr6voaUVBbvVb16uyst9DCwmRWx5c7OvB01Vbshqoy/r++tegNiR88\n9Agvjm3h2dHNLSteW8UHXX7RTmsltpSKt9Yqyx3tQI5E0XLZWphE9rGhcx2Zaq5hc9Gd+6f4+eaj\n9Hb6kV0SiqrZBFgrldCLBTw9vWKSbaFEpczMPCvN2kLYG5oVzqvPDCyZv88qtmmVOLDCeXnTI1VT\nosT/K7kaiVLbZJMl22R5tiMdzYOdXqk0bEECzNqXERrT9fPmfnTNKFhhQU8Aj6VEmZmFksdj90tL\nwSk1kyhT1SuoRQpllZDfTdC8FvPVicq/upPkf95rTwbqTAp3RyeSa/bQKIcjCw7nzeQrVFWdDSs6\n7AwsKyPLVqIGhQ2gvs9oubz9XQCB9RvQ83mq4+OU1blLHJSrKoWySrepYsRXdaJqBgePZzmWFN+5\norcxNBWL+Kiq+qz6WnZ7SmWQZSS36HuuQAC9LO6XpUT0dPjt32iFLOvvezOJ0stlUffNfI6rkxNk\nnnmG6Z/82Pbc2RtvmyTKb07gpapoZ6twnri2RQp11crnw0Con5ySZ9tkTbG1C7da5N4TmPU52SXj\ndXkoq43PUdYO54VtBaugFPjxARHOLpvKlUWiAm1IlNcjFJ/6cJ5eNRe9HotEWZvG14WD02kMVcXT\n3+ht9JmqZmnfaygzKXux7enpZeWn/4L+3/hNOm65Fbmzc5YS1aqtXREflaq2aKXXUlp9K4V1otWi\n81zDeVdsM1sQ9Tk6w15iYR/pRShRhb17kNxugvELG153eb24/H57lVpNTpJ/VRTkrJr+FEuOBlhl\nGtnL1YV1QGvgWNkbxueRGUk2TbwztarCktcLLpf9YFmrV2vVaq30W3mi7IdynjBZvRLl8tcGGFcw\nSPX4aIN3Zj4YhsHjw0/bf7dKN7ZXwybZs9LCjTlS+NtBqwtFypEIWj5PWTGvkdtHPCbKoA3N1H7D\nniOCpP72HZu49sI+VM2wQyBqXfjFHY22VCqmSuL+9DSRqIA7YN8fC8W6QXmkIAzwlhLlliVkl2Qr\nUVZowyrCGfSb+87layRKL7QIpZREeDhcF0q49XIxobcbFK3yApZqWVOiaiSq5rer3RdrYeG/YD3V\n48dbhnyt3xxy14XzFEWkcbtctTCzVSdKawxr1fxlBQolhVDAY6/w51OiUj9/gJlfPowyOSFCHZnM\nrFCeBTkSwahWF7RNRk1J8RIJepCokShLUfOaE109QdUKFokSBMAq8lk6MFRXZFRc89r1No335oRr\nhYIuWi1+x5bEJKNT4rzLm5SoWFRcw3aKvFYu2c8diHpRlvKRyojPdEf9BHwyXreLtPkblemaR7LZ\nE2WVJ7G2a1EmJmwFuzIyDDReP6hN4NbC0zqHK2gpUTW10laivPOTqEGzNEeilRJlhvOC7tZhwYDb\nP0uJsotzesO2EpYspdhukjSPy6pfNjeJAkFUUrmyTfCNpnCeXSuq7hm3ij57mjKlgxvioi0/vBc0\njdDlNeuyp6uLjltuRZJl3J2d6KVSQ8maUkXF63bhlmt0octSHrMLnz+h5hn1m57i5o3Fz0WcdyTK\nynjqDPuIRXxki8qcZloLhmGgTIzj6R+wFZF6yJGoveqf/N93c/xrX0HNpG1fSzTo4a/+yzV84Q9u\nwm8N8AtUomzp1+9hZX+YsamiHeqBWujOHetCkiQx0JkPQa1AnxgsPbL4blVX7XCebSxfoNdIywpj\ntivUOEh1vvmt4tyL2EagolVQjdpvsTbprUdzUVDLWLmUcJ618hFKVAR0nWpR3De/7GejTaJqg2pi\nJI3X7WLtYJR+y/sx0+j98HR3I0eiYluMpnZNW0qUv5FE+WUfqqGh1KlP9dtEHC0IImcZyyVJwueR\n7Ykk11RY0lKiFOv+yXJLP4plKr98vZDx1wxEWGYag9uF86zBzmtWSlbKBeG1qydRJkFX6nxRytQU\nrkDA3kKluHfPrHMX68ImdjhPUe3JQmra17FWJ0pMoNZklavmKZZVgn43Xo8LlyTNWSfK0DR70q4e\nHxWKkKa1J1GWwX0BIT1LSYkGvbhlF6GAxw7n6YUCLr+/lpRRr0Tl81BHHAPrTRK1f2hWOM9rTsiW\nemkReyu0dsm6LmIRHy/sHueAuV9esxJVMzC39rdo5bIdRodGJcoq7BoOeJAkiWjIaxNFNTUtQjaS\nNKsPWmTYt2IFkttNdWKcyojISqwcayZRjUqUVSPN6gu2J8oKbZVL9jYu84XzoEaioOaJtJQoO8zc\nxlvldwdmkSjbjF6nRB2uK+Cr6Aq6oVOsaLhlFx53+ym4K+qnqtRUQmvRaNkZmj1qUCuc2UyifCtX\n0nHrGzFUFTkcIfbWt7X8TsvrW69GlSqqPWfZbTP7zWJ9UdaCwbdS+ASbNxY/F3HekqiOsJfOSKME\nPRf0YhG9VMLT07qWqByNouVz6OUSxaF9YBhUx8bqfC0yawejdEX9tQFhgUqUNWn6vTKr+yLohmHL\n81AjLZ5uMSm6An57oKvUbT4MwgcAwnBuhfOaPVHzVRhWMxncHR22L2z5H/8ZA7/1X+1V81xFJ5vR\nPAhNtyRRzeE8MbA2GyqrijbvhqoNSpRZHsEK0fjdPnoCXcR8nQylD4rCecUqo8kCFyzvwC276I+J\nwXoiJa6vpUS56ysnN0nU6Yr4O+bvbHjdmgzr1ahiHYmaropVZf0GpT6vTEUR/SZftDxRjRONNcF4\nenobVqn2eU1D8Mq+CF/4g5v41K9eZa+I25Eoi3xaoetKUZw3WO+JagovGYaBMj2Fp6eH4KZLACjs\nnm2ZrK34A7YSJamaHbaQJMnMvmoTzjMVh1Qpi24YhPxiUg/45DmVqOr4mE3EK6OjdabyrpbHu8ML\nz9BrJgEdYW9Ddp4rGKrrL3UkqpBHDoXsZ8s7OAiShJJM1pHH2c8y1O5rt6kuyS4Xb7pyOZWqxs6D\n0/g8sk2wLHRFZhuY66GXyw1KlBwIYCgKhqraqqXVdzrDPrKFKrphoBULyMEQcjiM3hzOswhQKIyn\nr4/KsRF7F4HKsWMYul4XzhN9oDZmWp4os2aaSTZtdbpapaAUkJAa+mY71JOoq/uEOmMXblWshIfW\n57GUqHpfUF4pIEsyftlvk6gj2eGGz1W0KqWKStA3d9kPSyW0CK69mLSUKDtbsp5EiTHD29s363w9\nH/wIocsup/djv9oQQaiHTaLSjSSqWTGzQsYziyRRFuGzwnmOEnUOwipv0Bn22ebThfii6rNmWkGO\nREDTyG3dCuZmj9WJcarmzuZWSAZqBr3yHAO8rig1Ncky9vncrBoQE//RidpAboVMrNWHyx9AN1OT\ny2qTEmWuXhVdQbdSZu1K4O1LHGjFAqX9+0V2WyZjVy8GCG26mOiNN9skbikkqsfcRmG63IJElZvC\njh7LWF5TGQzD4O//fStf+sHOOb/PDkXWZX3pFomSRVX3eGw9BaXI8fw4Q2ZKdXylGFwsJcrypVkl\nBDxd5vYkzF5dWavT5pWxneFTR6IKdeE8a2PZ+r7j99aUqHyTEuUxjzPKJSSPR2wYWyw2bD4KtYko\n4JPpivrxeWR7kGwXzrMGO485OCtWSKYhnGdubm2G89RsFqNSwd3Ti3dwEE9PL4VdO2eFw6xSCaE6\nJcqlavaKG0TftBIeymoFl+TCY5KIkBluyZhZpVYoL+h3z+mJKh85Yv+7tAvL1wAAIABJREFUeny0\n9oy3IVHW1i8LydBr9vR0hLwUK6rw0xULyKFgXX+py3rMF5BDNbVIcrlw+f0YlXJdGFNc8/pnGWqq\ngDXBAbzpimV0mqUMIkEPrqaaPNa2I5m6Ta3vfXw///D9beJZL5XtRRbUKT6lEqWKikQt4aEj5EXT\nDfIlBaOqIHk9yKHwbE+UbQoPCu+OptkZW0a1ijI5OdtYbqv3TZ4oc+FnJ5soCjmlQNAdsLNG50J/\nqEY2Lu+9GFmS7WQPi9yH5gjnaU1Kcl4pEPYIEmx5sg5nBImynv+KVmlJTJphqT3Wwt82lptKfE2J\nqhGeduE8EJGG5Z/8I6LX3dD2O90dpjpaT6Kq2izCZ4WMpxcbzstkwOWy22ctkM9lnHckyipv0Bny\n0mmSqIX4omyi0kaJsmrZZDc/b79WHR+3PVHeuirttkF4DiXq2D9+ngN/+HsYmmYPHAGvzGrTWzVc\nT6Kmp0CW7RW0y+9Hr4gVUqXJWO6WRDtUTa0zljdme2gtSNT4d77NyP/8e/LbtorstujsYpRWloc6\nvfBSBxaBWBkWnpzp0uy6Ru2N5bX7NjyRZ2Qyz9BIes794+xwXkdt/ynDHJAtomltUDqUPmiHvlaa\nPjZLibLCebW2BVoqCyCMpTDbo2F9XzslSjHE7/DWK1EeuZadV2z0RNl9rFzCFQzWlLYmZbFVnwz4\n51Gi7HCemURhEpZWnijLWF6eNAf07h4kSSJyww0YlQr57bX0dqhTojw1JcqlaPZ9BnCFQmjFgtiB\nXhNeLEutsa6jpRxY1yvgc8+pRFWO1irXV0ZHqY6L+mCegf6Wx1sLBy0zf32cdp6eYqkq1J1gSITD\nZdkmqIauoxXyuJoKyLr8fvRyZfaCqC40D61JVCTo5a/+y7VctbGX996ydlY7LQJe/8xsG0oyNJKm\nUlHRq9UG+4KlYGilEqWKht/ntolZ1CRk2XwVo1rF5fUJ32Eh37DptzW+uIJBYqYFAMC7fAUgQnq5\nUhWXJNmE2N+08LQ9UeaYZamWerVKoVog5J27vIEFn+xldWQlq6Mrifk7iXjD9qKnOEd2HtT6fsMi\nSCnYz/kKc0yzyO/KiMiWq6gLI1FW37H6UnOJg5YkKplsmAsWi5oSJcZhVdNRVN2esyx0WSpZbpHh\nvEwGORK1F+5LsWScbTjvSJStREV8dhrpQsocWCEzd1slSkygpX2v2ZksysT4rFo/AH6T1bcb4A1d\nt2vDaMWCPbH5fW6W9YRwyy7b4wBi9eHp6rIzilyBgNgDT1FmZefJLhmX5EI16j1RJjlxu5F8vpZK\nVGGnMMpnnn5SnKdjdnVyl9eLHI22zFJsh5KpvCwPD4rK0y2VqPmN5dv3iwnbAPYfay8R2+G8aIc9\nGGmVxpCnTaJmDtgFL61BPOj3EA547Ow2SyWTfL66/dUaSVSuTXjBSpMua/VKlBmKc3lQTRLlczcq\nUVVVRzdX/FAL51n+CqlcxhUI2J61+t3tobaBsbfuvNZk1Wqj1/rfZO0er5rh4gYSZSojloJWmTT9\nGebCI3rDzQBkN7/QcG47bOIO2iEql6o17CsnB4Og60KRUcu2GgO1+1ZUKg2/y6qw3C7EWx4eBpcL\n74qV4lk1i+V6B5a1PN5aPVshk7nQjuBWs+JeWCE7d2enverXza1MmqvwSz4fekVUz/a43PY+bjUl\nyvREZcpIYNsULMQiPv7w/Zdy86WDs9pp+eis+lqKqttkLJcRCpKrXokK1rxHzSGpTrNwZLpQQVeq\nSB6P6IOG0TCm6HUkKnjRJnp/5WPIHR3E3iJ8OtWxMXJFhXDQYxNlX5MFojk7zw7xVysU1OKC/FAW\nPnnl7/DJK34HEGpRLTuvhEty2WNnM2rheNEWTdfMorHiu7sDMXuvTLck25t0F5QyVVWfn0SZfcfq\nS0bVGq+tcJ5F6pvngu4lbYcFNRJllTkotinF0Bn2IVELIS8EhmGgZtLCCnICGdZnG85DEmV6okI+\ne7CZypT53w/v48f/P3tvHmzZdpeHfWvttYdzzp2H7n7d/WbQFZKeHggZpDCWDQJscHBCUoSkXEnZ\nBBJThcF2IpvYhSuEMoWVlCsVCidVqQx2hQpFME4RoCgTMBGoQAgJMOhKeu/pqd/Q0+07nGFPa8gf\na9jT2ueec/p2v+4n/f56r+85++xh7bW+9f2+3/f7rf6qMkf1z9FE2YifehrB2rpmolpeP0Dd88S/\nYFmxK6A9m+qaKBZQvPDcDl6/O8WrN8eQRQFxetoAd3bnKNO04xMFACFlRhNlAEBNOBrUTOvqEV/X\nu0QrDGYeEAVo1qG8d9TYec4Lu4tbi9awGW/MF5ZbkzmPT9QnPlMtbJ99rZ8p4KenGmBEkTuOLHJE\nQeQWp+1kC5cGe/js8SvIii4btLMe43iiPVJkbWJjm3oMtMt2p+UUo3DYaWLqTeeVMzDKsBaOHIiK\noiYTBWg380lagAXU/ZsFDyRPEQyHLi3UTqdYUFG/poU0UUEAZlK2IrPsXb/FQXHPaIxMK6ToyhWE\nV664DYKNytRwoNN0hCEQqpHOc15R0xm45JUVAqoNgh3r9rpsRWzdB6se4uwMwfo6kqefgeIck0/9\nIQhjve94dNn06fOYQ7bDmUUaNiE2739hKtXs9bCtbfDTE8dCAeiAKBonkFmGQhaV8B5w6cx6Om9r\nPW5UUZ0XtqLTMlF3TlLnhTg9nbrfd+eSWG+iWUdwvGmY/dNxrpmoOK4ZpVbMuWWibCHL9rd8CM9/\n5J8guqaZGpnnGM9Kl8oDtL4rCqkrxpFpChDSSfHn2RRSyXPdyuuRsNixe2vhCIUoUIgSMz7DiA17\n25K0DTcrQXvFXB3s6EKVvcGu2zSdGRatzyPKht0cOYPRjtnmUBvAGhAl0hTi9NSbyls0gi2bzjMW\nOT1VhCyguLQzxI3bE1eYNctK/MrHXnUbz3aoPIMqCg2iKAVhDKr8Eoh67OJ0UiAKKQZxgCd2h4hC\nil//+A385iffwC//blVFIZXCn33+nvMDOk8TxWrmfNHVawivXEF59w4KUx1Ur8JwTFRPdV76mapj\nuZhNkRUcYa3E9Ovfq3eU/98fv1mV2O9VL46b6LKsw0QBegfrQBQhIKyarOrtE+aFbS/TDra7Bwjh\nXuzy7h0ncvdeq3WrZgl2k22c5KcQsnlfZKZ1GZZpc9S9YaLyQuC1O1M8d3UDlBDXGsIXYjJ2Ezsx\n2gJZFBi0dptX164gE5nTKNWZxK31GEUpkebNCkeX7vFootai7qRe7WQrJnRWzjBiA8RBBKH0BBaz\nprAc0Lomu9DYST5kAQIpQKQAHdTSeS0QZXV6oYeJmledF6yvI7BjK69ar9hoWxyUZjfLNitBfTBa\ng8ybJn3Vjl8fa2BaetbTeXWvKC45QlK7J2YBTEWTiXr/O/XO/+Of9nepl2kKOhhg8Lxe6FSeI7x0\n2esRBWghL4kilLcWAFHTEhGj7nmFlomyPlDmetjWFiAlxHjsnlNdEwXoTZEqCpRl0QCPTlgudIXx\nvbMc+y3h+HmRRAECShyIqnvQTc25tqvzAJPOK5opqQ3DRJ2OU+0DFYZaGA9g/PHfd5+r7AmaaTJa\nt8/IOdZa/UGTiFXC8pnul+fmBMNEZZk+5/PcyvvC2WWUE0zLWW8qDwAGQbP1y9Rj8mmrfS8N9904\nPcv19S+ezjOFGlYTVSu4YJtbrpAle0k3UbfWEauEbW9kdZ02W5J4RPDvfmYbWSHw8hv6s7/6ezfw\n87/5En7jD17rfBYA+ElV1APo+dfqch/n+KIDUSeTHFsjLSAeJSH+xl95AQGtdhpWiPp7f3oLP/1z\nn8Tv/Ilplnj3rnbtHflp4gYTdfWa9oCREsGZ1gfVd/3naaJmNRAlZ1OkuWi4xb7w3C7WhyH+4PC2\nV6tVL/fNWtV5gJ58uSih8kxPRLWdlnb+nXWYJFHzHoqffMqVrLfDisv50V2kL7+EV37sw7jxUz/Z\nETfbqJerb8YbUFCdflMyzxu6DDth2knFLgCXtgd45ol1vPTGaSPdaUMpBTmdOnBBa8epM3VAdb+s\nXqnOBu3U0sAVSxY7sGB3cYCm+Gc89U7qvtYRszI17U8iCFgWrJnOAywTVTa8nqKQIjGptAaIalXo\n+VLM85gopRT4ybE2oTQLqu3jZdknoKaJMudQHGsQVU/90jjWqeaaIeusnDU0TkPT/NouFkCdiZqi\nlByMns9EPXd1AzsbMT7x2bteGxOZzhAMhhi9tzLPtS7iviCEILx0GcXtW+c6NY/TosGk2GdYWmBS\nY6IArWvpZ6Is2M8rHy0AlFAEJACXHEdnGRSA/a3zK9La1zRKmEvn1bshZGO92JM6E2XmlmIyhVJN\nNsUK2CeGwSJRhM1v/GbQtTUc/9qvOJAoW0yUOxdznaUpimmDjEEUVBYHaepSeUC1scqzxY02fWH1\nTONighlPvUab7nxaTLKdt+q//a6dd+Dq6Areu/9uN6dMcv/1dc5lMJ+JAvS7xc/OtFP5Z3R3gsE7\nDha5VG8QxkDX1lyKsC+dBwDveVbP9X/yil7jbDbgY3/a3WTIokBm/APtPEnj6EuaqMcthJQ4mxWu\nIgXQgOQn/9MP4IPv1lS97Qd1aJor2tQQP7oLZgSyvggaTNRVl1smRtRbZxP6qvNknoOfHDtndECn\nL9KiSZuzgOLS1gDjWemtxqin87JWWTSgQZRmogrHxrjvDgZaw1AzW1NKaQZnaws73/lduP63/8ve\n3brVzKSfOcSb//RnACGQ37jhtFTtsBPQkCWOgh+3XLxl3iyzdtV5pQVR+kUfxSH+vW/Weqaf/Zd/\n0nF2V0UBxbkDwu7aS97Q2AB10bcBCy0mCjAgqii0jxGlCDY2QMKwoQmb8RQKypteSFpATSqJGU8x\nZEPEQQRFBADVEpbrcTBJS9fl3kbEKGIDYILhoDedZ4XldSbKMp0zj05PTqe6mGB7W7OWlAIGPIZ1\nEGU1UTadZ5v51jYYTlBaq9Cb8bRRAZXA+GJFdU2UfmZ8OoFQwqWygJpzt8wb10UJwYtftoc057hx\nuzWmTJk+HQwckAHQ+G9fRJcuQeV50yBzPEZRY6eUUkbTU7s35hlyo08LHIgywPv4GHJi9VJdJkpf\nYDOdB1SpeVsAsbckiAJ0/za7EblZe2fSiU3n1dL9Brjk5m91IGBdyycGfNEoQjAYYOfbvgMyTTH+\n+O8BaArLG9dpNYpGZxhHTfajzkTJdOYAXf27uWG9FzHa9IVtSnxrdgdSyV6jTaBrUeJrNzMMh/ix\nr/1RfPCJ97v3fZobPeE5FgfDRIv2O5qo2pzNNjfNHPsFzA4/DRCCxDCrqwbb2HRMlAWtbWE5oB3x\nA0rwqc8d4fU7E7xxV1//jdsTvN4yhL7zc/8cN//n/wlAjYkKoy9poh63OJuWUAquKs/G/tYAT17S\nL48Vyr30uh5Er7w5dr2e2jvEegQblSN5dPVaNfHYxabBJnSZqPSlz+Hlv/XD+Pzf/3tQZYnhV+hO\n2XI2RZYLp6OqjhFASIX8TjfN6EBUlnWq8wA98XKTzqvrTgBUYuRa6xdVFFBlifj6k9j77n/XVbX5\nYu0rvwoIAtz9F/8X+NERNr/xm0HiBMe//mvez9t03oAlWDcTX5uJUlnWmMgrUaKeXCx7OEgYDp7a\nxvd80/O4d5bjJ/63jzvzP6Ay+bMLmL12wnlHPNruS1YXYTtrjHEOleduUiOEgO3sNly55zVDbafz\nMp5BQelSfwtOqGhVdur/tovmRq0LfMgCxEYfU2eiFhGWA8AwDrxMlO26zra3tWdTHINYrViNEar3\nZQSA8vgEJE5a1V1mbJrduFIKs1baZCBsiqZenaf/XpprYUH1PrSrAuvMnW2Me7vV5qYSJuuF2Do4\n2wbefWF9suqg6dY/+1/xhZ/4cceuaTG7bDBRtjjAjkFaT+dBl5RbsOurztM/WjSYKKDaEN01Tc73\nt5ZL5wFaXD5NOZRSuH1cvff5xNyjBhOVmL8ZEFUDOs4xP21qGNfe99UAKj2lnM20nqnlVWTfcW7m\nzKQDogLkpYDgAjLLGkyWLULITTpvK+pWDy8SO4kG0a+NdTP5PqNNoGKSreN+ZWXSZ85pQFRhNo6t\ndGU7KCFYGzBnqmvnuzYTBQBf+K9/HNlLn0N8/UnXT3DVCDY2IGdTyLJqfG+fbT0GMcMLz+3ixu0J\nfvKffQKANngFgD96qZoDFec4/ddVVworfSFR5IDh4xxfVCDKdlGvM1E2rAnd3VOdj7dtEt64O0Vm\nOsrXF/J21HePbHu7NvHlCBlt+LMMWtV5YjzGG//9P4HMc23oub+PrW/9EACAT6bIS+GZUMyEZTxr\nrIcN0Ern8W46T+9eS6iyaLyQQLXTrIvLrSh0Hoh01765hbX3fiUgJehwiL3v+feRPPssyjt3vO0y\nKuPEgZeJUkp50nk9TJR50b/jA0/j277mSUwzjpffrPRJ0i1ghokyjFbIVUMgDVT3q7Dp0Bob5Ko6\nJzqdR+IakNnbg5xM3LVa4z6fJqoSlhsH6LpfUh1EedJ5DkTV2Y4aE6Wr8xYXlgPWEsADok6aAnGa\nJBWIqi3qHWH5yXGnAMGmAy3TWcgSXImGoWGs9HnV03kVE6XHYkiqSZ0SijiIUCgLeKvrumQsKeoN\nl4EuiHri+38A+9/7fdj6C34nZxvO4uF2pbMqbt6ETFO3e68q82rjwtxr1zh3aEFUJeTte89sOo2V\nwsNEheCydONh2XQeoN8bqRSyQjSYqML4cjU1Ufq8+bSr64kYBQHAzbN179ely2C7u5h9+s+0gL6l\nZ3LXaTWKBmDHnvEJAOlYVzHWmSjimCh9XlstY9tFw4KoGxMNovqMNgHNngMVE1VZmfjnSTunpKaK\n9DwmCtC6qElbE1Wbb4JBE7CtffX7zz3meWHfWTE+q3nK+VOP3/9d78L73rEPqRS+9l2X8Ze/Tuux\n6u1g0s99tvEd61ZOo2il1l2PWsxPyr7NwtobbK91wdBeDUR9/uYYSumdgFQKr72uK8bmgShCKZLn\nvwzB+rprvQIApMgRDZuTRbtcd/aZT0NMxtj5S9+F0XtfBNvcdK7IWoi61hnE9hi2T1qdGnfi3zRD\nHuQIadgwnmNGWK6KolFGXj+OqLEX7aao58XWX/gWTP7wD7Dz7X8RwXCI6ImrSD/9ZyjefBOJaYRp\no+4+XYk6q99WRaFFqvUya+dOrF9Am4qo75aeMsxi3QPM+iUFLp1n/FaEaoBMoNmoOWQj0Jpuzqbz\nTsY5ZJ41gELdcDS+em1uCwrHRBmgNqv5JVnNTcBko9rKPndrsbAxqp5fGNbTeXM0UR5hOaAnSp/d\nR3ls2gpZEBUnIGem/1stnWdL7nNZQEmJ8vTMibZtWFbDgijnxVN3PpfmvMIaUBpV6TzElajaRhLE\nKMuuhsyCinbD5U4D22SA7W/5UOfa22HT1WWtQs+m9sTZGcKdnaqn4bCZagXg+s7Z33Ul5acngNlo\n9WmiwlI1hOWA9orKeI47p7YZ8GrpPEBX951MClzZGeLmvZnTJvmq83wgihCCOAogczMnWaaXEIze\n/R6c/uvfQvb5VyBns04qD9BzKAlDLTYe+pkoAEid4L2WzjOArTCi7e3YXz18XuwY8PV506plcw6j\nNXQNhg0T5dFE1cPOKU7CcI4mCtC6qNfvTiGkrBoQ1za+a+97P2afOcSl7/0+hHv73vu6bFR+aKeY\n5XrcDiI/4BvEDD/077wApRQIITgzgO+kZmA9+aRmqa79yN9G8tzzjikjUQTFOZQQK1syPArxRcVE\n1Vu+tMMyUUdnGV5+Q0+KX/UOnSKzIKousPTFU3/3v8K1H/ph/VlrDFnmnR2/Lde1KN9W+yTPPY/B\n819mXgb9IpaGRWhXR9gJxZUL10WWLp2nheXtVFVIGZSSWhPSZqKG3XTeMkwUAAzf+RV49qc+gu3v\n+EsAgNhU6BRvvtH5bMpTBCRASMNGDzQbrklynYliDKDUtX2ZOSaqWmC2Wm6/QC2dZxZku6NjHBi0\nhOX2nhWy7KS96v5iKs8bujJrOGp1UZPSVgt1J1b7G1V1T+WQbMFJFDcFzHZ3ftvDRIUBrdJ5yaBq\nUNrWRHlsNwA9IRZcdkTY9XQeoMcXNRuAejrPLhKlKPUmQMpGwQVQE0nnFjhW7Js7jtRgQtVAlGVu\nuAGEIW2CiZjF4Mqk82pM1N7mAISgkaYCahVinj6Y88IWcNiUrRLC3V9rbWFB/aimV3OsivU8MwCg\nKik/cX5R9Urf+jlGXDXuN1BV2t45SREy6p3bzgv73rxiqqyev2asOgzQbDqW63OxbVfam7skCiDy\nrgB6+E4tT8g+91kt6O9Z7OspnrYOx+pCXWZg0C02KfMUBARbK4KojWgdjAQozHt0da3rrVX/LACc\nFfq+zUvdA7UCCGGZqPNBlAXi05R3HMsBIHnmGTz14R9D8syzCNbWerWqy0S988IijZIBOK3w2iBE\nQElj3s1eeQWgFMODdzZSjbSVUXhc44sKRJ3WWr60Y30QIgop7p6mTg/1wXfrSp3xifF2SfqZqHY4\n/5Ky6IAoQE8Q1uKguKn7Rtmu7kC10HMzQXc1Ufr/5WzmGrS677p0Xoac553Ks5AyMKMf7mWifOm8\n9cWYKEAzMq7/11Vth+AHUZX7dKWJqoGorLsb1ucd1arzmuk8oKoUqjMr0lY/mTSXTTd4mShzz0pZ\ndASuw1g3uD0ZpxqI1hYZu8ha1/ZJYZgoj9A1CiIQkI4wdRgOHSBhURPQtNN56zVNVBQGYMYegkQR\nSBAgWFtvOBoDmokKKEFAuyAKqNrC2LDpvHDbMlExAi5ApGowUfXeeaLmDF+PSljeBI51AW8k9LiR\nNTDkqvMMm8haLT2SIAb3VDOGjGJnPemk89q91xYNtrUNEAJumn6L8di1LLHWFhbU15kGe04qb6YR\naZKAxDHKe/eQv3YDwcZG5z2z9ywsm/cbsJqoEndPUuxtJp22LovEaKDP8yUDop68tA4W0Ordq2va\nbLo/9Yuj44i5zU19g+aMSu/d05V1Qz9bQ+PYvdddYbmpTLXse31jFVbGuRvR2kItX7y/T2ijx+W1\ntf5qTev9dprr+dFtgvqYKGZBlL6+RUDUWs3mQBaFLup4wKyN67xwetrrE9UXlBBsrUUNECVTzTzW\n1yigpm19zG0Ozr0zBwcHFMDPAHgRQA7grx8eHn7O85lfBvBLh4eHP/sgTvQiomKiumCIEILdjQR3\nTzSlvbMR4wnT2d5Ha58X9gWnZd5hMgBTrmt288WtW0AQNG0K6mCG9VPbKuvu6pxPVKqZqPWoOSkz\nGoIJPfG3NVH2d22fMqCyN1iUiWpH3SuG7e5h65u+2f0t5WmtkazVRNXSea41TauKMArdZDtz6bwa\nE2Vb+tSaS7ergmgtnRd0NFFmUkaBUQsEE0KwvRZjfNqtXrICf+srNo+JooQiYbFL59lJeD0cYVwY\n7U/YZKJsNZ69rs2GsJwiNN5SLlW5ve1K8i2oLUrZYaGAmiFkKYAai8KNVQGrgShA37d6lVzd4oDX\nnOEb1+xY0iYTVdeehIaJErX3xm4qXHPlNhMVxJDgAFSDiQK0LurPXj1GUQq3oam8ipa0BGAMbGvL\nPd+6saoFjr6ycOsTBTOeA/O7hBDE15/U5d9KYfju93R+027eQq46wnJbJJJmJd71zGqtPiwTZf1+\nruwMsDZgkKfdajAaxwAh+r0MPUxUGLj30ieAzl+7of+/Zy6hUQykZ+5YjWObOa+YzMDQSufZBbnM\nsRWvpoeysZNs4056hBEbzk3nUUKxGW3g1DBRZ8UYURB1npE7f8du6/uzaDoP0NW4SVGARlFvhfhF\nhWsnc3aKmdDM+qIgCtBz7+dvjiGV0pKYNHUSk3r4TJMfx1iEifpuAMnh4eEHAXwYwEc8n/kJAKu9\nwQ8xrNjNp4kCgKcvr2OWc5xNCzx3ddOxPSLzL+TzwtH1vPQuWEnEnMVBcesmwr39BlInlIIOBpBm\n5514aHNAV661d9N2oRJpilwUHZZFM1F6ca6Ld4EqbVLvt1al8xZnohrHNAtpefsWbv/v/4vrUQZU\nTBSgdTGU0BYT1U3nAaY8tpPOq+7RIGZIoqDFRDVLyB3Q4Kq3Oo+j9DKJ66MIhdW31MaFdY63JqgO\nJPSUSidB4vWZsYCEhU0m6spO8ziNdB6jCE0LEAcQd3ag8ryRni256AANoBKatx2H+fE97ZGWVOwJ\noBf1OpixgKoQRaPRcz3awvJZLYXpjmN+vs5EkSgCggDKgKi2JsqN8YB33jcrLr9TY6Nsg266QiUT\n29kFPz7WIumasaozKDTjcZB0mSiSZ9rgtgZMBl/+Dsdm2e729Wim87rCcn1giXc+Pd+eoS8sE/Wa\nKUu/vDPE2qBieuuFE7YhMrFeR56qYVgmql4YYFKU+aufB4De3m4kjkGMtq29cbS/VdrNUFxnovR9\nCLjCdrJaKs+GFZdfXbtyLmDZjDdwmp9BKonbs7u4NPCbMQPVJsOmndtMmy9sOm88KyGL3DFuDzKq\nHqCnjW4Zi8bWWuwaUQOAmKXe98wVEnwRpPO+HsCvAsDh4eHHADTk/wcHB98DQAL4lQs/uwuO2ycp\n1gaht1wTAL7hxapn1vNXN9zAsRM+WQpEmYVGlt4FaxDrct3ybAw5mbiWEo1jDIeApc2jNm0eaMF1\nnnb9VsyA5aZJbOJL53HLRDV3Tc5bqC4snywnLG8HIQSDg3e6/7dpPSEFClliYETFlFCMwqErFQaq\nSp32vSdRWBOW+8twt9fjlibKCFKtsJxSqIAiFKphGglUi7IEb/SuszGIGJjgnXNjW1sgcYLslVdM\nA2gzYTL/5DdgSZXOM1qw9Wjkfp+yJojaGEUtl+i6+SJBRKS5P5aJ0osVPz7G+OO/jxs//Y8gi6Ij\nKgdq/d3Klibq5Ljhn2Svd8BpI21CCUVIQxS1dF6HibLC8nY6r84WkJcdAAAgAElEQVREGRBVZ6II\nIQiGIygDXDvCcjvGqehcW71oxEaliVoeRIW7u4CU4CfHDiwCtXSeh4myPnG0yDuVaYN3vKP6nAdE\nkVo6ry0sd/eBSrzzqdUYmLozeEAJ9jYTrA0YCO9qcAB9z0iPYWQcBWDKpJRr4IuaPno2DWhZzXbQ\nKNK/q1RvOq+cGq1WTV5hQRQTCtv3zUTp71+dk8qzsRmtQyiBG+PXUcrS9cfzBSUUURC5tHO7+tAX\nFkSdzXRT5/o9fVBRMVFnTj+5yLnaqBfeKNPv0gei3i5M1CIc3QaAuv2zODg4YIeHh/zg4OA9AL4P\nwPcA+AeL/OD29hDMAyouOvb3mwu+kApHpymeu7bZ+ZuNvb01/B//6rN47fYEX/2uJ3D9qjHM5HrQ\nb+5t9X63HWUCvAIgkiXWR3Hnextrpmx5ovUmm88+1fnM65sbKF/TgOPS3lrj75f31hEqDiIlBlvr\njb/JrQQvAaBmEtwcjhp/X//C0GmihhvNvxXBE3gVACtm7t+PTPXJpacvI9peDUht/J2/iZu/9ut4\n7ed/AeHkGPv76zjLNWjYHFXXtjXYwNHsGEop3FE3sRdpsLfRuvevDwbITk+xv7+OQmiNz/WrW42d\n4/72EG8e3cXW9hAhC3Bk7selpy8j2tLHOoxCMMGxt73ROL4YmJ1ywLE27D6/rY0Et0zqbLTZvP/H\nX/PVuPvbH8VwchcI9I2+dnnXS/OvJ0PcnN3G3t4aSqrP7+krl3FPaSYrirtj+akr6zh89RjDhOHq\nE80FIzYgavfyFkb768iuX8EpgJHM8OrP/g/6b889i9nV57rXZMDGcK26XpHnkNMpBs9Xnx9vbeAM\nwEixzjGSMIYgAgnR1717bR8btc9El7fxBoBBoPR339Sfu7q35441MsBssJk0jn9jYw3p2SmAEbbW\nm+N2y7KLAccTlzcbTXgv7em/RUnovjOx53d1D+sLvtM2ptefwPj3gDWZQcoKpNNsiv39dSgzBq8/\nUc01pa284znCtea5b3/t+/AGIYBSeOLFr8CwfU+v7OB1aOZvZ6M51taMuHpzneGFg8srpXqupZWt\nxZXdIa5c3sTu1tCxmntXdxDv1p7DaAg61Zq/61c3sb9bpaq31hPMzHuxtbuJ3frz29lGajZnO09d\n9c6lt9dHSAEwJXDlUvNa981zZPb4+9uNv3+WBWBC4fru5YXnaV+8M38Wv/wK8MK1d5x7nMtbu8Bd\n4LVCpymf339y7neGYYKp2fxde2ITwTl9Dp+9rsdXLhTAOcLNjZWubZnvqJ0hXiYEdDaB3NAM9+XL\ni/tuXTM9K1UQYGekIUbSmiMBYLa1hmMAG8MAm/fxvN7qWAREnQGoXyE9PDy0b91fBXANwG8AeAZA\ncXBw8PnDw8Nf7TvYcatK5kHE/v467twZN/7t7mkKLhS21+LO3+rxH/z5L8MnPnsX28MAR0cTxFEA\nMbM+Pmrud+thjfciWQJKdr5HocHBm5/WzVj5+nbnMzJKQIocVEmUedn4e5EVrhKLB91rIowhNTYJ\nRASNv/NcITDpvFyg8TczP2F299j9++xIa2JOMoAseP3dSBC88D7g538Bxy+9ivjOGHdTPRETXp3f\ngA4xK9/A773+SXzko/8j/lr6AtYAzMrmeQoaQBQF7twZ43ScY5gw3L3brEIbGdHr5145wt7WAOk9\nvRc4SRVIqY8lWADGObKpaBzfTnSgAkR1nztRyi0ymSSNv4fv+Urgtz+KG7/+Wxg/rfvCnRylIKTb\n8ZwhglQSN27ewb3JKQgI0jOJ6dg4M6Ps/PbeRoxDaL1E+2+ReYAnE47ZnTEKI2i/+0rVz0oUJSjQ\n+S43u87bdybYN8L8wvghqbUN9/lc6YU64bRzDAaGWZ5hYu71WSqR1z6TZRrkTe6d4c6dMe4a0Xs5\nVbgD/TlpmMXTrHntKh5AzW4CaogibT4vVZrFKOAYn81QZtXulhtm6M7R1H1nYsb0Wa6QLTmmy4Ge\nDu+8dAP5G5VfVHr3Hu7cGeOeSRtms7z6PZNWpkUGtdWdn5JnnkVx6xYm4Rqmrb/lqTFH5Qpl2pxL\nspn+25NXhp3xv2gwJRExioJLPHtFP2cKhdAwSseTEoGsflOyENRsLGeTDHfqLaKUdMUN40xA1s6V\nrFULccoG3rmUm56IoeJIZ0XjM7lp6pyejjEEMCkVcKd+XgGYEGB8/hx/XjwTPYe/+VU/gOeHz557\nnEhohuUTN7SR6Dq25n4nIhHOMAELCO7dm/Z+zgYx9/b1W2N8WZYh2Nld+tp86+F5QQcDZKdjTDd1\ndfIy3w8Njn/19RNcJfpd4EF3rjKvOY5vn6C4tPrzehgxD4QuAqI+CuC7APyfBwcHHwDgepIcHh7+\nF/a/Dw4OfhzAzXkA6q0M6xNznhndVzyzg6+oCTQHUQB1aoWSi6fzCGMAY4gkn6s/KZ12pEtBWzFt\nLAuPJoohMakinzcIHQwMdU47mihW00S1c+yEMd2EeFwDLOMx6GDQqa5YNsL9SwAhKG9pTZRNddXT\njetGgP3JN/8UADCe3MMaupWRNIp0DzYhMMtKr/vvVs0Uc29rADGdaM1F7Toko2CZ6giVrUaKBNxL\nZQ/iwIm421q50XveCxJFmHzqk8iv7yKi/WJQW4p9nJ1iXE4xDLUuLDCvJg26Pd+ump1/3a3cRgRh\nzqkSlgNA/vlX3GfiIgXxpPNs2rKoaaLaRptAld5JlOcYQYRJOfVWdtX/31ocTJ2wvBrDNtXMg+Y9\no8MRiJBgwqOJYvZ5dfVezpct5xDTae3dWF0TBWjdm9VBkSjqpvNq6eU4pIBSYGXh/c0n/rO/AZnl\nXr8cJywvVaPNDgAQ0yJnsHjNSyfWhxH+2x/6Oswyjh3DRsZhUNPXdd+9QHJAqW46L2RQreIGG/XU\nbl86z34nlLwjLHdFAS2bCBuSBWBcNDzHVglKKL58+/mFPrsZa2B4eKxrreal8wD9fkjiXxN8YfW7\n905TKCMsfxhBE/2OFGU3PX5e1O1lZGrmI68m6u1RnbfI3flFANnBwcHvAPjvAPzIwcHBjx4cHPzl\nB3tqFxu2xPnSko6+ScSA0i9uPjfiBJH0C8vtwsydkWW3WsWCo0QUHQFnHAUNd+p2kDh2fYl8PlFO\nWO55KYP19SaImkxW1kPVg4Yhwr19Z+ng9EK189syotA/fPNP9Gdmxl6iY3GgQY8sckwz3hCVu2Ot\nxWCSI/vFn0P68kuQs1mnZY2eeLul4w5UBcIrLB9EGiADnkUmjhFeugx+dBeFKBD3VOsAlf7iOD/B\ntJi6Kj4iTf+4oNvL7oqpGt0cekCU1aOETU3U5JN/6D4zFKn3mpywnNdAlDXarC16djMRS4+uKoiQ\ni6LSEbbAL1nAbNOypJw1QZQtekgK2WhADFRjPGCiYYwKVCCKHx/h5b/1wzj5V79egahVNVEAyqMj\np/2Kr1+HmE4MqOeghDTAdxRq0E2gvG05wp1dxFevdv4dqFkccNnxiSLG3Z2x+6vYGiYh9rYGziIh\njswmgVJPabp5/hANI1hA65Ysg9WeW+pFBn09Cu27FCre0US5ebTwz8eSUQSi+y4/yLAgSkGBEor9\nwe7cz0dBDFCOMFzseYWMYmMY4syY27aB6YMKOhhAZikKLr1zxbzYqrXFknOsRMgXiybq8PBQAvjB\n1j9/2vO5H7+gc7rQSHPTE8q1RVgOCCVRAGqrTZYQlgMAohhRnvYwUaaXlu2XNfKAKDN5RrLs+LEk\nNRDlM66jUQxMJwCSjk9Ug4nygai1dZR37kBJCRACOZ0g3O0KXleJ8PIVzP7kjyCmU2c6Vxd1P71+\nHQBwL9XpliLtesLUzzuf5RBSeYsF1gYhrmW3Eb/8Mdz41Mf0b5mWAzYEo4hF18SQEIKIRsgod6X/\n9UhiVtkJeMYFW99A8doNiDxDNMcaw4pgj9JjTPkM+0Nd3UOVFQx327A8fVn7+Fzd69omOFFv1GSi\n6lVkI5Gh9AnLncVBxX45o80GE6WPnQgfiApRyrKqaG0zUc5s04AoniIKogazxIyjetl6bWy/ubho\nWisA1RhqVzMCVal8cOsNKM6RvfKyntyDYKVFKdwznkd3boOfnekmxju7wMsvQ4zHmOUcw4Q12MeA\nEiSq6mu4TDSq89qA3ABZ33XfT0RhoDcJHvbdspwjD0uaRAFys7los9zW5iBY3+hltZ07u+SdijDX\nxN0a8LbeK8Eo2KxbJPIgY7NmH3NleKnDkLbDnlsULQ56t9cTHN/W0oeHxkQNBpBvpCgK0WhftEjs\nGzbz9nEKkVJ3vM5vOFuKtzmIepyDC4kP/9Pfdb2sAODS9nIT2CBmCGzabAmfKABQYYRIns1louR0\nAooeJiqpdmUd994oQCLnpPPiGLClwh0mKgQza7OvZDZYXwek1EaeLIDi/EKYKACIrmgQVdx8E/mG\ncZiug6iNJljjWdc1GajKp2fGvXjkSeclUeDYIhu2gawNwQiYBELSBbohiZAFwp/Oi2rpDk/FjG1I\nTWcZ4mF/ybUtp359+iakki6dCQeiukzUzkaCf/QDH2i0FXHnrLhW25m0EI1jkDiGqvUtHIocMx8T\n5arzPOm8GhNlncQj2V0I7LMUaQoSBCCsZebadiwvZw17A33JGuCXrdfGuunHhfS2fQGAIOreL7sY\n01PNqpVHR9rwcTBYSYhNkwTB1haKm29CTCYIL11274eYTnR6uZXmIoRgjdrUxnLzCGEMilJtttmy\nOIBJqQZMeb65esRhoAXcnvnBPsMh9YOoWR8TZdJ5fak8oHrPE9JluSILqvqYqIAi8lTaPsioG3N+\nz5efn5yxILjt/zYvdjZi3Hut23z4QQZNBoBSUEWOuMc8tC+iMMDuRoyb92aQaVAdrxV27cmnKSZp\n6TyxHrd4W4OoaVo2ANTaIFy6LUJSWyyXsTgAABXGRhM1B0TNphpEjTxmjGYXGHl2ZUnEKibKR5XG\nMYhxlZ6fzusOXOuYLMZnbhFc1WizHfE17V6ev/4aipGmwuuT3m6yjbVw5DyTVJ9juTnv2di0DfEw\nUUnEnNB699/+Kxi98CKia82UCTfPJhTdxZSREIRO/em8mNVAVHdRtPqPYJojutw/5mw678bZ6/o6\n7IRl0nnKA6IADaR8waRASRiEVLBV9Ovvez+mf/pvsPZV78Ppb/4GhiLzjkmn0+MeJqq28EnzuYh7\nQJRZ5GWWIvCAFBIEuj9aZi0OUuwOmosqNSCuw0S5dJ6HiWI2nddd2G1aKBhrdpPfO4JS/rTaohFd\nvoL0UBPy8bXrDXA4y7nX0HcNZrwsyUQBgIgYQi46TJQyTFQQXDSI0p5jKuy+987iwgOitMWB1US1\n7BhMn8B5IMoCLx9As5o92iOv4IxgKLpGrA8yRuEQP/je/xj7g71z9VBAtckI48WZw+31uNJfPiQQ\nZc1gGffboZwXl7aH2uB2YtYZj6mt3Xz+0v/7Gbz62jb+m+//wH2c8VsXb2sQZduqfOOLT+BDf04z\nHMu2RUjq2pclQZQMIzAoV3ZeD8dOzabaEt8jKLU98CKPPiBkFAPbJ803QK1AU6j56TzPTtP27uLj\nsWv2e1FMVPzk0wCA/AtfQP78l+t/q4E8Qgie3ngS/+ZIL1ChERm3heX2vCdjzURtePRBGgDrexRe\nutxpfgxU4mX7O/VgJAKCMy8TldSE5f50nr5fg0zM3RlvxZsgILgx0SDKtYcRBkSRbjpvXjDJwUmA\ngkvnkn3lr32/PpZSOP3obxsQ1b0mm7bMG0zUCRAEziwRqIEozzpgr1VmGcIexoUmCVSeQ0iBTGQd\nIXBgNFlFK13kCi3mMFGU+Zgow5wZOxF+cgISBGDXn+x8dtFogqhrUEL/Lp+lKErpdaMeEguilgdv\nMgoQcd7R+1gQRS8cROnxLVkXkNi5ZeCZ1+KQIXSth1qbt719gBBEV/r70RHHcnWvx4J8WubGsLR5\nL3hAQADEnoKHBxkv7L1r4c8yYvysllh5dzaSTieCBx2WOdKa3uUtia7saBB1du+scbx6kJr+7c2j\nB1+1/6Dibd07zzZPTCKGq3sjr4bkvEjiwLEZy4IoYRb6WHUXQrswk3TmDC7bYZmoIRVe8Dci/Ttb\n15rD48YdBvW2L/OYqHHNaPNimKjo2lUgCJDf+EJNWN6cGJ7b1EDr6uhKBaJabI+dyG06b91TqVZP\n5/U9O8t2WDFzPQIVggQCoUe0q5mosvfY1vV3kMu5ICqgATbjDUilF6S1VjpvWRAVSI6Sso5hJmCa\nhA7XNIjypJjtZFk0mKh7YJubDXNIx955Ts0u8jLPepkeGieQWeac2kethq3EgKi8BQxsv7WkUL2O\n5X4Qpa8rmRq7O6WgOEd8HyAqrJnjRteuu/GZmvHo0+gNYDVRy4MoYQog2iyLEpaJulhNVMwoIukH\nUXbxs15g9Ujiiomirb6c4f4+nvp7fx8739mf9rJz3sBzbMuIUF5ow9LWnGg3RMzDKj8qwYgeF+ES\nGrbt9djZRrSLWB5U2JRzLP29X8+Ly6azwsT2nZ2jibKFCEXpZ90f9XhbM1HLNk/0hWMzWOhli+aF\nsCJCVXb+FoXacZxmMwSX973fn6c9AIChOa5PWG53dCFXSFp94eoNiNttX4BmOk/ZRsoXBKJoGCG6\n8oQGUYVOxbVBxp9/8hvw3OVrePPoHgT/MyjS3YHZ6rx0ohfiDY8+KIlYrw2BDQeiePcFpub18KWI\nBrVUoW9is8zNMJMIztFo7CRbOMn1Am9BFOeAkgTCIyyfF4Hk4ISh9FwPAKjhGoZnbyAMPKm4lsWB\nkhL89BTJ0880PlelQD1sAQ11C5Ms7wVRJI4hju9hyrvNhwGAlAKSAKVqXoMd53EhO+k8W63nq2Zk\nAUVAgEF21vj35KnViyXqzcLj69ddk+fcgCjfnDMw9hOrpBE5I0g8wnJpxf0XDKIiBlAoFJ7KUhrP\nAVGhdixXpFvVBwDJs8/N/V13bM+cxwKqG2eXhZd9Lw17RXvG/qMQ1rokWAJE7azHtRTpwxKWm3dN\nlt6ODefFlR39fNKzCRL4JScy0PeCmY3uJC2xswJge6vj7c1EmXReu2XKMjEwC7EKl8+zczMBxdLP\nREWKg0jRy/I47YFnsgKAga326avOgwZRc32ivBYHpnfSeAwxvr+WL75Innoaqiig7ur0Svv8oiDC\n1z3157CbbCMqFVTIGkxI/bxT0wJi3ZPOG8R1PZs/tWRBlG0hUw+qrM1B9/nVNVG+dF4dRJ1Xcr1R\na3L6xEgzHCUXgGSmqe7iEQjDRHH/JC2HI4RKIEZ3TDkmyrBYYnwGCNHRsNh7xjwp0CiI9HouZT8T\nlSSQeY5p0W35AgCEc/CAgLdBlEvndRmZAAZE9WjItgKOUDSfcdwCh8uEbdNE4gRsZ9cxUbkx5vWl\n8wamZxpZwVaBM4pQAGFr3ysN60J7NlqrhrXK4B59kWWnfGPIakjtArlsSAO8Es+xASN4F6XXbsaO\ny0e52os4/7fF069rw6jXNuJBhU2/xbJEeB9MVGGa1/uKKQpYY1V9bbZ91+MWb28QZdN598lERZJD\nhcvTqKUVEUofE0UxMCX+fSxPtePzT5Cx6hc2V0yUr3deiMD2zvOAw0Y6b3qx6Tyg6g/GbunWJn3p\nrs14AyFXEJ6XmDqLA71o+Ywn4zDQjvHoZ6IKs3uVRd75G5F63PjYjSSqm216dGWbJp2XzU/nAcDX\nXHkfntl4Ct//wl/FUxva4qHgEkoEEOiOnb5QSoGKEiUJGuLweojEpMR42vlblc7T13v6W7+p//3q\ntcbnSps28fxGFISISn1Pgz5NVBwDQiDNNdXfrs4jJQcPgKL13lTpPAlGW2NCurys9zf3lAZs4RXD\nIBFyf+m8/UsgcYzk6adBCHHjq5z2p/MSA7rVklW+QD/7x7mZwi8YRNm5hXtK9mXQD6Js7zwxxxtt\nXgh3bP+CGoUUoSi8IMq+y74N0aMS1rrEl3bui2F9w/YQLQ4Ak85bgYnaNYUvwpnadjf6pUltWpbN\nNix+3OLtnc6zTNR9gKhBzBDJEpItr6cqzYTAeHdnFIcBEgOi+jRR0jStTXomFLuIi4B10DCtp/M8\n1XnhXLNNIyw/PUFgmuxeJBMVXdXCUnZ0Bqx3mSgbA5ZoEBV7RPeGaStm/ek8QohLObSF6Tas7kaV\nnhdY9YOo+By9lb1fw0yhaJelt+LF/Xfjxf13N/6t5BKQy4EoCN2iRqfz/IsqT0aIACSlB0S5dJ5E\n/sbrOPrl/xtsewfb3/ptzXNjQAgg8IKoyOnY5jFRADAzGqU2E4WyBA8IyhaICho+US1fLwuiepio\nbWnSbF/+DpQ3byK68sTyvm/132MMT/6dD7t3115TOUsBbHuZKFtNK9gKGzJzOFI25wLBCRCh97pX\njVByZABKD4gSc0BUEjEwxb0M1iJRmIXVd2wASAIgULIHROnxqB5lJsqYo/o6EfTFKKnJEh6aJur+\nhOUsoBjEDLTw+8UBQG5b/Jh5dPqYgqgvCibqftJ5lp4WbPkdgJ0QmPBrooZCD7A+lqcwu+2+CSVU\nApxQ5J60Sj2d115wzq3O29wEHQyQv/5aJSxfvzgmKtzTpcChER32MTUJSxCWCqVHBO12/mmGgJJe\noJy4Nij+3b+beD1MVFUh50n1EeKei68dEI1jqCjEID8/nec9Ly4AGYB7ihL6wjrUcxo4NqkdPDKT\nY+FjoqrqvKN/+S8AIXDp+/6jjuauNMDTC6JohMikA+cJywEgm+rnP2wJy1FycEZQttLgJE6gCBCX\nXWG5EARKkl4h/tBsRJJnngXb2cXoxa/0fm6ZSJ55FuH+vrkmPQZyw0Rtr3fHhGVFueedOy8Kc7lt\nd2fTohOqh61eNeyiXXj807hJ1UWesannSwHeZgoXDMtOhMo/fofmOskcJko+yg7Ysr+dU19EYYAY\n5roflsXBoErnrcJEAcDagCEoc22349ET56ay1FplTLLHE0S9rZmoC0nnBQQMEvkK9HRhwEvQw0QN\nTAf4XhCF/skK0DRoSRiynHeMylypsGKdKhZWE5b7qvMIpYiffArpZz+jFzxCnNHhRQTb3dXplJMZ\ngKQXZCQ0RsQVpp6X2E4mIsuwvh/2mibGzobA/xu5eYG9E69gQADIHnF3BG0n0NZr2VBrQwzTMWQP\n0zYvylKn87gqIZUEJedPZHaBLQlD6anOA4DCOnvz7oQVUAoWECSntzH5+O8jfuZZjL7yq7rHIBIJ\nAQJPNU0chOcyUbYVzHSqxdjrLS8iVZbgA4KytfkghIBHDFHZtTjQzB2D8ujXgJqucDjCsz/1j72f\nuZ+wO+18mgIE2N3sLvKRqUYtV2CiCqvdy5tgn5dm3PfoJlcNJiyI6meiQo/WkwUUTAlknu8tEpb5\n8h0bAEbm+XaMNpV077KXVX5EwjGmPeO0L4bBwwVRtA6iVhR7j5IQIS9AR/55IBcKAHVylS8xUY9g\npBeQzovNzpavAKJyM5H4QFRdE9UHouz3+yaUQBgQVXgqywxoSGT3BQgpc6JgX3UeAMRPPQUohfzV\nz4OORktXJs4LGoZg2zsYnKYISNDbKoFyAYJqF974mwGJIs+9HlE2IghIkI5zNqAn3sxOvJ4mmLby\nqY/diJRAOSdtIYaJ1kStkNoohXQ6nzYj0xeOiTI+Ud7jOhDlYd6gXcsv3dbNinc+9O1ecFpInW6j\nHhAVBVFNEzWfiZpNNIiyTZhtqKLwpvMAgIcBorJrtlkY0Cl7nlViwLQMNOBexal8XtjCBW40enub\nnv545p6XqzCTVjTdZqLMLVI9bPWqEZh7n6P73pfG68jHFimlECmO0sNgLRJOJ+N59kBV4dhmfwtR\nul6Lj3QvNjsfL8kcWrbmYQvLI1l47VAWidEgRCSK3v6UeSFQUub0b9P0S8LyRy6yC0jn2ZRNucLO\nyu7GaB8TdY4mKjOmcT5hOmDK2WnQA6JMZZ+nv1lIQ+eL1LezsaaYADB69wvez9xPhPv7SKYlhugH\nGNbVeh6Iorz0ekTZiGSJgjJI1U15lpK7idfHREmuf7ivQi6UHAUJoDzHBgCRhAgUEK3gW1OUFYgq\nxGKLgtWCaJ8o/6KanweiQopBqrVK0bXr/nOTJUpGnJ9T4/u0romaIywHkJrm0raJKwAozgEpIZgf\nRJURRVQqBK1FOi91+lP2aMhiU8m6CoBZJKzmTmQ54ijwOugzUaAkAYoVMm9ZYMF+87mVholaJu27\nUJj3IVfdudPKDHxARxlU50sDLhL5HAkEUKVlVdQcW4UsULp32T+2H4Ww5qi+npjzwrI1vkKgBxGV\nT1RZ9SxcMkaJ1hP3FVJkpUBBQ6ctfVzTeW9rEJVegE+UtScozmks6YvMlrOW3Zc6oATDc9J5qSAQ\noL0TChUlOGHIyu4L6QzxZPcRW02UpKQ3FZU8XYGozW/4Ru9n7ifC/X0QADtp/xC0/dUyTzmwc7uV\n3Csqt8GkZutyD9AsRIHCTrymIW49uGneVsIPYkID0LjoEXGbcReXy7tJl1xAGRCVLwiiZF4xUXkf\niLIp5h7xbRQGGGYa3IS7/o70hSjBA4AU3XG3EBNlU1+zMUZs2PA+kiYVIwLqZeDKkLrjN67LgCjR\nV9VlNT4rVo2dF1aDqIoMe5tdI0gAYGWOnEbesXheuLRzC0RZ7L8oW7loWI1g6gFR3AGd7m9aRrfw\nMFiLRK4oJIg33QwAI6GZPtXaeBaiBqKyRxhEcauzXG4MJNT2k3w4Cpy6T9QqbV8AYC3SUhjZU9me\nFwIFZQjM+valdN4jGDad126Zsky4yXcF+Vhqm8j6yucJwcj4xtCeyrcs154/QR+I4po2z/LuCylN\nq4vYw4JYs00x5+Wot2YYHLyz93OrRrinBbnb036AoQywyTwiTFd9qLjXI8oGEyVKypB67lEhSpSh\nnXi7IEpYENUDYgJRoiT+YwNAaZ5BuMKiWXCpNVlYnonihORy3M4AACAASURBVPWDKJOKoWX3egGd\nzlsrxqBra96KGkDfj5IREI/2pGlxMD+dV6TTBgsFVKkYGQYdTRSgmSiquimbvBTGEoI79/fGeZlj\nzUu/3k8QxgDGwHiJvZ6+hkGZI6ehlzmeF0IKFIHfisPehkXHyKJhmdnM00JlXsGMBcH5iq1X8lKi\noMzL3gPAwFSVilFzzsxrIKrN1j1KIc6RCPSFzYj4mMEHESQMoQhduToPANZNxajoAVFZIVCSELQs\nQPD4gqi3tbA8y3Xj3mX75dXDGvRlq4Aog1H7XuqhbSC85hdtZ4UAowwjz65MCQEiBTj1a6JsCwRf\nKikgAZhQEB7XahuEMTz1D/7hyp3uz4twX1fobU36FxS7o8yYgpACQa3ix4EoyZHMSecFokQRrCHz\nsCalLFAy+4z6mahMdJ+fkhKB1Dn9tOBen6oyMunYFUHUskyUE5bTfibKpphJT8ojZgTrxQThlX4P\npVwUOg06647LuGVx4OPorLAcRd4PoljgTefljm1IGxYFeSFc5VMhiq5Lv9P4PMApL4oR8tIrKgcA\nWuTI2Sbkku0t5gGEPCPuMxcZ9ndmHjlARgJsQjPhne+ZcVWSAFxIsGA5MJWXuoF22AOihsagVQzm\nMFGed/lRCWl8vfq0e31hN/OpJ7PwIIIQAhHGiGXhemouGxZElT2V7XkpQCkDERyjmGLyJbPNRy/S\ngt9XKg8AlEnFZSvQ0zPDRPlYDgAYyBwlZb3i7rTQqSjqSb04/QsJvADB6ogiz7gkhCA8h4kCtLN4\ntH9+Z/JVItjZAQCszeaAqFzvOktGkIrmPSSu7xLHpS0/46GUQsCLXvF9IUoUYX8KgBf9C5RNq+jq\nSP81FGbyYSuAqLIUzmJhUZZBFtU55T3Cm9Q6e/csNOsqR6gE2O5e7+9kIteGmyWHks3fCWmVzutj\nsiwTFZaqIyq3btOKBd4UlXteafP8LRMFALlncbfFHdkDTIdIFiGS3CsqV5yDCI6cRkszUbnIawCh\nORaKQgHq4kGUHd8z6SssoFCAlyG3RpflHDZ0XhRGJ+Ob8wAgLrQDNk+aICpvgKhHl4my5qh9aee+\nsCL+1PM8HlRoEHUf1XkGKPbpEK2wHAA2o7cxE3VwcEAB/AyAFwHkAP764eHh52p//xEA32v+9/85\nPDz8hw/iRFeJNBdYn6OXWSSUWVzTFUDU1FK3PSAq4RmyOeXvaS4wpCFQjjt/s5NpSRmkDyCY0/X1\nNwMAJhTyh1Po4Q05MNWDeX86zwKbkhFkPK+a88LQzdBMlG0x0A5Vlrq6r4etswJpwL97LQrDRHlE\n2HanXtDQae/aYe8v6/n7vCh4TVguF2WijA8RCZB7dHJAxaj2MVEbpfYFo61WL/XIRd6ohKp79sRB\niOg8s03DIEVcYavDROlrUCHzM1HmdZZZ0+dKM1EWROUAmukeJgpwUOQPsDltGYSI5NTLRIlUMyg5\nDSGWBBd1lqXuZ8aFBBdApNjFp/MciAogpQKl1X0rhUJJmFe3ZIE8NzKDUbLc/JuXZmEtp96/R7m+\nj2XSZO8fFxAlONW2KUuDKP15HzP4oIKHEaJ0urImamCuMe9JoWcFR2iY8a0IuHVSQin1QDIfDzIW\nuTvfDSA5PDz8IIAPA/iI/cPBwcFzAP5DAP8WgA8C+NDBwcF7H8SJrhLZBTBRdlKYrUCjZpJAENrL\nRCU8x4z2g6gs10wUKYvOjv88/Yt14vb1NwM0iCofTnrdG9yAqDjvL1WywKZkBClvMVGEQAShZqK2\n/Yu1+z4JvWzdeRNvmeu/FZ50Xp2JSj3HBoDMDL0gX36HVdZAVN5TSdc5p6IC1nmPT1QmFArCoLKu\n2SYArBsQhS2/qFwfo8aMtLRJURAhdGabPUyUKXkOucJmm4ky75sKmVcTZe+pTFsg6hzmLigLFCvo\nkRYNISVOCr3YvePJrc7fpbE+WOUccukfp/a9pwgNcLy4UI2x1DzfwgAd4mPIa9/LVmCi8lKgIKF3\nzgOAMJugJAHyVheABtB8hNN5ZamgFMA9TennRSA5BAimKxSprBo8iLSwfI7sY17Y3q4Z6QFRZWUR\ns84UuFArsZdvdSyCML4ewK8CwOHh4ccODg7eX/vbDQDffnh4KADg4OAgBDB3BG9vD8FWLJlcJra2\nh+BCYWMtxv7+6i1LbLuFmQqWPg4XEjyIQHjR+a4sSzBZYkZjbO+M/NoBSl1V4O5mjKC245+l2mOn\nJAEiSjvHf61IMAMQS9X5m05zKZQU93Vv7ifKaBN3ACSl6D2HkXn3ipAgWeteY0EYEghcv9pdtAAg\nM60+SsoQxmHn+4M8AA8ARQiY5I2/S6lQFBQDADLgne9OJ0dzjw0A5UCP83VGlr7PisA5zUfD7rX7\nooxNuTsJoNDzm4SYdEnu/fuW0AzA2vUnen9TUeE0d9trIZLW52Ku/xYMBthf7x7jF/74U7gCDaKe\n2r/c+J3j14y3WhKBqxS7uyPQWgVpZsbEWgTs1r5HAuo0ZIN11jn3zwgNooKw+7eLiN/8xGuYyQCX\nlcRz1zZAW6Xok7M7AICcRhixxZ6njbtgjvlLgup9JicamDESolTlhV7XiakGLEmA9Y0Btmti+SAM\nUBJd8NL+zXuv6ufHSYDBMFr6nGgQ6DlPqc6cBwBRPsVZMMDGsDmvR2fUgagQ8i2b184LGgR6cxQs\nd44RJHLCQNjy6xCw2jwvwhgEwJWtCHsrfP/ugOIegDJMvL+vQFyRwu6QAhCIhzH2t/2ZhUc1FgFR\nGwBOa/8vDg4O2OHhIT88PCwB3D04OCAAfhrAHx4eHn5m3sGOj2ern+2Csb+/ji+8rkFGQIA7d7rp\nsEXj7Ehf+kxQ3Lx1iqDHEsAXeSHAWYRyOuucAz85BgCkQYzX3zj1Niw9PksxMiDq9mt3wTarXXt2\nS3+fU4bpado5/u2TMyQUQM47f5NF4Uwsb90+XcgN+6Lj5vgEWUjAZqX3+ezvr+Psrr73JSO4eXQP\n+6T6XF4K5AiQQPQ+3/zNewB0Ou/O0bTzubvHZwAhUFGIfDxp/D0rOKAooCjGaff+pjf1sUvCcPvu\nxHsOZ7ax5t3TpcfgLC1BGYMEcHQ6Xuj743tjd07jae79zjQtUAQRykl3TAJAOD0DAByruPc3x+kM\nyugk7r55DzFtMoGxIeaCwcB7jI/fPcR3AohKBVYkjc9M7uhnLsx79ubtY+dor5RCaio1T24dQ9a+\nd3qWuWrG20cn2EXzd1WWoaAJ7tzrjoOLiI/90eu4bN/V148QjJrpptkbutl2TkOUnvd1Xtw6OnFN\nn6cn1Vh780gD3kAxZOXFXtfMtGQqaIg3bp6C19jU07MMm5RBFkXnN8d37OaO4ebtMXaWlFOcjjNE\nPXOekhJkOsE03EZ+r/nOHZ2eObuS9Mz/Pj4KcTbOgbUAWel/P/tC5TlKGvTONfNif399pfthGaTT\nW8dQqxgGn+nfPCn8a/DZJEdkjqsLCQJ84bUTr//cWx3zQOgiq+cZmgIDenh46PIXBwcHCYB/bj7z\nn694jhceldHmfQrLa9qXZfxduJAQUkGw0F8+P9ZpkzSI+yupTDoP6JY2u9QN8ZttZlynXHyu0vaa\nSk9/socVuSiQxRQs69dy2PvmS+fdPk41CzTn/N33CfOL723aJwo7wvLCpqSUP1Xi0nmU9Wqipsw0\niE6X3ziUXIKZCWZxnyiTCmP9KaOilCiDsKMpshGbEvIi8qdI9fnkUKEel76egzHXlZ+U+d+93ACh\n5wZXcXV0pXkNZlzbno5FTRfFJXfCctE6/6ys+2o1z0kpBVLkc/Vr9xvTlLs2T773XTpN1CrC8qIy\nha2l8+xxGAmRi6LX9HWVsOnSnEad1HDBhfaK8hjUOl0eDVbzwzLVeUA3xS5nMxApMGUD9366cxIF\nRKAZ3EfZ4qAw/m8+vd+8IIKDE4bZAxq/vrBapj5j3vPCfm/i6ZoB6GdtO4GMDPM5fQwNNxcBUR8F\n8BcB4ODg4AMA/tj+wTBQvwTgU4eHhz9g03qPQljvniS+v9RhfbFcZvKzL7lgEWSWdSY4MTUgisa9\nzWLTohpkqrXIq6LSRPm0B1b8Sz0CY6sVKhi5cC3FopHyFFlMEKT9k7+990VIkLVA1K17M5dS6At7\njwoaeicft0DHUUdYboFtAOYVli8yLiZUH9/qYZaJgkswYoDEoiDKLt5x0utYXnKBksVQZandwVsR\nldaba45WT+RQpueiz+k9LJVjBXxxIvX92EDXlNJq/Wx7i7xW6p7Lolad59FE9VhCqKIAlHqgIGqS\nla7SyFekYKsJ82C5zRjQKt8vuiAqpBEU1NIL87yQsxkkDSA8dhlFKfW1Cg4lmn+rV4iuoj/LTXUe\n0NU28VPNUk6CQWfOzEUBEAISRY+0sNyOU5/eb16QskBJGWYPEWRYENVXhHL+AfTzG4seEFUIKPOe\nuybEj2GF3iI0zS8C+NaDg4PfAUAA/CcHBwc/CuBzAAIA3wQgPjg4+A7z+b97eHj4uw/kbJcIO9iW\nrQ5phwMcpJ9x8IV9yWUYA1JC8dLtrgFATGpMVM9kkxUCynynj4kSgZ9lyXiGASNeV2lZY6JyXgBv\nQZVeyjNkEQURHCrPvV3Z68LyNpA5OstAKAORQntmeXr71Zmo1ONBYsEJiWPI8XHjbw5EkcgrLHcM\n5ZxxcWaajMqVmCiBEQ0xwxIgyv5OHPcuYHkpIYxvi0xTBC3NUpjPkBOGfE4VUC4KZzHh61MWceVM\nTNshpMBEphDMX3Bhj8eMDUJWs7YoROFsIzogqqiE5W0Q5doHkQfJRJVQxlTQZ5chakwUuZ/qvBpA\nsNcS0QgQ+rr7mnkvGyKdQRoX9vb8kpfCLbAyTRsdF+oVoqsIy4ta2XsbDIkzDaKmbICk8IAoAIji\nR9onKs0FKBgKOVnui2WJkiaYPkQvJZvOa79ri4b93mnPXJIVAjDvTAIOIH6o13dRcS6IOjw8lAB+\nsPXPn679t78E5y0OyzwM77c6z5bZL1lVY5kAB4KyrOEH5ZioIO5tFpvmvPH9etgdO0L/edkKKuJB\n9vU02aLl8xcdM8NEAfpe+DyFKosD2vGJmmYccY32D4ZdMaIFngVlgOflnHH9ktM4hspzrbkwWhzL\nJDISYibOeo/d54YulcSEllBYbRIqSun0Agun8wzbQZJhLzAvuQQPbZ+3LogK8hTjIHHp8M5vKIlC\nFCCRvt++XT8rJSZD4mUYp9yYJYaBN+1iHa8D0xutnsbVIKqfiQqpTQG2QFRejYMHBqIyDhjrBl91\nmD1fEcbgK6TzBNUFENIDomJWgaiLklPLNIWKB+Z3mudbctkLourvhW9zd140QH5rfHADomZBgrUW\nQLNMNU3iR5qJSnOOAAyl1M76i+hRlZRQZQE+YJg9RJCRGnhw3yCq6ANR1TtjG4Q/jkzU29Zs0w42\nn2B7mbATYp/XUF/YRVhFdnfanFgdE0Xj3gUrK7hr3tgeyLZHFQkjr9ljJnK94HjSNg0m6q1K55UZ\nUuPobe9FOxyD4EnnTWvpE58uB6juWR8NnprUVWBK7uusimWiQhJCKAHe0l6pvJ628Nkn5AAhEFEA\nseQkJKWCkKoXFPSFZTtI4tfZKaVQcOF6WfkmR5rNkAZxL9hw7F3UA+6VAisFypB4UxYTY5aoIr9W\n0D6D0DyTrAGi6uaoXSbKVjO2LSHsZwWLHoimRCmFaVqCmHMWsy7zWGcJly3jrlJVYWOs22tJTOr1\nIt9lmabuetrvTlEKZzHQ1vupsuZVtmI6r2/jKM19TWnUGZ92QxTEySOtiZplHIExvC0WTOnZeyoD\nvyzhQYXVMq0Kouy8N5ZUW7a0Ii+F64EambY2j6Ph5tsXRF0UE1X3A1piAOc2Z28bk/aBqCD2vhhS\nKQ2OYjsxN83nnAA3ivyLOM+RWZDSnujsNYWkoTl5mKE1Ueb8pn5jPZVnACHgATrC8mla9tL+NuzL\nz0M/DW4nXmaabdYnbbvQRcbHq9365Tx2w6YfRRwunc6zE05sduQLM1FZBhJFiOIIJZeQsskEcaE9\namyapj05yjwH4eVcEGXvAzFGmrIFGFRRgCitt8s85z2xPlRR6NcOmXEdmXFfv+/5OUxUZBb2vM1E\nmecqo7jXXf5+Ii8FhFSuaaucdcezc1iPB0trhaoCiKjhWO4arBtQfFGGm4pzY6JqQFRrLOQ1NrP9\n/KuCl9U1URZEtcGQBac5jTqMTGpBVJJ4NaiPQggpkZe6lRewjImucfEPw4cmvFZKOS1TXxHKeSHT\nFJIQlKS7idVGsQo0se27Ht8mxG9fEHVBTJTMcygWAoQsNSmUhokisV8nIWsgyrfA54WAAgCTppIt\noGF3pLRnZ5uJHHlkFpz2RPcICcuB6l60Q+a5ZjwIcYDHxiyrKhd9uhygWmhJkniBqp14Q7v41Rb1\nwoGorsDZnpv+cuQaXTePbRbuOFp6J2fNO5ddHGU6A00SxMZ+oD0uSgPsVeRnNy2wn9G4t6myBXRk\naMB9CyDaCbcICQoPQB8bJorEOu3SXuxsmjo0jtQNJkoWTrDeZinyUjg9UJ8mCpF/w3K/MU31Mamx\nNfBtCqRjCZcHURYU2ntmowJR+nleVOsXOy6CoWWimves5BKc+YG4K3ih/qrh86Iohdt4tkG2qxgM\nuoxiyjMkQaJbCikF5XFTf6vDvlOhKRhps+t94Yo3WBc8PqjICuE0Ucsy6TZkmurmw4R0+uI5o1jb\nAsqwco+jJurtC6LsBHPfTFTmUnJ9ztS+sMJyYtNxeWvBMpNqRiNvqslOQGTgn5iddiSOwIUCF026\nNOc5cstETdsgyrRmYOTCe24tGjMjLAcqfVg7ZJ6BJgkCEmDSagMxzUoIU7nYx0TZnWswHHonnxlP\nEdHQpfN8btBxT6rEgdjEz9pYBkUlGkT53Jf7YmIa+64PElBClwBRKehggDjygyhXqu6AfRtEaS+X\nNEj6W9kYhs36ILXBfV1vNyu7k699jjRJACE6qWa7CMfmmdQZSJvWklHYWLyVUsgLidgs7G3Aa1lg\nEuvrumiWwrIDzGiDfCDKLkR0MNAbpCXOwV4PjaJGOs8+o1Fkx+jFvMv2XJnZwHWYqIL3spn1quFV\n3KfzUtTGZ9fiANC6svb7PCtTDFjiWgq1q5kfhXDpV9rV+80LN9dEIUou3WboQcYs4w3d2yoh0xTK\nAPw2w2QZYWa6GlBegBLyJU3UoxT2Jbvf6jyV5y5vu4omyra46MvvFzT0LvA2RecWq07axCxmsf/c\nMpGDR1YY2GYL6kzUW5nOM8LyXk1UDpokWAtHmBZtEMWByC9Add9PLYgaYZZ1F8+0TDFgA7cbqj8j\n+/yqlFpbZ6P/n8V+EbbdZaokBpRaSuxqJ5K1JEQcREul8+hgWDFRRQ8TZa+3NabqKeZeEGXuQzA0\n4L6dZq7p2KZlN405KfRvOB1a2wvIpfM0IKmn8yyYtMDUBhcSUikMArs4tdKUNRAlpPLqM+4n7AIR\nGZF+G1gC5l4HAVgSQ6rupmde2LQPjZOGpcTMLESjyDJRFwMc7LgIzdzTrmyd5QLo0X/JemP0JVk/\nIU2KxzKlLSbK/hYdDDvjM+UZhmHtXV61LP8Bhr2PSWAYPs8mwxeVdEPP9Q+DjZrlNRC1ajovS91c\n0wZRFlBGw2oDO0zY29Yn6rEM+5Lddzovy1xKbplqE0dXJt0FGjDoPk6gCPWnmiz161IETaBhXyxm\ncsrtCSsXOYQBkJ1U4KMgLOcpeGLEqT2aKJlloHGCtWjUZaLSstp1niMsZ6Oh1pi1QIWbeM0zUh4m\nahD4d/l2kmaD2JvOq7RDNnW2uC7KgahBiIhGCzFRVsdCk6SXiXJVoEMNUPi46SJsmahZj04PqK6L\njfQxuqlioxVjBJPCA6LMc3Qp1NYEbUW0ycCTzrNC3OGg8T5Yhm3ANHM34/5Ng33OF12hZ1MQ8YZh\nojyaKDGbIhiOkJiNzVIbMvP82WAACOHusb2ONaMfu7h0nr5/0Zp+BvWxoJTSc43dHLb1li6dtzwT\nlRdm42mZqDbAtpui0bBxTlJJZCLDgCW98olHIWzGYRAaEMUXmxPs/Gh1iA8j5TXLyso8dgUmSkmp\n107zzk1a4Mjei2hk54Eca4PwS0zUoxSzrAQhcAvKKqGUgiyK/5+99w6QozrztZ8KndPkKM1IM5JK\nGYQAIYFkcs7G2cY5rb3hrr15717v3m/9+a6vd/15d+31XW/w2gbDLsaAMRiDCRIIJEARSaU4Gmk0\nOfR0TlXfHxW6e6ZnNBpFdOv5A3pUXadOV50653fe9z3vsV/qUwlKtQYsaRoRJU7zUliuQzlUebCy\n8rHYImqiJSqfRveZS9knWqJK8i+dT3eeYLoLrMG7FF3T0LMZRI+HoCtgpGwwV8hpuk4yk7etcNO6\n8wQBb2BybIemayTzliVq8gpKKybKK1c2vVuCS/b6jBiRCZYFK7BcNMVGITbzbResDifom7klyqq7\nVGKJmtgm7CzPU9TJskTlXL5pLFGmpcgXNFYfThRRpijKuQQSFURUzBZRgbJ62+ebgdM+n2mJKllp\nZ1lkhGDACFo1BZc1ufG4ZPyyb5IFzGpfYgVRcCawnpevanpLlOj3FwXuKYioTCGLKIhIQaN8a1BN\nZfJIooDftNycqcByy53nCvqRRKHsvcnkjFhNK6XIpMUJdsb5WWy0bE88K6eK0FKGNc/j9ZRZli2h\nXfYuX4C5omzLoS2iZiZOrPxYgvn8z4klKp0nIxXzyZ0qhXgcdN3u/6y4Qbt8K9wm4DW23sqkCfhk\nEqkz724/21y8IiqTx++REYWpMyefDD2fh0LBFkKnYomyBmErOHOS6ySZtI+lKsVEWRnXfR4Ej2eS\ntcayvnj9lhArlqHpGrFcAsleLTRRRJkmd9f5tURhzdyjlfIwGVmmBY/hzgNImANwOpNH10sEaqby\n4GEIVT9+0+JVeo8yhSw6On7ZVxK3Nnl1XshjXHuiJcwSbi6/1TYmulNN60fYHPjGJ//GqbBM3wGf\nC4/smdEzsoSy6PPiNQfqiVnL7ViKQNg4J1ZeJ0tEFXz+itY1KMZEeV1eRL9/0kq0UndeRUuU6c7z\nhqrLrmlhBZZ7fcZ9K80PZge12/FYxrmWJcrrlgi4/JNEVH7M2M9NDBv7sE0VND9b7OcVMNpSxcDy\nZBKpRESdSiLKbCGLW3QjWda/EhHl88h4pMou59lSdIP7CfjKl9Vb986aAE4U0Xo2awgdz6mLKCuO\ntGi9nxgTlULy+/H5XBQ03Z6oJk0R5ZcrW5UvFJLm/oNBM8faTN15Vt8hme33XLi8Euk8BUFCF6VZ\nufMKUeOdkyNVZnkTLVFmuI3PjeA2FkwEvS40XT/j7+fZ5qIVUYl0/rSDyq0XUfJVHiinwxrA5LA5\nYJVYW3RdR0unkPwBXHJld54l2HxuCckfmDLFgT9kvJDjyWIjjWUTaLqGJ2Q04ElB6efZEqXrOql8\nGo/Xj+j3kzdfuFIKJS6YoNsUMmZclGW5c9kz1inceckkot9nu3RLZ3BWB+aTffbMt7TTtgbmsCdU\ndm277FQKwePB5zFM3hMtN9bsWDY7PitR4EwodecFZD9ZLXdSK4NmBy77cU9hibJ+kxwMGFak8Yki\nymyjvsBJY6I8kttolxMXLdjxduKkewaGGPXJvuJ7McEapueyCLJsuzzSE5JtAkWLjLn/pGXV8bgk\n/LKfZD5VNpvNT+jQT2WByExI2AOCjBQIVHS96/k8ot+Pd4p4tenIFDJ4JJed1NJO1GtOFD1TuJxn\ni1YSBB/wucoWvthZ0i0hOylPVBbR7cbjnrxdzMmw7onsnSImKmVY86y0Ndb7nLItUd5i/rILUERZ\n4sCamM3UEpU331NrM+ZzkSvKeua6xzurbausd85VbYmoCZaoktXzRoLUNAGf0ZdOdP1d6Fy0IiqZ\nyZ+B9AbmQOg79VgKa5bkqjBY6JkMaBqSz4ffI1d255WsLhT9/gopDswVXGHjhYwlix1oNGMM2L6Q\n8dJN6ujSxbiV82GJymo5NF0zBtNIVWURZXXkXo9tibKsQdasxgq6n2qDXy2VRPL5CFgiqnRGbXZg\nZcGoFVIcRGxLVPnAmBsdQa6uxmt26JNFlHFf3RHT4jJ+Cu48W0TJhNzGwBmrIEhKKQ583uJAPYUl\nyuV2IQVDdudsYYkSwT+1iErbIsqDGAhMskTpJavzKrnz4tkEIVfAzpQ+0RqmZXMIbjeyKOMSy/ct\ntGODrHNN0WevpDQtUVaMjP27xqMIHi9eM/6i0hZAp0OiZCGAFPBPtvyWrBKdrSXKI3mK7d0WUYUy\nS9SZcueVCvJJligrzCAYKPuufW7W2BLI5z71zXLtXQJ8UyzGsS3LxmBrlW+9y74SS9QF6c4z+62I\nmb5j5pYooz/3mILkXAWWg5GSY+Jm3zMhP2aOQbU1wNSB5X6PjOj1oqVSVAWNycBY7MITwNNxUYqo\nQkEjky2csUSbkscI1j2VgL5owujQgrVGwy8N4i1dZeL3Vk7lb7lTvB4JKRCYtExey2ZAkgiFjE4j\nVmKJGjNFVCBca1xvUoqDkm1fTnEjzDNBsdPzIkUiaImEvarHomAmJxRL3HmWK8i2REUqWzOgGNgo\n+vz4TBFValK2ZoF+2Vsx+N8amKtMt1KpO09Lp9HicVy1dXYbm9g2rEHcY4uomVuirPiBoM9VtMLl\npt9rq3TgO1lgudslIoXDFdx5VuxQsGKcl/G7iiJK8vvRc7myZ2enOKgQE6XpGol8kqA7gBwynt3E\n4HY9m7X3mPRK3gl755lxgLaIstx5RUtUwGUIpUTJAJUfiyJXRWzL9NkKLA/4XIiBoPGulqRusN/3\nEkvUqaxcyxRyuKWiO68QT9iJG30eqcSdd4ZEVInoC3pdZHPFtmDdO6/PgyDLFdx5OUS3m1DATSZb\nOCVrVCxlWtf9bkSfr8zVq+Vy6Nksks+Pz9xUPpUu+KftVgAAIABJREFUF1F+2Yvonj5O8nxiWaKq\nzHi/U7VE+aoru8bOBlabNgTOqQtSa2LsqzNF1BTuPL/XmNAV4nHqI0Y7Hhyb3WrA88VFKaISJQ/o\ndLDcO6LXQ1XATTQ+8xezfySJIEBDXcjoEEoGi1JzuSWiJgbTWe48r1u2k/iVznD1bBbR5SLsNxre\neIklaixjvHShcJ15vQorqEQJTTo/lihrBuaXfchVpssxWi4y7BVVHg9B0xoTN2NdrFmNJ1I5tgdK\n7rHfb6e5KBWrxY7XV+IeKj6jsXgGSRSoDxrWvFLXVG54GABXbR1VIaPTntg2LAuKr8oQshOtPtMR\nT+UQBQGfRybosn77SSxRacty57PdeZNElJVAVBaRQiG0ZLJ8sB8fR/QH8JruzUqWBGug9soeRP/k\nmLvS9BkTY5OS+RSarhF0BYuWqPhkd57odtnXKHXnWUknXaaF1XrutjvPLeG3gnbNa+uFAoV4DDlS\nddZE1GgsbQR4e+SK1lEtVZw0hQLG+1o66ZkOXdfJasbGwmJJLJg1IPvK3Hln5l0uxtf5bBeL1RbS\nJdcVff4KlqgMgstNxPyd44mZC7v+EaOsxmofUjhSNvEovs++ojvPrFOyNLDcmhDNMrfR2cSKiaoO\nnJqIKkSjCB4PftPrcK4CywEknw89kz6lPHdQjIny1FTjcUmTVt1ZVjm/V0YKh0HTqPcYY6Ajoi4A\nrEH2dN15ucF+AOSqaqqCHmLJ3Izzu/SPpqiLeJElESlUPuu3O1VzgNd0fdKAZ3dWZkwUlMc2FRJx\nRH+AkN/o5Eo7ZcudVxWsNWaLk2KiMoheD7IgnZeYKCuGwSt77TiV/AQRVRYTZVoXLGuM9YL7LBFV\nIc+UVjoQeCdbi0o7XsmMNbA6bV3XOTGUoLHGj8/lwSO5iZVYgnLDQwDItbVUmYPFWLz8PloB0f6a\nerPsmYuoWCpHwCcjCAKhCfFgU2Fnmfb58JmWqIkBmrYlSpbsmKQyC2lsHCkcssXGdPmvrJgoKLd0\nWiKq4JaIZ8rrbP2GYJk7r1xEaSV52byyd9IGxACecHlQ+oDZ6VYF3ARkaxGCUaf8+DjoOnIkgt+0\nYJzJmBJN1+kZStBcG0AUhYpJSK33TwoEbHERnaG4GEmPoukaVZ5wmTsvVeIOOeOWqAnuPCix+kwM\nM6iQ4kBwuwnPQkT1jRj3qanGjxwOU4jH0QsFs06l1ntL2Bl9nm3ZdvmMAZlTWw17rrBjorwe3JKb\nVIU8apXIj48jh8PFsIRzlOIAiqvDp8rlNxVWfy5HquxVd2Xll6QgsvqiGtG4piOiLgBsEXWa7rzM\n0aMAeNrnURXyoDOzTiGZzjOeyNJYYwz+UsgwV1pqvnTAmxgkaWFv/VE6uzU7Y13XKYyPI4XDBC0R\nlZhsiaryhI24lUl75xn5lzzSzFZ+nWlKrUC2iBorj4vKx4uZrYvWGNMSZc1iAl5Ef6Bih2lnKy/p\ndEtjYawOzMoTJbjddh1GYxlSmQItdcZ9D7qCZVaVvG2JqrUtUWMTLFGZfAYBAY/Hj+jznVJgeSKV\nI2gOXtZvj83Ynecj6LesHeVtNVfqzjPdabZw1DQK8ThyKFxisZnsijkeO4FHchNxh0ssUeWuTgDJ\n67efl4VlTQu6A0XXVKmFNpdFSybtTtUneclqOQqaUQ9bRJltxrJiHe0z/t/eFLKXjyfMHDzWjFiK\nROx2cCbz7AyOpcjmNOY0GG1FrDDhKZ00naqI6o71ANAWmlMSWJ4oEzOyKCMK4hlMtlkeWA4l8UeZ\nEgu5z1eeOV7T0HOGO8+ykM/0dwL0DZvW+2q/IYZ03R68S12MVp9pC7tc0Z1nLeSYaNm+ELDzRHkk\n/LJvRpYoXdPMyU1p+z377rxkJm+kCKoxJiz5sdFTOj8/NgaiYfEOeCfv+WdPhN2yveowoKURBYHB\nsQsvnm06Lm4RdZqWqPTRLiPPUFub3flNtDhUon/UeOGbqosiCk0rblswISYKJosoO8WBW540WGkp\nww0jh8NIokjAKxNLTY6JqvJEkHx+tEkrqIz8S27JXRa4e66IZg2RV+rOmxhcnu7rA0Cuqy9ZnWd0\nqGMx4xkEfLIhUCuIqFLzvyVISl2epZYoQRCQIxFb6BwfNO7zHEtEuQPEs3Hb5WpZoly1dcVgyInu\nvEIGr+xBEAQj/miGlihN10mkiyJqppaoYiC+b0pXiuXOc8nSpMBuK6+LFA7bMScTLTaJXJK+5ADz\nw+1IomTnCiqUufPMHEN+/6SYKOv5hdxBBFmeJICtgc+yDFo5uixxkC3kcIkyrlC5BfJo3zhhv4vq\nkAe/y1o+blqiSmbE1WHjWY2Mn7lO+viA2VbqDYEzccIDJQLA5ycSrOz+nYpjpoiaG2otCs8JIkoQ\nBAKy/6Qu35mgaxqZ491IkQiiy0XAN2ElnOk69XskJJ8VE2eu5DL/L7jdRIKzsUQlqYt4ccmiPbBa\n701hQggElAaWl1iVLQvrKUxazhWpTAGPW0ISxRmLKC2RAE1DDkemnHCfDZJpY+Wnq9qIaZo4yT0Z\nhWgUKRxGEEXCATfpbKHMjW6snpcQRcGeNOmxGLURz8VniVIURVQU5Z8URdmsKMpLiqIsmHD8s4qi\nvKkoyuuKotx59qo6c3YcHASgLuKddRm6ppHpPoqrsRHR65tysKxE/4jRaZZaoqA4cy6dmforBD0D\nRBMZZEnA65aKHbMpoibmDQkH3GWd1Vh2HJ/ss+MoCqlkWcyVljEyyYbdIWK5+DlPbvZ2/04AFlR3\nIFkxURNe0nRvLwDuhkYCsuXOMwJq39w/gN8j09ZgxNYUEvFJPvtSl0Qk6EaWxLKX08o55ZMNy4UR\ngzGOrmmcGDKOtdYb9z3kCpDXC3ZQdX7EsETJtXWEAy4EysV1TsszloniNbchkcMRCvHYjOIKjPg4\nTt0SlS6KxoBXRhKFSVaAiYHlUFw1aIkpKRSesrM+HO0CoCPSblzLjtUrtbqkQBBweYPEs+Xtzkq0\naS0UmCiASwUPGDFRAClT6GfM2KDSGLZYMsvweIb2prAhJiYElpemNwj5XLhlkeEzKKJ6Bo3nMsds\nK+I07jwxEDBiQEShTNBPR3fsOGCIKNHvN/YOjMcn7Q0a9oSIZmbuMp6K1MEDFGIxgpesAowVh1DB\nEuWREa0ceOa7ZgVzix7PKbvzkukc48kcTTXG/ZMniCGtJDh/YvtMlq7O83gQvd5J4QHnG13Xiady\ndt19so9UPo2mT98n5O2+PowoCgS88ozbzulgrW6Xq07dEqXrOvnomP0eN1QZ7aS0/01lcvjN9DDF\nvihKfZWPaCI7q30XzxczMdXcC3hVVV2rKMpVwLeAewAURWkCfge4HPACmxRF+bWqqudtaUQ6m2fT\npi3M9WRpkas5fnBgVuXo0XFjSe0Shd5EP/hiCN44x6InaE5M3/APjfQgeOO4g0l6E/1kzJl9/8BR\n5JBIJmqIvKiQoeAyyu2J9xE2Oxxd1+lLDFBT76I/NUBONhrU6PAJEol+8v1dxm/1SfQm+vGGkvQn\n4vTE+kDQGUtHqfYaAkv0+Y2NXrNZBI+HXM7YHqQgyXgFP3ktz6H+IXymUJmKgl4gXUiTKaTRdZ1y\n2aVX+FSZdCHFvtEDzPHPJZ/0M6wZg9B4/xCZoZLg7aM9IIoMCH6EkTR+yc9gcpTXdvcRjWe5blWr\nYVEJBm0rn+XuSOczjI8Z9zghFcgmB6mpzzKQStCb6CeRS/JG31t4JS91PmOmJUcioGkUEnF7YCx1\n54FhDfLJXiOwXJKQq6rsmZYlrjVd48VjG0nkkqyZuxqg6JqIxSj4g8SSWfIFvUxg6Lpx7070jxPK\nJ6gteMn29+PNp6gaz6MJg2QiPRXvqZbOkNixHQSBvN9LLD1KqDrLaGaEvsQAYDyvsdwQgjfOeH4E\nt9u49uhwj9GmBrsBSHlF8MYRvHG6xk7QUtLW3xlWAeiIzDN+l+m6So3FyIylyBc00oODCOEIkuBB\n0zW6BkbxSIYr/ITZEWeSEj2DcQpeP9rgAMf7xxFEkXy3YX1MyD6yg3EKWeO96R4cIe1zkcqmkXBx\nYjQNHi/psShHDhhWwfYmQ1hZgjuRNyccY0V3niAI1IS9DEeLIiqVT5PIJc02raGD+VknmyuQyubN\npfd62XOy/tjTfwzBF8MVTHIi3kfebdyvkf5u4vEO4/dGjTqOkEJK9BOsTjOazXAi3lfxeZbSPd5D\nlbuKWAzG9RR4fWTGY2zcYUwyqkKGWIm4w/TEe0nn07YFT8/nyY9HjbgiTQddQ9d0NK1AMp8yY6j0\nsrc3u3EjANkl8+lN9JOX42a/18uchM6o2YYS+gi4jUTG/UPdiFI9hV6jfWYCbnJiFMEbpzfRT29i\n+r5F13W6eo1+MFwTpDfRT9ZrlD08eIzxRD3ZMeNexcQcCUYRvHGGM4N0j3s5EjXCLvzWhChSDErX\nzG1qUpmCnczTeo5gWM/0ZNzerqbs4MTPp8GhnigM9bF0bhWZEz3UjWuMRvOMHzuCT556sp86dACA\nfMDLQHKQqrocA2PjnIj3TUokPbGmBU0jlS5wLOFmLJos/mZ9+n56LJZmvDBMcyRA1FxkMjZwnFSi\nf9rfqGuaMW729qHncuSDPmN8CqcQvHH2Dx7DFTQW2iQZpSrkNdqYy3gu0eFeglVhBG+cvX3dthGi\n7Bq6DqkU+VicVDKHjsDCJSuRpNnvTHK6CCezQiiK8rfAFlVVf2r+3aOqaqv5+W7gdlVVv2D+/Tjw\ndVVVt05V3uBg7KyaPZ577CfMe+bXZ6y8V1YF2bZk+k7gZKzal2TD23F+sT7Moble1m2Pc8WeJI/e\nVEVvvfuk5zcM5/jQr0bZvsjHy5eHWNCd5o5N47y0OsgOpXLdltcu4YuXfJLeH3yf2Oubee36z7B9\nSCcdT/L7hx/moH8OT6xtQm7sJr3ravRUaHIhcha56QhSTT+id+Z7v82E7JFlFAbn4tJyfOXwwxz2\nt/Boy4328d8+8ihZ0cX32+8DwL14C1J4hNSbN4Im8+cPXk5HS5i+H/4r4xtfYeR3Psjr+S6Ox3tJ\n5VNcoia59q04T18T5mBb5U7q40s/yJVNl6HrOu989//g3raZRxbdxxEthCyJfO8rG5BEkccPPs1b\nu17g4wPtyF095AYHcNXXM////SYAf/GjFxn07Ka2NcZYJoqOjk/28Zdr/wi/7GPP9/4Z19uv8ZPO\nezgmRCbVoyU1yOXRvbSl+gkUUsw2x/4bl4Z5fenMrK+NQzk++Nwo2xQfr6wOsfBomttfHefFy4Ps\nXDR1excQ+Prav+CNd0Y4vHEr173zJJuqV7Kp9lIEXeMPDv2EE946HtnQglzXS3r7e9CzxuDmatuL\n3HSU9O516Mkw9/e+yKLEMb49//2kJS+Xje3j5qEtPNG4nr2h+citB3C1HiKz73K08Tq8q15Az7vJ\n7FrP57t+hqRrfHf+AwB8+f4VXLaonqHUCP9j8ze4KdPOFQdzJHbtBE2j/a++jqelhf/9yDbU8XdY\nelmcnkTvpM2KT5eq8Twf/8UI73R4ef4qY4Z9wxvjLD+U5od31jAWPvUQg8JII9mDhmXoc0cfx63l\n+Yf572PpvGp+732XIEsiP977n2zu3cqfzf0I4sYtJPfuNawHsxABGVngn99bR0GaviVeuSvB2l0J\nHr8uQnezh47jGe56JcrGSwO8vTRwytctpeNYhrs2Ru3+d9XeJBu2xXlyQ4QjczyTvr+hdS0fUIy+\novt/fZ3UwQM8ed2XOdwbn2TVaMiMcNXobtpTfQQK7474m+euCrG3w3fOr1sdzfPg0yPs6vTymzXh\nyV/QdZSjGZYdStE8lEMuudXbFvl45fIK48oEKr0zpUgFnZX7UyhH09SO5ZEn2DD2r17GnV/8g1P9\naadEfX1oypdhJm90GCi1jRYURZFVVc1XOBYDJo8SJVRX+5Hls6ca1910M5u6DxDxiginseULgO6S\naFqncLPfQyKd4+W3jzOnMcTKzrqy70UTGbbu6SebKyBJApGgh5qwl4VzqxAQCCeOwttbWR1aQGdn\nB03q28BhLu+4ghNeD2/s7qVzThVKm2E6HY2l2byrl/mtEZa01yDOycGvnmBBPoSncwPVIweB7Sxo\nX0Zj51x2Hx6iuy/G+lWthPxuanxVXN12OfXBEFs1PxGge18X7uYOFrWH4TDU1IXpbGzkKN1ceUkV\nNeLcst8U10fYUXiKHCkk3ARpxi34kHAj2MN88f6eyp2W8dC+YDXSQqP55U4EmEOc29bNA0DMZggc\nTFNobLX/7UChhx59hHVrQiyp7+TKlS0IgsBIrfGSvrDnWXobPLSEGqkLzGPRsV5gP0vnLmdeRxN7\nu0Y42hvj6pUtRIIeOmrauG7+OrJ5je88so380RQbgIiQZdWietatbKGp0WjK7c8NsuSXI+j6CHow\nSNVlq2i65SZq60O81v0mIy3PIQoF8noApa6DKl+EWxe8h9aaer798Nvku5JsAJpdOeo7GwgH3bhl\nCQGdlrdfoPHgZgCy/hDJcDtVLY1UVxt70wmCwMbuLQiCyPp5V0JJm9Y0je19exhKjjBQLTN+2XxW\nBWoIeYLsOjDC4GiKG65owyVLCMCrO06QSOe4eU070pw8+nNPsCgdwNu5gepho00tbF9OTVszz281\nZoKrFzeWPbsmfyv/8Ng+Dh6PUltwcR2wIJDHfflc/JkY4iEdf1MD7fW19Oi9XHNZPUHBeF/2aAcZ\n0OHaSzrwCUFqN9fDgWPctrKOTKSOxm1HYAiWXzKf+U3z6NXS7NMOsXKpnxZxHi/ndQIuP5evm4dn\nLIx3pJ/b17YTCni4fs08XLKIPy1y/ZZxlh7cSgIIdHbQdPNNNK5cRKaQZax+E+76YxyMQmu4iYZA\nByFPEBGRg8eidPWOA2Z6Ca/biM8pEROlfYpg/qcu4qOx1hSeBQ39l48zP+vn5gUbAGjdthnoYa1y\nNYWAh617+hkcTXHzmjZkuSSiQod9R0c53GN0qX6vTMDrZk54KdVXGas8PaMhfKP9fPDGRdx33QI7\n2Li5r5ZlG1PEH/kOFAq4qqsIL12Cu7aGhJZlW/8ecnoeWZQJeoK4JReyJFd8gxMdDVy/qBUBgVy+\nwK+3dFNf7eeKJY1s2dPH0FiKW66aR3WiG3Zt5SpvB4s7O+1+qWP+cmo75/Ds5qNUBT2sXdFc1oZy\nBY2te/oYi2UQBAj53Xg9Mn6PzMK5VbhkCZ9nGDa+yFJvC/WdK2k4vAM4wIrOy1gwp4bn3jiK3+ti\n/SWtdNS0c938tQiCQCZX4FhSpF7X6T7cR9OcBhprAvh9Mh6XRN3+t5iz5ZcIQNYfJhZuJu8NoMmu\nsndLLxs7Tm8csWhtCFJtLkTZN3iI7mgPa+asIuItFxpjqXG2971DtpBDkGVob6FqeTvXefwcOjbO\n4Z4oa5Y3UxMuF5N9wwl2HBhC03RcskgoYPQzsiSW/jRONiwKgkBzbYCasBcxnYOnn2C+UMXNndeU\nfy+XZ86jmwkeNlyO6YYIiboQuZog2ZogfqWVm70uYsksG7f3MLcxxIrOOrL5As9vKfYvYiYHv3iC\ndrGKq5qvZNP2HprrAqxa1ICUSNP2o1fwDsYpCAKDQT9Jn5u8143gkkCSWHbTbdTXn1ysnS1mIqLG\ngdIaiqaAqnQsBEwbgTY6emYtGhMJhuv52Ne/xeDgmV3imsrkef7xVwhINdxz/aX2v/ePJPmrn71J\nOlPN/e/p4KbL59p5eiwSsV30sJXl7nnUtt9Jr3ycGIe5ofM2Eu4Am55+lYCnnnvWrwBg085eXjm6\nl6uWKFzb3grA4epXqBrLc1n7nQxte4wRtnNV53X42xejdx/m0NEuVq9bxRJTiJGChzbuYcfRDHcD\n71sRYvEDa8kc66b7RZjf0YS+eB5H921l5SI/a1s67PrGsnH++o0fkyukuLvjVq5v24BLPL0g/ek4\nsWsx8W1vce+yCK7aWtJdXXQDbYvnc/kGo16vnRjmJ/t2sXiBwNWtDQwNxUnlU7zQt41LgGXeNn5r\n3aeo9hp++OPP/A1J4PpL78dVW0dw8BgHjx5gyarlXNHeAMDgYIzvP/kOW/YOcGNdNYzAJ65uIbxu\nhX08vnMHgf98iYxLIPveW1l9/fsRBAENeGXfW3x3578hIpM6tIzfvu8eWuuM10HXdb7x72+wZe8A\nV7fMgZHtPLDQRd09y+3fPfjIw4zu3Yy7qZmGj30c3yKlovDftWWIwdQQd7znw/a/6brOv73zEG/V\n5lCqV/Hhxe+lzldrH0+peznR1cv6m9bQXBtA13We/a+Xaaz2c2/7lQB0NW9F7Bvh7rm3M7ztcbtN\n+ToX8ZsnX4Gkl3tuWWOXmctrfP1Hb3G0P8bVy5t44NoOBr76BO1Skg03LiR1YD/HgM7F7Qy3V9HT\ntZu1K6tZXGM8w7/fJjAwCh9cvxSXKDM01MLIgbe5QYngX9RB3+GXGAdu2LAEd1MzB0Z19m17ifa5\nEnd1zOPFF/M0VgV54LIOetU2YkMnuHtxEHdjI2Ojhvuu/yc/YsXBNNFaHyu+8Ad45xvXHhgc5we7\nf8woxyhEa/nY0vdxtVJs8794rYsDmw/TVOPn03csobN12rngtBxpeA1pJMbdc+9AEASOs4ckPdyx\n8B4EWWZk915OHO3l6luuoqnEZfGL17pQXztMc+1CPn3HUjpaJs/Kj2+vIzl8ghtX1JOIpUnEDEtK\nYO8AN2yJofl9zPnkZwlccimCKDKSHuU7W75Nqi3A/Qvu4D1zrkYSZz6Jra8P8fJTT6PF3Nxz61Xs\nfuVNtN4Y933wWtLaIY49sZWlhUbq2+9kcOujjLKdq5Qb8bUv5OWnNsGYxD13rrXLyxc0/uahbQz2\nBLlcqedDNy6yhUUpWf8AXbxIh1DPuvY76ckcJgHcsPI+5FCY7S9soe9Ykrvueg+iIDA0ZLjg/+2X\ne/HGdeqBP7l3AS3LFbvM2NYt9G75JVIoTNOnP4N/2YrTnmjPlrGjL/LioWdYuGIdc+uLfcJoeox/\n2PptUq1+7u64lWvnXI1LKuY7fDnag/qayqJlS7imvShOdx4a5qnnduB2N/PxmxexZmkjkmgI9Pr6\n0KzHQ13XOeh5ltqMm8va7yz7955vf4vk4X78y1fQ+JEHcdXXVywjkyvwmydexkM191y/ioGxFM8c\n3Ux7uIl72pca13D9ktqcl48uvo9dL21moDfHrVevofdf/x+yg+NsDy9g/6L1PHDbSpS2qknP7UyP\n9xOZTqTNZHXeq8DtAGZM1K6SY1uA9YqieBVFiQBLgN2zr+qFi88j43VLREsCiDVN5wdP7yGVyfOJ\n2xZzx9p5kwQUlASWm0GCxeW6xkoqr1uib6QoLieu7gNwNTaRHxlBy2TscqzgS2uZ/VBJ4N6JoQT/\n+eJBsmbW8tp83JipdRuxL565c4l4jPPHJgSk/vzgL4nl4tzbeTu3zLv+rAooAO8CY61C6qDh/88N\nGL53V2PRCtIabAKgx4wj0XWdh/f9jD7BeHmurV5lC6h8dIzkvr14OxfgqjWsIPXVhil8oETEv/DW\ncbbsHWDBnAh33LjCPLdoWNXzeQYfeQgEgcevr6J3XsR+eVP5FD/a+wiiILJKvo3CcAvj8eLigNd2\n9xllt0b40McNN2X68CH7eHzndkZ//SvczS3M+aM/wa8snrJDD7oCZArZsuzy2wZ38dbADjoi8/ji\nyk+WCShgUmDvWDxLNqeVxRl4581Hz6TJ9ffZAeZyKIQgCNRHfAxG02VxWz/fdNgQUCua+NQdS4gE\nvbgam8j29aHrOrmRYhLSWjPWbDA1ZJ8fy8XxSh67PVmLCqyUEcV0BMa/W79pODVCTjP3bDNzInna\njOD2zLGjxXu6fRvRF19grMbLf91YjXvePPvYpp432DG4m0bXXLL7V5NNFgfuvpEkT77aRSTo5k8/\ntvq0BBSAu6kZLZmwF5IUEgkEt9uwKoC9cq10hd7IeJqnXuuiKujmDz+0qqKAgpLVfyV55wqJBNU/\ne4mCCAMfvongqssQzAH0sQNPkcyneP+ie7m+bcMpCSiLhmofQ9EUmqbbW80IgoCr3piMZAeNuNP8\nyAgAco3x7CN+N9EJQdDPvNHNwZ4oVy5p4Av3LK8ooKB0z0njd+YGBxG9XntRQWONn2xOK9si5M19\nA2zc2WvvMReheO1CMsHAQz9CcLuZ89U/JLB85XkTUABNfuPeGTGLBrqu86O9j5LIJXnfwru5qf3a\nMgEFlYO0R2MZfvCLPUiSyB9+aBXrljfbAup0EQQBuap6UmB5bOsbJN/ZjX/Zclq//LtTCigwdhKo\nCroZGDXqbKWmsALLS1cwC4LAqoX1pLMFtv3rQ2R7jrM9vICu1bfxlU9ezeL26vP63Coxkzv9OJBW\nFOU14O+A/6Yoyu8rinK3qqp9wHeAjcBvgD9TVfXd4WSeBTVhL4NjKQrmKquXtvdwqGecK5c0sP6S\nlinPczU0giCQ6TFW2uRjMZAkBI8XQRBoqvHTP5pE04wBa+LqPgB3szHryPb3lazYMDqLjmajwz3Y\nU0wW+R/P7iNf0Lnt9tX2eQCZ7i4APHPbqfIY51spB8BYUv1635vMCbZw/dz1s7pPp4pvwULAEFG6\npjH2yktGHVvn2N9pDjQiINATNwJqt/S9zVsDOwhXG+KqNBlc7M2toOuErihaUeondD7D0TSPvXyY\ngFfmS/cuL+ZDKUm1EN34Mrn+foLXrGegxkXX+DH72FOHf0U0G+PW9hvorJoPQJ/ZScSSWR5+/gBe\nt8Tn7lqKv7oKV0Mj6cOHzLwvMfr//V8RZJnmz33R3gJlKixB0p80OtxsIctjB55CFiQ+tuT9kzpa\ngEjAXEpviihLpDdWF+MqPKbISHd1kS9ZnWfcLy+ZbMHONDwUTfHclmPURbx85KZFdkfmbmpCz6TJ\nj43ZYkiuraHFFL2lwdPxbMJemQfgbTeunzKl6MjMAAAgAElEQVTFZT4aRXC77azTEU8YWZAYSo8U\nc0SJ5pYwlogyJwVaNsvAT38CksSRO1cTl/IMp4yOP5lL8osjv8Irebiz9V7QRTvNQfFd0fjoTYvs\nVZGng7vJfFd7eynE42R6juNuabWPT3w2AD/feIRcXuO+DR12GoSKZZsTi8yJ4iKDkWeeRkileX1l\ngKG6YozlgdFDbB/cTWdkHutbr5r172mo9pMv6IzE0qQyebxmMlcpFDIWqwwaizhyI8MgCPaqrHDQ\n2PrFWtE3MJbiqVePEAm6efAWBVGcejAUPR4Ej8dYMavrdhyi1e4aa4x23G++cwVN47GXDyGJAmuu\nNPqT0gnR8JNPUIjFqL3z7rJ+5XzRFDCeY1+yKKL2jRxAHT3I0hqF9a1rK543sR8DePTFg8RTOT5w\n/QLmN0/fl8wGuaqKQixm726gZbMM/dejCLJMw0cftCcH09FQ5WMkliaX1zjSa/Q1pe5IOWykmNF1\nnWtWNlOnxYls38S47Gdoza38tw9caq9EvdA4qYhSVVVTVfULqqquU1V1raqq+1RV/VtVVZ80j/+z\nqqpXqKq6WlXVx85+lc8fytwq0tkCh3rGSabz/HzjETxuiQ/duGja8ySfD3dLK+kjh9HSKTLHuvG2\ntdsdQlOt0UkNRY3d548PJnC7RKqCxQ7R7pj7eo0NVeVi/qjW+gAet2SLqLf3D7H/eJRVC+tYtaIN\nKRwmZ4qo9NGjIIp45syxLVGlS6NfOv4qAHd33jqrWets8LS1I8gyyd27GHjox6T27aVmzRX4lMX2\nd9ySm0Z/Pd2xY7wzrPLo/p/jkdzcsuwOoGjl0zWN6EsvGvsKXnGFfX59xIsAHO0zUjr8+DmVTK7A\nB65fSCTosa0fVvoCLZ1i+MmfI3i8NN7zXhr99XSNd6PpGgPJITb2vE6Dr44b29/D4jbj3F2HjHN/\nvukIyUye+9Z3UGd2et6ODrRUimxfH/0//iGF8XFq77kfz9zyWLRKzDdTChw2VyG9emILY5ko17dt\noMFfV/GciUkdbevmBEsUQHL/PkMASZLdpuoiRr2HzJVsT73aRUHTuXf9fLzuYmdmiftcX2/ZdjhN\n/kYEQbAth9FMjPFsjCpv0cpjPff0oYPGvTeXRVvvhSiI1HirGU6N2Nm4bUvU3DYA0t3GPRl55mny\nQ0NU33gzNe3GINoTPwHAc0dfIpFLcsu862mrqTPvhzEIbdrZy77uMVYtrOOyRVPPpk8F613N9fUR\n37EdCgVCl622j1vPZmTcsKIcH4jz6q5eWusDXL28eXKBJXgmiMd8dIyxF36NWFXF9kV+xjNFt8YL\nx4yVdvctuOO0Zu/2wD2aIp3N28v0LWtUbnDAWNY+YmzKLZgrpeY2GKtaDxw3+qUnNh4hX9D5QEks\n13TIVdXkBgcoRKPomQyuugb7WKNppbcmnK/t7qN/NMX6lc3UNFu7BBjXzY+PE335ReSaWqpvvnXW\n9+FMUuerQRZl+swVb7qu89ThXwFwd+dtUz6v6rAHSRRsEbX/2Bhv7OlnXlOI6y5rrXjO6TIxzcHo\nr54hPzJC1Y03465vmO5Um9b6ILoO73SNsHHnCQQBrlxS9DS4GhqgUCDb28vchiBfrOlFQoMb7+KL\n71+N6yzGUZ8uF2WyzbPFyk7DvbDz0DBPbDpCPJXjjqva7U5xOrwdHejZLNFNG6FQsK0vAM3mwNY3\nkmTX4WH6RpKs6Kgte5Gsjjl9+BD58XGkUNg+LokinS1heoeTjMUzPPbyIURB4IFrO41zG5vIDQ2h\nZbNkjh/D3dyC6HYbyS5F2RZR8WyCN/u30+CrY0nN9MLwTCK6XISuWkducIDoS7/B3dTMgi9/aVJH\ncsu868lpeb67419IFzJ8YNF91LcphpXPHEwTO3eQ7T1B+Mqr7BkxgNslsbKzlqP9MR56/gA7Dg2z\nuK2Kq1cYFhO5qgq5uobkvn3ohQIjzz5DIRaj5tbbkCMR5oXbSBcy9CUG+MXhX6HpGnd23IJLlGmo\n9tNc62fP0RHU7lFe2tZDY42/rFPzdRjP4sTff5v4W2/iW7iI6ltm1qF32CKqi1whx6+PvoRbcnND\n24Ypz5nozqtk3fS0tSFXVzO+8RUy3UfxdS6w3UB1VYY1aHAsRf9Ikld39dFc6+eqpU1l1ykV93b+\nrJpa3JKLpmA9vQnD1be5dys6OqsbivGEosuFp30emePHKCSTRhb+SLkrrdZXQzyXoGvcEA2Wy1YK\nBpFrasgc6ybb18voM08jV1dTe9c9tAaNOvXEe4lnE7zc8xphd4hr51xDTcRLbdjLzkND9I0kefTF\ng3jdUpl17XSxrE7x7W8Tf/tNAIKXXW4ft1x1e7oM99d/vnQIHXjftQumtc5AqYgy2vvYC8+j53LU\n3H4HBVmw3+XB5DC7h/YyL9xmi/DZYlkvdx8ZIZUp2OEDAO76BvRMhkI0Sn5sFNlMzgiwbF6N/TuP\nD8Z5/Z0+5tQHuXJp+WKFqfAtXISWShEz72Gpy6ippM/MFzSeerULWRK5c908+7233MtjL/waPZej\n+tbbZmQ1OReIgkijv56+5CCarqGOHuRo7BiX1i9nbmhqr4YkitRFvJwYNhKuPvT8fgA+fNOiSSkP\nzhSeVqM9J1WV3OgoI888jRQOU3vnXTMu47pVRhkP/Xo/R3pjrOyoLXPl+hcvMa6x9x1yQ4Pktm3B\n3dTM6vtvueDcdxNxRNQpsLi9GlkS2bSrl+ffPEZjjZ+brzi5JQGKg+jor54FwLuwKFKaag0Xx+ET\n4zz+yhEA7r56fvn5CxYiV9cw9psXyA8NGcq9hAVmHMffP7aTvpEk165qodks19XYBLpObOsW9EwG\nb7vRqQqCQMQdtjOcv9a7hbyWZ8OcdYjCuW0ajQ9+grr3vo/wuquZ+yd/jis8OZDvyqbLuLrlSoKu\nAB9b8n7WNK9G8vnwtLUbVr5MhpFnngag+tbbJ51/p7nS74W3jiNLIg/eWoxDEgSBwMqVaMkE8W1v\nMfrcs0iRiD1znR8xLB+/OPIcbw3soC00h1UNK+yyL+msI5vT+M5jO9F1+PgtCrJUvIfhdVfjUxaT\nGxzA3dJK8xe+ZAuWk9HgqyPg8nMkepSXjr9KNDvOhta1Za6xiRStHYYl6fiA4e4sdeeJLjetv/dV\npFAYd1MzzZ//LfuYJez3dI3w801H0HSd+9Z3TBrk3U1Gh59UVTK9JxB9PiSfcY22SCvJfIrRzBiv\nnXgDt+jiiqZVZef7OheAptH3g++DrtsuPgvLlfl6rzGQLqwqBoN72topRKMc/9Y30fN56j/4YUSv\ntyiiEn386uhvyBay3NR+LW7JhSgIXLuqhWxO40//z+sk0nne+55OasKzT8w7Ee/8+fiUxSR27iCx\nYzueuXNxNxXFZ03Yy9yGIPu6x9h+YIhdh4dZ0l7Nio6aaUo1kKurkYIhMt3daOkUYy/9BikUouqa\n9xBw+YlmDUvUKz2voaNz7ZyrT/v3WElnf/2m4c6+YnGx77GETXLfHtA0XDXF37BwTgSXLPJO1wg/\neW4/OvDAtR0zHuwDS5cBEH35JfNaJZYos332DifZuOMEQ9E0117aQk3Yi7u1FdHrJbl7N4VUirEX\nX0AKhYhcfW7CE2ZKk7+BbCHLaDrK890vA3Bz+3UnPe+KJY2kMgW++fA2uvvjrFveZPf/Z4PgamMC\nEH9rK0M/+0/0bJa6+x9A9M485cKchiCXLqhjKGps7XLLlW1lx/3ms07u3cPQ449BoUDNnXfNuI88\nn1z4NbyA8LgkVnTUMJ7IIooCn7xtccVA8kp4O4zg6fyoMfsstUQtmhPB55F48tUujvbHWLus0TaF\nW4geD40PfgI0DSkcpvGjD5YdXzbf6LyO9MZorPbxvmuLieUDy43Bvv/ffgCAf1lxNUiVJ8J4NkYi\nl+SV45txS27WNK3mXCOIIjW33UHTpz5rB89W4kPKe/nGNX/BVc3Fmb1/kYKezzP63LOkDx0ksPIS\ne/ZUSmdrhGsvbWH5/Br+5KOXlbm2AAIrLgGg95++i57NUnv3fYgeY7a0sKoTURDZMbjbjkUqFZqX\nmwNLKlPgtjVtLG6vLitb9PqY85U/pOXLv8vcP/pTO/h1RvdGEOiItDOcHuXpI88RdAW45SSdbX2V\nj5DfxTtdo/SPJtnTNUp7U4iQv9xq6mltZf43vkn71/5nWZ2WzKumudbPxh29vLGnn7bGIJcpk91d\nnjlzcDe3EH9zC/mhIYKrim2nLWIIrIf3/Yzh9ChXNq+elFjQt8hYPZXYuQMpEqH2rnvKjtd5jXa9\nd2Q/kiCVWVVqbr8TKRgiPzpC1Y03EVptuG/D7hBBVwB15AAvHttEnbeGa1qKMUHrL2mxBe6lC+rs\nWfKZQhAEGj7yIILbjaupiabPfnHSd1Z21pIvGKIb4P3XLZjRjFsQBDxtbeSGBhl89KdoySRVN96M\n6HZT76tjMDXEUGqY105sJeIOlQn92dLeGGL5/BryBR23S2R1STvwL1kKwMBPfgSYEzYTlyyxaG4V\nPYMJ1GNjXLqgblJ6mOnwLTGsE1kzlrTUEhX0uWiq8bP78DCP/OYgHpfEHWvNTPouF/7lK8gNDjD4\n8E+Me3TDTfa7fKHQbMZFPd/9MntH9rOwqoP28Mkn5bdeORe/R6arL0Z1yGN7HM4W7sYmPHPnkti5\ng9jm1/C0tRNed83JT5zAR29exL3XzOevP7tmUv/oqq3D1dBIYvs2Ym+8jqetndCVs4/jO5dIX/va\n187pBZPJ7Fm/YCDgIXmWUuOv7KxlZWct91wznzkThM50SMEgqX17yY8M42lrp6bEN+91y7TUBtiy\nd4C2hiBfun9FmRXDwt3YiG/xEmpuu3OSL7o27GX1onpqwh7u29Bpb1MD4GlpJTc0ROZYN+F111Bz\n5912hx3NxlBHD3Is1sPx+AnWtlzBZQ0rT/W2nHGmeoaCmTupFD2fJ7blDVLqPgCaPvFpXLW1k84F\nuGRBHWuXN1VcFSRX1zD6wq+hUMDb0UnDhz9qz4SC7gALquaho3ND23tYXLOw7NzqkIcNl7Rw+1Xt\nU8bWCIKAu6kZ0X1y92+Fs9k9tIe8XuCDyv0nddEIgkD/SIr9x8Y4cGyMaCLL+69bMEmcAwiyPGnG\nJwoCVUE3W/YNUB3y8LsPXDJJgIEhfv1LlzL++mbczS20fPHLtsskGPTy0pHNDKaGCbj8fG75g3ZM\nk4WroRF3czOCLFN3//vwtJS7MgIuP6/0vAYYg851c4udt6u6hvDadXjnd1B94832bxAEAZ/sZdfQ\nXnR0Pr/yE9T7i+3B45JQ2qpYu6yRO9a2n9SFNhvkUIjINRuoufnWioLZ45bsrOPXrWplw6VTu3Am\nku3tJXVgP5mjR5Hr6mj+zOcRJIlMIcOeYZW3BnaQzCe5qe1alJoFJy9wGqz3sK0xyMadvaxd1mRP\nGMDokzI9x8l0dxuC8eOfKmvfPo/E8cEEnS0RPnrzolMKDhY9HuLbt9l7Ktbd9157v0aAec0hXt3V\nR76g8/m7l9HRUrzPei5PfNtbZI51I3i8NH/uC7N8784esiixufdNjsaOIQoin1nxUTtOdTpcskRj\njbG90xfuXW4vVJiKMzEeaqk0yb3vIAYCtHzht+w99U4Fn0dGaauecvFGfmiI9OFDCC4XzZ/7Iq66\nmQvus00g4PnLqY6dNGP5meZsZyyH08uLcbbJDQ0ien32FiWl9AzGqY14ywJ3zxR6Pk/qwH58CxeV\nxQWMZ2P8+atfp6AXkEWZP7ni92gKzCxY8GxyKs+wkExw+Pd/Fz2fJ7DqMlq/9Duzvm666whaOm3k\nbLrATMm5Qo5oNmZvVXMydh0e5u8e3QEYK2G+8fm1FcX5VOi6zq7Dw8xtCE25FN2ikEwilizjB+MZ\nvrRvK892/Yab269lRd3SGV+7lEf3P8HLx1/lurnX8MDCu2d83kBykHguYW9Tc6Gx89AQkYCHtsbg\nKcV9GMv1f0zynXdo+vRnbUtzLBvnjzf9FWCkxfjzNV8h5J75RK8Spe9hNJ7B73XhksvbUCEeZ/T5\n54hcsx5X3ZkJzrdId3WR3LMb7/wO2+pVyp6uEdLZwqSJSyGR4MgffxUEkcZPfKossP9C4s3+7Ty0\n77+4ff5N3Nj2nrNyjTMxHuqFAqlDB/HO70B0nf4K1kpouRzZ3hO46urLxPKFwHQZyx0R5cAP9/yU\nLX1v86llH2Z146UnP+EccKrP0Fql5ZnbdsEHIp4r8gWNP/vn1xFFkd++f4W9F+C54ky9hwWtwFsD\nO1heuwS/69xvffFu4uF9j7F9cDdfuvTTtIVOfyn/u7kvzUfHED1eO2XGhUpBK5zVldDv5md4oeCI\nKIdpSeczjKRH7dw+FwLOMzwzZHMFZFk8ayt3psN5huceTdfQdf2MDcrOM3z34zzD0+d0985zuMjx\nyp4LSkA5nDlmuvDB4eJAFMQztdWbg4PDDLiwgj4cHBwcHBwcHN4lOCLKwcHBwcHBwWEWnPOYKAcH\nBwcHBweHiwHHEuXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAsc\nEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODg\nMAscEeXgcBGiKMo8RVF0RVFernDs381jdadY5j8oivI18/MvFUVZeoaqe8ZRFOWriqL8+zm61m5F\nUa6d5bl3K4rynTNcJQcHh3OEfL4r4ODgcNZIA4qiKO2qqh7F+CMAXH26BauqevvpluEAqqo+CTx5\nvuvh4OAwOxwR5eBw8VIAHgE+Anzd/Lf7gSeAr1hfUhTlLuDPATeQBL6qqupmRVHCwA+AS4BeIA9s\nMs/pAh4A3gb+DrgKCAEC8BlVVV81LUHjwApgLrATeFBV1XhpJc3v1QCdwC+AfwH+0SyvGdgOfEBV\n1bSiKGngG8DN5rG/UVX1e4qiuIDvADcBA0A/EDXLnwN8D5hn1u+Hqqp+U1GUecBvgF8DqzH6w78A\nPg8sBt4EPqSqqjahvkuBfwX8wD4gUHJsHfC/zH8rAH+pquovFEVpAv4DsKx/T6uq+t8VRfkE8ICq\nqncqirLALLfGvN8C8GPgJeAF4JfAGqAa+ENVVR/HwcHhvOK48xwcLm7+A/hYyd8fB/7d+kNRlIUY\nAut2VVVXAZ8DfmZarP4SSGEIivcBSoXy1wAtwFpVVZcCPwT+uOT4auBWYAmGiHnfFPX0q6q6TFXV\nPwI+iyF0rgIWAPOBO8zveYAhVVXXYYi4v1MUxQv8FrAIWIohpNpKyv4J8KKqqiswrHAfVRTlg+ax\n+RiC5nJgM/D/AR8ClgHrMcThRH4C/LOqqivN77cDKIpSDfwb8DFVVS8D7gG+pyhKm/mbDpv/vh5Y\nqChKZEK5PwIeVlV1OfA7wNqSYx3Ar1RVvRLj/n57ivvo4OBwDnFElIPDRYyqqm8BBUVRViuKMhcI\nqaq6u+QrN2FYdF5QFGU7hkDQMMTLjcB/qKqqq6o6CEyyfKiquhnDivV5RVH+N4awCZZ85VlVVTOq\nquaAXRhWlkpsKvn8R8Cgoih/iGFBaplQ5hPm/9/GEFUBs64PqaqaVVU1Yf6OUvflP5r1jWKIyNvM\nMnLAU+bnQ8BrqqqOq6qaBk5MrK+iKLXASgxxiqqqrwLW/VyLcS9/bt7LXwK6+f1ngfcqivJLDEvX\nH5t1scqtBq7EsPyhqupeDOuTRc4sz/rdU91HBweHc4jjznNwuPj5EfBRYND8XIoEvKCq6gesfzDF\n1gnzT6Hku/mJBSuKcgeGNeZbGOJmn3kti1TJZ31CeaWUuvgexuibHgWexrAqlZ6XAlBVVVcUpbSO\nleoqVrimCLjMz1lVVfWSY7kp6jeRSteSgL2qqq6xDiiK0gIMqqqaUxRlPobYux7YoijKbRXKKC23\nUPI5W+JWnO4+Ojg4nEMcS5SDw8XPjzHcaB8AHppw7AXgZkVRFgMoinI7RuySD3gG+LSiKKJpKbmn\nQtk3AU+pqvo9jBiiezHExOlwC/BXqqo+Yv69ZgZlPgM8qCiK13TvfQBAVdUY8DrwJQDThfYgRhzU\nKaOq6jDwFvAZs7zLMGK+MK+zUFGUDeaxS4EDQKuiKN8A/ruqqj8Hfhd4B1heUm4MeBX4pHnufOAG\nDMHk4OBwgeKIKAeHixxVVXuAvcABVVVHJhzbgxEH9VNFUXYA/xO42wz+/hqGZWYfhstrV4Xi/wm4\nVlGUXRhupkPAfEVRTqdv+VPgcbPM7wMvY7gXp+P7GCJut/n9IyXHPgLcYJa3BfgZJXFhs+BDwAfN\n8v47xr3FdHm+F/imeS9/hBEf1YURw3Spoii7zXoeAX46odwHgfeb5/6j+Z3kadTTwcHhLCPoujPR\ncXBwcDjfKIryZ8BjqqruMy1mO4HbTKHr4OBwAeLERDk4ODhcGOwHHlEURcPom7/hCCgHhwsbxxLl\n4ODg4ODg4DALnJgoBwcHBwcHB4dZ4IgoBwcHBwcHB4dZcM5jogYHY2fdf1hd7Wd01FnU8m7GeYbv\nfpxn+O7HeYbvfpxnePrU14emzMt2UVqiZPl009Q4nG+cZ/jux3mG736cZ/jux3mGZ5eLUkQ5ODg4\nODg4OJxtHBHl4ODg4ODg4DALHBHl4ODg4OBwnshref5xx7/wZv/2810Vh1ngJNt0mJKCpiEKAoLg\n7HXq4ODgcDY4Hj/BnmGVPcMqlzdeer6r43CKOJYoh4pous6X/vYV/umJd853VRwcHBwuWkTBGYbf\nzThPz6EiR3rHyeY1tu4bON9VcXBwcLhoyRZy57sKDqeBI6IcKrLz4PD5roKDg4PDRU+mkLE/a7p2\nHmviMBscEeVQkZ2HDBHlcTs5RhwcHBzOFplC1v4czyXOY00cZoMjohwmkUjnONofA0B0gsodHBwc\nzhqlIiqaGT+PNXGYDSddnacoigh8F7gEyACfUVX1YMnx24D/Yf75NvAlVVXP+tYuDmePeLLoo8/m\nCuexJg4ODg4XN6XuvGhmnLmh1vNYG4dTZSaWqHsBr6qqa4E/Br5lHVAUJQR8E7hTVdWrgC6g7izU\n0+Eckszk7c8FTSdfcPz055r0kcPko2PnuxoODg5nmWy+xBKVdSxR7zZmkifqGuBZAFVVX1cU5fKS\nY+uAXcC3FEXpAH6gqurgdIVVV/vPyV4+9fWhs36Ni5UTo+myvyNVfvxe1zmvx/+tzzCfSPDGX/8V\ngsvFuv/66fmuzmnxf+sznMjQa5sZ37OX+Z/+5Lsu75rzDM8uUl/RcZOXM2flfjvP8OwxExEVBqIl\nfxcURZFVVc1jWJ2uAy4F/n/23jPKsuysEtzXPxsuI9KbciIKwUKCloHGTbs1wADdTGvoWTNrWPTQ\nMMJ7gYSQoDG9hARqhLxHBiGLVCqp5EollfeV5bLyVaXPDG+ev/6eMz+Ouec+H5kvMyNT8f3JyIhn\nrjn3nH32t7/9tQDcMz8//0ClUnm+34ddiW7Sc3NlrK01L/v3XK+xtJrdDS0u1TFZcq7oMXwn38Ng\n4QIAgEYRVhY2oNv2VT6ii4vv5HvYGc+/6S0AgPy//V9hlieu8tGMHjv38PJHtdmSPy9uro39eu/c\nw0uPQSB0lHReA4D6CToHUACwAeCRSqWyXKlUWgDuBgNUO3ENh5rOA4Ag3knnXcmIq1X5s/dC3/3I\nTlwjQUn6/FA/GPDKnfhOjCCTztsBO9dajAKi7gPwUwAwPz//g2DpOxGPAfje+fn52fn5eRPADwI4\nNvaj3IkrGl7AxOSTJcaA7IjLr2zEtVQL5T77zFU8kp0YR8Sbqeca8f0Br9yJ78RQheXtHYuDay5G\nSef9C4D/MD8/fz8ADcB/nZ+f/z0AJyqVym3z8/OvBfBV/tpPVSqVnVn/Gg+fM1FTRQf1Vogw2mGi\nrmTEtZSJcp+vXMUj2YlxRHDhgvx5B0TtRGeoFgcxiQe8cie2YwwFUZVKhQB4dcevjyt//2cA17b6\ndScyIdJ5kyUbWNlhoq50qExUUq8PeOVOXAsRLi7In0ngXcUj2YntGIKJypt5RDsg6pqLHbPNnegK\nT4CoIkvnBTsg6oqGYKKs2Tkk7daQV2+PiDbWkbg7qYhescNE7cSgCJMIlm7BMezrBkRRSrH0/vdg\n/XOfyWgCr8fYAVHXcTQeuB8bt9+25fdJEMUr8sIxCMs3br8Ni+96Oyjd8WEdFnGtBs00Ye3eDRqG\nIGE4/E1XMSghOP26P8LJ3/p10Pj6WATGGeHykvx5B0Rdu9F85GGsfuLjY5/DgiSAY9gwdfO6SecR\nz0XzwQew+eXbsfqxj1ztw7mssQOiruPY/MqXsfGFf9nyTkCAqKkxCcsTz8Pml29H67FHESq78p3o\nHXG1CnN6GkapBABI2uNjeNznKzj9+j9GtLk5ts+kYQAkbIxU7/z62D73egmVoduOIIpSim8+fgEr\nm5fffuZajqX3vBO1O7+OaGV56GsTz0P1a18BiaKhrw2SEI7hwNRNRGT466+FSBpplWHz0Yev4pFc\n/tgBUds0Nm6/Def/5n+AJhcPYOJ6DaAUxNuaDsMLE5iGhiI32LxUENV67BFQzqa0n3nqkj7reg+a\nJEgadZhT09CLDESR1vhSeu4zTyNaXoZ/6uTYPlMFBrVvfmNsn3u9hGprsB1B1KnFBj72tefxuvc+\neLUP5ZqI4Ny5oa9Z/If/ibVP/TPq375r+OdxJsq6jpiopJmCKOK6SMY4h2232AFR2zQ2Pv85eM9X\n4J86dVHvp3EsF9+talW8IEbeMWFbbHgEl1id13jgfvaDpqH99A6IGhRxowFQCnNqSmGixjcBxQ0m\nVB+nfkkF6XGttpOy7QgSpMBpO4Ion2+Sdu7aaOGfPTP0NZ6oqiXDrypjohiIupY1UZRSBIsLoJQi\nbmYNm6O11at0VJc/dkDUNo+LZW5ipYYy5OQAACAASURBVKqLbDEd5AYx8rYJ22LtecL40piocGEB\n1p69cI7cAO/kCRB/p0KpX4hqPGNyEkaxyH43xl1c0mCTG2mPL3WTeAowSJItj7frJSilXZowmiSg\nUQRjgrmUb0cQ5fnX7sLdKxLXxdk/fwOaj4w3jaQXCgCGg6hM+l0fvMTGJEZCE57Os0AoQUKuzUKe\nzS9+AWff8CdoP3kUCQdRuZtuAgCEOyBqJ6548P5aF8vcqM1rt6qpEUyUw3scXopPFKUUiefCKBaR\nv+lmIEkQLq9c9OddS0HCEIm7NbBCPPZ6o1iCUbwcTBSb3MbKRHWAYvEd32lR//ZdeOHV/w2ekioV\nLJQ5Nc3+vw03EE0v1eG0vGtfkxMuXEBw/hzaTz853g/mc3Jw9sxAnal7PPWbVlnIXhFyjygmLGfz\nbUyvTRC1cdvnAQDeiRdkOi930y0AgGh1B0TtxBUMEoYAT4kE585e1KKUKCCKbGEhjxOCMCLIO4ZM\n512KJopGEZAk0PN5mLt2AWDl8N8JsfKPH8TZN75+S8J+AW70fEGm88bJ7CQ8nUcuQzpPz+fld7jP\nV/DUa147VgH7do+NL7BFpHHvPfJ3gnkyJycz/99O0XTT6s+VK9Db9HKHmC/jMXus0YBp24jnDZzD\nVL2heE+/EEabtuHA0pkG9VrURalrlKbrkvHO33QzACBaW7sqx3UlYgdEbcNQRXkAEK1unbmJa+kE\nshUmww8ZYMo7JpwxpPMEs6LnC7B2zbJj29gY9JbrJvxTJxFXN+WEMkoIwKvn81JYPq50HqVUHksy\nxnSeAAbW7j0AmO6qfs+30aw8j8b9947te7Z76LkcgCzbRLio3Jic4v/ffiCq5abs0+rm9mPKthpJ\ni82fW3nuhgWN40yqdlCxjso+k6Egiv3dMZkmCsC2rtCLE4LKuaqs4AaAtc98Cqd+77fS19Rq8h7k\nbrwJ0LSL1kQlrdZIFY5XM3ZAVJ8ILpzHmT99HWp3ffOKC2UliOL5dLUNyKgRXyQTJR6OgpNqoi5F\nWC6+2yjkYQkmavP6B1E0SRBxsBhXR2djEnm9CmPXRBHPkwvBWJkoDhrsPQxEJY2GbJzcevyxsX3P\ndg/BxKkLrABNRqEAzbK2J4hSUnjXAxMlwNM408qd940O8G5T2afhIIqn83TmEwVsXyZqve7ht992\nD970T0/gqw+zCkVKKZoPPQAA0BzmKxg36vLam9PTMKdnLoqJSlotnPyd38DSe945pjO4PLEDovqE\n98ILCJcWsfrxj6Bx/31X9LuTFhuAzsFDALJtQEaNUTVRnTssAaJySnXepaTzEiXVY47ARBFK4MfX\nfqf7uLoJ8DTeVlJaMjVWKIy9Ok/dmW9VqzUoxDELJso/ewbxOkt3BOfOXteiUjUkiFIWXMo1MXou\nBz2XA92GIKqZAVFXlomqBXVUNk+M9TPFJjRpNsbmlt0JhugAdqTX/e8XaTrPlum87Vqh98L5umxO\nX22y6xGtLCOuVlF62Svwone8B3ouh6ReQ9JsQs/nmWnw7CziWnXLdj1CwN8++sRYz2PcsQOi+oSg\nIwEgOD/cF2Ss382NypzDhwEw88Utf0ZdTef1BlHVb34DJ37r13Dm9a+Vk02bT6jFnAlbCssvJZ0n\nQFQBRrkMzbYH6gnuPHc3XnvfX6DuXx5xsnv8ObjPHRv+wkuMaD09x63cP6IwUXo+D2ja2JgoYW8A\njFdnJRYNwUS1Hn0EAJA/sB8A4D333Ni+azuHbjNz2kRlovjiqzkO9FxuqND4akTLjWCZOnRNw0b9\nyh7ff3/wzXjb0fei6m99o9gv5NxNyNjGeed9G9RFQAVRw5ioXsLy7ZrOU8G2aAUm5tLCd78YAEtb\nx7U6kmZDVqQa5TJA6ZaLWUYxNd0OsQOi+kTGLOwK7x6Fx4Zz+Aj7/8Wk82pqOq/34N388u2gYYho\nfU3urMSDMlG0YRoaNA0ILqHti9REFQrQNA3WzK6B6bzzzQWESYjF5uWp4Fv+wPtY+5nL3M9J1QDE\n1dHTl4l6vXQdRrE0toUgy0SNX1gumCgxlmZ/7EcBoMsz5noNod0QYx5IU516Ls9A1DZkolpeiImC\njXLRQqN9ZVsMCSbGi8d3XdQ03rhSekLbplmMLaLRYBClmSw1NxREccBkGZYiLN+e1XktLz3ngGtn\n3WMcRL2YgShzchJJs4Gk0YBR5iBKMOrNrW0GgwXeuJtXRW7X2AFRfULd/V/piU8AOOfAQUDTLoqJ\niht1mDMz7PP6pG7UxZmE7GEXk2i5YEPTNNiWgTBKQAkBGTBx9AviskXE4KkOc9cukFar7+TSjNgx\n1f1mz79fSpAgQFzdBHHdTD+zyxGXykSJ1JBeLI4xnacwUa47vlSHqECbnpY6PmNyCtPf/1L29+vY\nN+qfK/+Cjz/3GQCpFiZpNqWOUoxzPedAz+VBfP+qmZGGKys9NzBNL0KpYGGyYKN+BUGUeh3GCaLU\nDbA65ntFtLkx0oZCpOWMcpn9PxyQzgsCtgmyrKEgKkrY59gZTdTlYaIS172ksdd0u5moYHEBeqkE\ne243AMCYmJSvEddKWLWQLc5jwQJrESaqurdr7ICoPpFloq6sTkB8tzk1DaNc3rImilIK0mrBnJxi\nu98eg5dEYSavLxaABn9QJgpsV+SYOsKIoHbn13Hyd35zyzu7RKnOAyAr9Pql9NqXEUSpwGacbU96\nfpcipNwSiPI8QNOg5xiIMorFS5785HHwe6fncqwd0JjGtcq2CB1Y+RWvhMnp/Ou55cOjK0fxxBrz\nchMLJg1Dyc4JgKk7OWgOu+7Dyt4vV5z5kz/C6df8fuZ3QZQgjAjKeQsTJRtBlMAPr4wmpxWl4MWL\nxzfHJs3RmCgSRTj9mt/Hub/4s6GfKe6tUSrz9w5monQnB93JDb3XIRGaKEupzhv/9Q+Xl3Dyd34D\nzQfv39L7/NhHLWBAtNUDRCX1Gqzpafl7c2pS+ZlVpIprpkpkhgWlFCEHUUgub9bgUmMHRPWJpNVk\nk56mXQUmij34RrkMc2qaifK2sIjSIACNY+jFEvRCsWc5e6djtcjxC8+YcoHpO2zLQBgn8E+fAg0C\nRCtbS7OlFgecieIPXNLHw6UVchAVXAYQpaTYtgqiNhtbYxCi9TXAMGBMTm2pGjFxXei5HDTO6Oj5\nPJAkA6uBRv5sDs6tPXsBjM+1XOreeIk/AEy88odg8Z3oOFOH2ymCJIQXe/BiHzGJM7oZ4dMmQRQX\nlqu/u5LR7zuFBrJUsDBZZM/8qCm9WlDH0dWnL/qY1rz0uXDHBKIoIRnQPoiJEvPBKJVjpIuJGlSd\n57Nn2LFHZqIs3ZJM1GUBUUtLACHwz57d0vve9Ojb8Cf3/RXCJELTDaGB6WWDiID4HojvS/sOADAV\nJqr8Ay8DABjlrafz4s2NdCNylTYdo8YOiOoTSasJs1y+KjqGpNUEDINVtE1Ps53tFqqpRPrHKBZh\nFAs9NVGdYnPJRPEJdKKYgqggTC7a6Vqk82R6ipfB9nowKKVyd3o5hOXRejpZeidHA1GUUnz0axX8\nwTvvx/3PjCZ0DNdWEZw7C3vvPli7drF+ciOmzojryvYSQMrgqTqbiw3BGFmzjA0cF7ghvg/NYcBv\n36t/DdM/8VNwjhyBURivMH67hdihA4xVUce0YI/pNgFR/Ww2RIqmlLfkM99oj5ZO+sqZb+J9z3wU\na+7FWZasuSkzPK50HnFdgBAJdgYxUeHy6MJl6fclQFSf6jxKKUvn5RgTNdSxnKfuVCYqTsafzhPP\nfqcH4bBY5feoHbXR9CIU8xZytokgjKUXoWCcgOxGKj9/K/vdRXReULMvNNwBUddcUEqRNJswymXo\nufzAsmQax6jf/W1Em5sIl5e37IFEogjNRx/J2AwkjSbMiQlomiYH6FZSemLRMkol6MUS02F09PTq\nBFZiAWi6EXRNQyHHHmjL0BEn9KKdrsVuwuDAQBsAovwkQMJbHlyWdB5vPaDn8wgXF7quSa94rLKG\nux5nAsezK6Md0/pnPgUax5j5qZ9murQkGdn4j3iuvFYA89cCgMS99J26uObmDNMYDAPmidseiX0j\nvi8nz/LLXoG5V/08NE0buzB+u0VdAVHtyM3ME+J5lZoox5H3dZz2EqNGpKSUVUDf5GLhct7CZJE9\nm/X2aIvWps8+sxldHEhWmahxpfMEi28fOMj+38F4h0uLuPDWtyDaWEe0BV2k1ETJdF4fEBUEAKXQ\nnBx0xxmezstoorjFwWVo+yLm4WQLRR5qD79W5KLpRigXLORsA36YSBsdFUQ5h1hF+cSP/Jhk0y8q\nnadKTeJ4y/YIVzJ2QFSPoAEDHUapNJCJIlGEhbe9FSsf+RAW3voWnHn9H2Px7W/b0nctvevtWHr3\nO1C/L3V2jptNOfBEz62tVOgJlskolfpO3PI1fGcl0nkNN0S5YEHnFRGWqSOKicJEbW0B6NREiTLw\nXpNLW9FIXJZ0HmeicjfexEpuR9gZLaynxzRKmoNEIVqPPwb74CGUX/FKGAVumDnCdaOEMECSv1xM\nFHcWn+YFBwPAjfvcMZz8rV9H/dt3Df9cz4Oez/X8m14sjp2JIlE0EgC+3FH10wW66TUyxySYH3HN\nNScnS76HiZ0vR8SKV5mqhRM6l1LBxkSRLeKjissbAZsTLpZFWr8M6bxYFOUcZCCqk4GrfvMbcJ99\nBvV778kwUcOYYrkB4fewXzqPSF8wB5rjDAUAvTRR4xKWP71+DP90/LMglMhxOAhE1dsh/uCd9+HB\nY+y6VIN0494K22j7Ecp5i2UnIiI3CqaSzsu/6Ltw5I1/gT2/8Ivyd1upzltpr+Jjz30abS97nNs5\npbcDonqEeBCNchl6PtdXgOs+8xTcY88yZmNpEQAzFxw13OPPof0Ua5Lpn2bpJRKGoIGfVjbIiXcL\nrUNaSjqPl5l2PjxiATX5giooU7HbEGGZOkAS+Zmd7MUnvvEC7nio/zl3VptpNmeielC0zVABUZcj\nnbe6Cr1YhMUrSZLWcIakrXijCIO5QZE0mgClcA4cYGwMZ95GoaSJ7wGUdqTzul2wLzaI70OzrFSj\nMIBVrH37WwCA6le/MsLnelII3xlGqTQSo7Ww3kY0YnuhU7/7mzj92j8c6bXjiAefXcY/fPYpJB0L\nbT1Ix2jbZQuKGFuicIIoZptCLzLOdiSjhgom1GdYWJqoTNSomqh6yOZJ/yJB1IafHpMXjSedJ3V/\nu2Zhzc3BP39Ojj1KKdpHjwIA3GeeRqj4EA1jZaXzfEmk8/qAKDV9O4B1F5EyUeMXlt+z8CDuW3wI\nq611eVzxgHTeE8+vYbMR4L23MduCVSXdutFugFIGtnO2gTghiPiYUpkoAHAOHZIsFIAtmQZ/68L9\neGDpEXz++G2Z32/nlN5QEDU/P6/Pz8+/e35+/oH5+flvzc/P39LnNXfMz8+/+vIc5pUNgZiNUhm6\nk+9y9RYRc1PMXT/3n5G7mV0WseiNEu2nn5I/h4sL/LsFgBMeG+XM70c6fj5Y9VKpbzpQpOWE0JsE\nAaKYwAtiKSoHGIgqJIpgVmEvLqy28PVHz+PTd/XXFxHPk3oZYLAmKsNEjTmdRylFtL4Ga3Yubacy\nwkPd8lMQtdkYBUQxlkGU+uoOu5aj7KSk0abKRBUEEzUaiEpaLax9+pM9tSA0CFjVEE+9DUo1iPGh\n82vVL2gcg0aRtLDoDKNYBJJkoA5oYb2NN3zgIXzu7lMDvwtI2bqLsf24mEgIwXu/eAxPvLDeZURZ\nVdN5bfazvZ8ZjIpK0Ew6jzchjq8GE6WCKK+biSoXUk3UKEwUoQTNkD0/Fwui2lF6HONK54nUsVEs\nwTl8BKTVkucenDsrf/bPnIZ/MnVKHzYXSBAlmfvebFF6v5kmChgMACSIMhSLg2Q8IEpo9mp+QxrA\nqvYbnWEaWTigplurHpuPS3lL9lQNNtmaYkxOY1Do+TxgGCMx0rbBNvDtjvn/Wmei/hOAXKVS+SEA\nfwzgb3u85i8BzIzzwK5miLYrBheWA73FoGLRs2Zncfi1r0d+/lbWn2xEEbEYVHouh+DCBVZZorBg\n6r9bySdLTVSxJCfuTm2ASC+lTFQoK/PEZAowTVRRmeBUTdTdTy4OPRbieVLXA6QgqtcCni159uUE\n0/NzowjNxx4Z+VrTOJIpWrEzGsW3pO2xCe3AXBG1VgAyhFERxpKC9tdtwUQNX5jEPVGZKAGoRk2j\n1u/+FqpfvQPn3/RXXX8T2qWUDex/TGoPv0Eh01W53um8UTxinj29CUqZ/mwYY6WyOFfCb+npUyn4\n6OwhqQrL/Ta/75OT0EullInyfWi2Dc0wUsuHqwCios0UdKpjSfTNK+W3Vp3XDNugYNffSy4ORPmx\nh2mHbfLGJSwX7KpeKEh9zvm/+R9YfMc/yE2rc+QGoGPsDGvI3VWdNwITpYkNlN8fAEQ8nWdlLA7G\nk86r8XRz1a+ner0k6cu6NRUzTS+IM8L/msee33LBgmNzZ3UuMVFtDXqFpmnMqmWENUw4uJsJuz8a\nB6LbGUSZI7zmRwB8BQAqlcqD8/PzL1P/OD8//yoABMAdo3zh9HQBJm8ncjljbq580e+lGls4p/bP\nob65hhaAqYKBXMdnuvx1u/bPYWKujPWpCXgApgu6LO8eFGshG8zT3/8SbDzwEEpBA5bBPnNi7yzm\n5spwg324AMCK/JHPqckfwtmDuxEWLawCcGIv8/4mf3gnD+5FHUDeBHyH7QL27CrK15aKDorKJGnG\nIebmykgSggePMbsDXdf6HtupwIM9PS3/3mpO4zwAx6Bd76Eb7NzzVg5e5MMuU8wVe3/uyte/gaV3\nvQu3vu6PsOuVrxh6TSK++OYnSpjaN4s1AAUtHnpNw5jANHQc2TeBhbU27JyN6YnegAEACGXXderA\nbszNlRHtmsQ6gJKjY3bId9V5dqE8OyWPy9g7g2UAeT0Z6f77eS5OXVlBKW4jv2+v/NvJMIA9uwsz\nu6ewAHbP+33mOZ9vEEx94Pf6hAHswmS55+uKs9NoAJiwgZLy99h14Z47j4lb53F6mU2u63UfPgEO\n7+3/fc3NVAy8a9KBwUH55YpHv5y2rMkXnMw5tpMUGNKEXYfiVBnxnj3wzp/H7GwJ5+MQZj6Hubky\nQusAzgIwfLfvNV2vebj3yUX87I/eBF0fn1PzhWbKRJcsil38+0PCFqsjh6YxVXJgGhrcIDvWeh1r\nq5p+nmaTi5pv/STAgYm9aMdtRAgvac4W4YLPyQd3I54uYuPzQLy+jtb6Opw8AzW3/L+/gBfe9nbQ\nhMCaKMM9dx5li2B6wPevc7H33JG9OA/A0rrnLwDYPMvuWXnXJEKdogFgsmhkxr4amsmu//7dM4hs\n9szZeeOSr0UYh2jH7PNqXgNTCjCbtAjyPT4/oel4awQJakl6jwP4AArYO1dGLPAnJxv23nwQujkY\nSlyYmkRYrQ4/r5Nso2LwzL49WUaw6mOyYGJiDOPjcsQoIGoCgLp1Subn581KpRLPz89/L4D/C8Cr\nALxhlC+sXoEu4XNzZaytXXw6qLrIBMgutRBpDPCtL6zD0bMpi+YaQ+KNEAjWmogN9pCunl+FPTf8\ne7yNGrMyOHIL8MBDWHryGMAntUB3sLbWRBIxsrC1tjHyObXW2e65EWlIwCtuFlfgKO9vrbMHJLRZ\nuqa52cDSAhcKapDflSQJiolCu1frWFtrotEO5S6WEIrFpTrTTylBKUXcdmHu3is/L2yzp6Nda3ad\nzwqn2vfm9+B0dBZnl1fY6tsjqucZ4tg4dR7kpu8eek1EeiXSDLQTdk9ryxvQe1zTxfU2opjgyN4y\nqk0fxZyJos0elRfObODGfRN9v6e2wCoAXdhYW2vCjdj9rK3VQIfcv9YSO0afGvLauBGb2JrrtZHu\nf3M1ZU7O3vEN7PqZ/wiAV5x6Hohpo95mC0271ur5mZQQBOuMyvf5/e4XwRJ7XQij63Vzc2WEvOJo\n/fwKvIn0oTj3138B/9RJHPrTP8czJ9Md77cePYeffOWR/ud36rz8efXcapceY9xxQanIXF5rYLaU\n6gXX2ptwDBtBEqLB0+U+0aFNToGcPInlkwuI2i40mz3LlGiApsEd8Cx/+q4TuOOhc5gr2/iuQ+M7\nN39NYRWWN0H492/w+dhvB1j3I5TyFjYbnjy+fnPp2Y1UT7TZaGx5vk1IgiAJYcJG3sih4fcei1uN\n5hqf+0LAmNyd+Vvt2WOApiHccxg3vOnv2O++9U24H/sINhfXER/q//1+g1uv8PnYb7k9j7e5wtYE\nLwZiwp7djaVNeOXeC0KLp9lqmx5aLbYBq7fal3wtVD1T1a9jTz39vLWzS8jb3YBkZT3dFDxVWcUS\nSS1hNlsNADPQCQHhbcDCzSqMchkbIzStprkC4tYFrK7UM3qpzqgLmQlnopBjTPjmShXB7PiLjUaN\nQeBvlHReA4D6CXqlUhFJ218AcADANwH8IoDfm5+f/4mLO8ztE0RJqwjBbM90npdNeUj9yoipl4RX\n4YlKknBxUaaDBG2sFwqArm9JE0UUiwNBtQpPD/maDk0UDUPUWz3SeaaeAVEiFeB1uBqL/1NKpeCW\nBgFASKbaTAqtg246XGii9pcYe6KmS7rOUeT4R7UOkI1gc6nQsU+O/vXvfwh//uFHQChFm3ujTJfZ\ncQ8Tlwu9ixARp+m8EfRUPKWg6pAMKSwfcUwpaTM1bUPjiN2LXA4ar5Dsl86Lq5tSAzhUKyI1IL3B\nbpo6zYrYhdnpytkltP0Y33fzLmgAnjox2CIk2kj/fiWsAkSPMADwg/TnMAnRDFs4WOIaKI+nkRxH\nceXfkB5aAJjlQ7mMuFHv63hdEwvpGNuvkCDIzEmd6byCY0o9TN4x4YfDBf5q9ezFpOLEe/JmDnkz\nP9JnuJGHTxz/LBph/7lQPENGoQhjclIK/QEmaTAmJ2VfO2D0liQk8NmGl68H/Xyi0kKCfCpdUJ59\nEgSZeSdMIli6BV3Tx2q2qc6dNb+RWb/6eWc1FEfy86st+LGPssWuj8tZrULOlOk80mxk2rwMCqNU\nGqkiOoi5HxcnE+T8sY3TeaOAqPsA/BQAzM/P/yAAaVFbqVReU6lUXlmpVP4XAB8G8HeVSmV4Oc82\nD7WiRmqigm60LUTWAiQIwfLIIKrFvKhMIThtNro0UZquswqnrWii2i3AMBhgKE8ww8N6reM1beao\nzXUaJAyw2WDnPTORpkiYJkrpSs7Bl7qgACyHDgBPrD2N1933l3hw6VEpZsxqosQC3ksTxa7bjRNM\ny6DuprrOkV/juI/zeWek7TeckatFltbbcP0YpZwpr4m4Rn2PixcbiOs6yBer673tVMsmQgDzZAvC\nchFUMfqjfipwFvegn05L+Gl1fl6vEJ8hdFadIQDhqZNLWNnsfi6qNfa7771xBjfsm8ALF+pw/f6a\nkKxAeusgKlhckODxg19+Dn/+oUcGvt6P0nEeKD8vtJZBQXGofAB5M4dIWHk4DkwBolaWmCawlN5P\nY2IS0coKTvzqr6D5aPd3C12i+BdgY871L35hlXYm4llXrpvomyfC4ea6apAoxPrnP4tQcfxvhOlC\nfDHC8k4Q5cbeUI3bF05+GfcuPoQPPvPxvq9JCyJYw/PDf/pn2P1//z/y79ZMtg+bfL6GeJkRXpSh\n6To00xyqidIcJ332FU3U8gffh7P//Y3yXEMSSjG1NUZhuQqi6n4jU2HeuZZEMcGJhToayphr+xGC\nJETZLsHUDASEnVfONpCzDaYpC4KhmkkRUts7hAwIEg6i+BAUz87VapU0SowCov4FgD8/P38/gLcC\n+N35+fnfm5+f/9nLe2hXLzL9rgYJyz0XmmnKnb0uRcCDH0jRzFdMsKkNQbOrOk/8vLXqvDaMUomV\n2BsG2/12CcvbMAqFlCkJAqxzgLBL0fyw6jwvPQ4OXjr7awkQ9eTaMwCAz7xwW1fLFwCZ7+sMUaFz\nZOIQAGDZXe16jQjx2SODKNkINqfsPgffp2NnqqAAinkLM2V2TUZloiSTuAUQlVYWpUyUtDgYGZir\njbOVHbAqeLU4kO2zELjPHZM/0zAc3CdMqT7rFeJaP/LEGbz2vQ+yz1QqXUN+vKW8hZfcvAuEUjxz\nure7NgDEG8NB1Iq7lrEfkN+1uoqzb3w9ql9j+7x7n1rC2ZWmHLu9IsNEhYm8FgstVlRxoLQfJauI\nhG+yNCcnHeG9U6zaUPXRERsmAPI41BALWa3l4YunvopNr4Y/eOf9+P133Nf3GIeFYG07TVYppWi5\nzPtHRM42EMYkY+ew+aXbsXn7F7Hy4Q+mxxleIhPF55S8mUPeyoFQIt27+0XMzR8Hbq7abWi2DZ2P\ncaNQgL3/gPy71dHMVozPQawmJQTR+rpMHWuWNbw6r4/FQXD+fKalSZhEsHV2rOYYheU1xcOs6tVB\nPKXCuoOJuvOxC/jrjz6Gs8tNTJbYsfhRjCAJkDMdFK0CQsreb1sGHMuATSNooCNXoxsj2nv4HESJ\ndJ7YhPXadG+XGAqiKpUKqVQqr65UKv+6Uqn8UKVSOV6pVP6uUqnc1vG6P6tUKu++fId65UIsPnrO\ngZHr79OTuC70PNvxAGlab9iCt/LhD+DU7/02e0+pnEnZJR3pPPEzcd2RDQaTVivDZpiTU11gg7Rd\n6MViulsKQ4WJyoKovKgg2b0bNAjwvqMfxnKb5ctFuavHd8q7Cyz378U+YjfL1AFgVLph9AQVQRLA\n1i3sKczB0HSsuv17Wol2MqNWOglWRreddPfZaqEdufjIsU/2TB0+e4Yt2MW8JXfr7QEsCTueBksD\nW+z1AmCPls7rthXQB4y/3p/RStN1ChMlftacXGp42oOJcp87hs07vgRzehqFF38P+8wBfloCDIvP\n7Axx7x0+hoTVhIiYn3MhZ+H7bmEL3JMn+i+SakcAsfBVmwHe9pmnsFFn/Q3/+4Nvxuvu+8uu98Yb\n6wClCDucqlf7aDoopRkQpZ07uPpMogAAIABJREFUiRO/+ivwXngBF1rsMw6W93EQlZosinSeKKFX\nq5cEGwQA9t5U9C9CtGE5FRzDV87cib97/F0AGAt2YiEdoyQIsPHFL4zEUAqwKQCEeI8XJEgIzVia\n5Lj2LwhTENV+8ij/nPS71HSe36M6L240EG32B8PCFypv5JA32HwzzOagYLFnYZAxJ3HbmepWIAuc\nzE4mqsjn7AGsdLSxDhr4cA6xzZ1m2yP6RAkrESWVxudhsSnOMlHs33gMjuW1sDOd5wGGwb87C2TU\nTgwzZQeGriGIIhBK4BgOilYREbIgyuGV06OCKFGZOszew48DlKwiDA6ixDp2rTNR33EhF9xhTFS7\no8/ZiG0d2s8+m7ZDKZdle4yk1cz0zROR2uYPL8mnhIC4bobNMCanQANfngOllDNRxYzlwEbdZyWs\nVlo9aZk6LBKBarrciVUWn8FXVj8LAFIr5PHFRpSoAsDSOjPh7KR8dcfp2/bFMR0YuoHdpVkst1f7\nUvzCCX1Uzx0BjLWcA80woBcKSNpt3H7qq3ho+TG8/+mPdr3nGV7eXsql12SYXiRpNjILZbobHcHi\noAcTpek69Hx+dE1Us8VazSC7A84wUX00UZQQrH6CpUr2/epvpI2KB4w7sUPU+jBR4vwtrvNYq/sI\nlSbWgrUt5Ewc3lPG7GQODzy7gjsfu5D5nODCeVBCss7b/Dl78uQ6jp5YxxMvrA1cgJI+OrqlzTbc\n5ys48du/joD7tQGsMpMi3SgYy+yY/PNncaG5CF3Tsa+wB3kzD5PbH7B03i55zECWiVKBSOc8QSmV\n9gJCY1gNUmuCrz18Tv688cUvYOML/4Ll97+n7/l2fqdIZYmx1OIl7aUOJgpImea41UKwwM5bU6qq\nhX6xbJd6MlFL73lnT5sNEcIWgTFRHBxFg0GUzQt3BjE1SdvNbCAB3vVBdGDoYqKGdxQI+X10DjIQ\npVs2aF8mqn+vROL7cm0RQCbimigAY7E4oHEMSqlkovYU5tDwGqBBAIvPC53nurSRbpLKBRuOZcCP\nhZO6jaJVQKKFAAgcS0fONuAQAaJGTOeNaBodJiFKdgkmx/DXiybqOy5IEACaxmjhPiCKUtrV56yX\nsLzTVyhx3Yw+SQwSo1xmTJTSN0++ZsR8MsA7k1MqF1Ig3QnHamf5JGEpP86YJEGAjUaQSeUBzIDN\nJjFg2fL8nJCglbCHQYIonhIJFBC1ssEmn87diu44PZmZIA7hGOzzDpT3wo29jHeUGmIhSBqNkbyi\niAKMAbbDSdotEO51s8JZLzWNIe5dMW/KxaVTL6IGTRIkrVamk/mg9GX9vntQ+9Y30+/roYkC2PUb\nhXGgSQLiuTAnJqHZdmbMqmk3qevouAfNRx5GuLiAiR/618jfdHOXdqx+3z1Y+/QnM8B2WDpP6K8s\nysbH6cUGIgVEgT8rBceErmn4rVd9H8oFC5+66wTihN2L9rFncfbP/hTLH3p/ZhctwIFgQZtulAHx\nnYuyeC47d+Irmx68ynGQdlsK3oH0XosUh+a2+PVoY6G9hL2F3bAMC7Zhw+J137qTY2nyQgHgY8lQ\nKgjt3Xvkz53PsxvESLigNvS7Nw9PndyQ10RcdzX12i/EhkOAO8HiCrfyjCZKjHOu/6odfVKeR6Sk\nUr3YR85wUDALPUFUuLiAeGOj78Yv1UTlUTDzmd/1i2hIY15KSNecDDD2WxTQdDFROdYke1BqPzjP\nQZRkoqy+Ke6M9lKwL5x9UgXdYgyGJJJM1KWabRLfxwuv/m9Y/eiHUQsbMDUD+4p7JcA3OJhXi3oI\npVhWtIoTBRuObcjnyDFsFC2+qTMjlsqzDMks63384TpjVLd+PwmQMxzYvLJRSi92QNTVjQeeXcbj\nz/dPDXUGM8hji01fEMX7d2WMETuYqGdObeCX33QX3vTxx7HKS4lFexj5HsVUk7gu4lpVMk8izC0Y\nbvpnTgMAcjfcmL6/YwBL3VWpxBZU20bsB4gT0gWiLFOHTWNQy5Z94HIhBQGbZGc4iHIliFI62YuK\npQ4Qpdm9maiAP0AAsH+CLTYrfVJ6YiEAISM1uO1c7PViEaTVQtHIpgjCqBuQFVWX3mgA09FiLV/U\nVGyaLs2eL/F9rHzoA1j92EckCEzabebu3uG5oucL6fkOiMRts+8vlhhQVUGUwkQBLCXRqetoPvow\nAGDmf/sZAIpehC+EKx/6AKpfvQPe8dQ7SYDDfsJyrYOJOr3UQLiWgijKBa9F3vD64FwJL7llFlFM\nsMLTbKKVUvOB+wEADh/b4jkTY6/pRZnxt+Zl04JSR9doZIDgyqYrHf3V/l6CjREmlAJEtRobCJMQ\nB0r7APC+Z5EwB+Tnq6aQFCZq13/8Oez95f+P6Qs7FhTV5NKLlUVa4yXlMcHCGq+qVXq4ETqk75vK\netu2BFXSrbwnE8XGub+aPn9JvSYb7/qxj5yZQ850pI6FUopP33UCTz2/LOeYaK23rtFXhOVCE9T0\nPdzz5GJGVA8ArSePYuHtf4+4nc5/vc6ZeLxtUg+XfZFiFf+GUYK3/PMTeKSyxlnp/mxr0MFEaZbd\nv3eefM7yXX1PVcPjuNFEQhIQSuT565oOXdNBPX/LjewBwH3+OACgfve34cc+8mYek84EbD42hR6v\n1WhjrcatFZpBZs6joKw3HmH3lKXzePN4DqJytgGbM1EjC8tHSOc9WllGQhPYug2LiubFPJ13LWui\nrod43xeP4e2fe3pkh2MS+NBzfLHtY3EgqkAGMVFPnFgHBVA5X8M9TzENRbiU1WOYpawzOY1juWsS\nIf4Wj9CB2z8tQNRN6XF1UNYCjEnxs+0g5sLDXZMdIMpg6Txi2ZL6dhS9xPREfyaK8s/spHxZOq8j\nlUQpgiSEwyn7/WWWSlrpIy5X01ujpPSoIvgE2MNJ4xhJB5hrnTiBXWENE8ruvJSzoOsabFMfmM5T\nGz+L6Ccsb3GdCZC25EnarUwqT34GT+cNG7/S2qJcgu7k5Hfedu9pPPwkSwWpIKpzISDtNqBpsizc\nKPVuj7PxpS+m7+Gf0ZeJ4uDK4mm2M8tNxOspuNG5ILuQS4HjwVn2vQtr/HwK2WuSv+VF7LsFiJJM\nVJgZf2rbCkAZ/80moijd7S9vupKlVTcqvmSi2DkYPru/zTo7/sMTzJrENmxYQgjLz1dU6AFZEKU7\nDiZe+UMwpya7GLGmUmLuR+l40RwX33MDmxNOLrKxro6nN9z9V/jbx96B5XafZ4UDcD2fz6SGhYhd\nTed1pq0j3l5HtLMRgMBLGIjKGznEJEZEYjTaIe546Bw++MmH5eeFfUCU2LTkzBwczsS8/QtH8aE7\njuPbR7MbzY3Pfxbto0/ghtselb/rZXOQyDm5+xnKv+i7mOXBbja2z640cexMFfc/swyzPNG37N+t\nHId38iT0UkkyObpts010j+dRVMFqjsPmV12Xz3fcSDMQSbMhmw9bhtKrVDfx4595Fqdf8/sSsI4a\n7rGUlWQg10HRzMOOhV1AGdA0nF/YwB+9+wG0/QhLG9nUXr0VwrF0eWyOYSNnsjGtGQksU2eaKMFE\njVFY/s4vsjkxjnRYnInSJRM1PsuPccd1D6IISQd654Dp+x4/kItNykRlmYCeLTr4wysmqTNL6YO+\nuM4e8EFMlAh73/7sa/gAHKVfmH/6FKDrcA4fTt/PQcza8ibTQ0kmipfh27aclGd6MFEWiUHMNLUp\ndjYAlVVrwvJA+HwAKojqnc5TJ6GQRKCgcPgDO5Nn56w2JRZBojAjsu/1YDYffwxnXv9aOYGl6Ty+\nIPKHM1YWzTAOUXv32/CTqw/gxTem6dA8X+BztjGQiRI7/oyQnqdLO9N5zUcekj9Hq4yZIe12TxBl\nFAoApRmBaq8QAnC9WILmOPKcv/n4BZw4xRYzkc7ULbubHfNcppnSs7tA2Z6Ij2/v+HOS8RwmLBfn\nL5iolhdJew3oOozAZ2NM0dsc2M2+9wJnXTo3MBJEeR1MVDvMMlFuJxOVspd+IwWGK1WFiVLST+Je\nCybK5C7ufou99kiZMROObqdtKmx+vrMKiOrRFsMoT4D4fkaXpjJRaqWalmvjpS9iBRsnubhcvSb6\nRhWn6mfxsec+1fU97LzTnoxGvpBu8p5n1+fg7hT0C2G5YOFCfl3Epize2MC3jy7AjXwmCjf58x/7\nCLgJY0nxlVPtMtTIMFF846Tp7HqrYBJIW1NNndvAbJX9rep3b5xID581Ebt+7j/jpje/VT7/IoW1\ntNGGOT0D0mp1aQSTVgsX3vImJPUaCvO3SomFZlmsxD9hTNInjn8WT6wy5x8SMAG3blnQdJ0V9fRg\nopJmM9N8WISlWyg22XFstT+k+yyrjDYmJuAlAQOopiPnaz2fB2ybyTMAfPLOE1IP9ZM/eBi7Jhz8\n7z9+ExzLQMzHn2PYcDhTZjkEmqbBUTVRfRqPdwarCrb6glVCqbz/OrVgCYsDUZ23k867euEq5cvP\nX6gNeGUaNPDTxSbXm0lIDTkVEbDjsCq7dhtxQnB+tYkje8rIO6Z8aDtBlPSYKvUHUeL/4eLgXnU0\nSRCcPwfnwIEMMyCA3pfveg5Pn9pUmCg2eTJQwx7crnSeAdg0RmJaaapC+P5bgdREiessdjAAAL4r\n69Io2DYDBXE6WYrFT2iiStxJ3Y26gW9naivu8MCilGLpnf+AcHkJrad4ZZHcIfL7yr2rhEkiAGw0\nlkE9F+W4jZxl4JaDbPETKUvHNgYyUZ0pMwAyXdo5QbvHnpU/R6uroHHMetv1YqIGFDeoIe9rqQQ9\nx5ioOEnQdCNoUZaJY0xUdrFKPC9rR1Hgu8BWS+pNRFTv/Dr72xBhuabrIKYlNVFeEMuiBqNQhBn5\nKDjZ9OXBOfa9gonq3MAIEJXwcSAqJptehCDuz0SpWkVf6SXnBYnsA6aybkITJVhJK2Dvj1pNaNBw\nqMyeS9uwpa+NBI0zs/K69FpoVFsTESKNZehaapQDQM+38aKDkyg4Jk4s1EEozVyT2Sq7tueaCz2N\nGhOvk4nysLzp4uiJddy8fyLjwN+p/Qv5dcrdyFKo/toaPnHncVAQ7vGUAyhF8/QJBAHXWCnVc9Fa\n73S8qokSIAp8Ee20T1GfnYkWA2rVoHsuT3pkB0RompZxyhYVmes1H7po0l7NVhPGjTpAKUovewX2\n/fKr089SCjM2vCruXXwI9y4w+w7iB3LtAABzegpxrcaKIhoqiGpkmg/L1+vpsxAPSek1H30YZ974\neiTNJuJaVa4tJAwRJiFyhgPHsGGLoodcDtS05bP4xAtrWOLr0itu3YM3/9oP44a9E3AsA1Rnr3EM\nR25sLYvN+4yJ2lp1nqZpMCYm+lZTL623Ad7yjCaGFJbr0idqPL0VL0dc/yBKKUl/4fxwEEUp5cZq\nPJ3XRxjc64HVNA16oQDiuVhYayNOKG7cV8b+XQWsVj3ECUG4sgyjVEbpB/4VgHTHamaYqH2Z77J3\n74ZmmrJKpjNIFMJ97hjc48+BhiFyN96U+btMw5EIyxtthYnihp6OAy0W1H52QbNoAg1AYlrymphS\nROv1FJaLiUATVhGd6Tx5TdPJ0ecMVk6CKPaeXuXMcmct0pwd9g2qZidaZu0piFKCzo6dTXSJshit\nr7PrW0gC2JaBP/gvL8Ubf/Hl2LeLXz9rsJszURarzPk6Tmb80DgGDUO54IarK2nD3x4gSjYMHrIb\nk2adJaaJQpKg2fRAkTJBAuzojt2lMyCul7lXRjE1+iRBAFCK4ve9BPbefWg+/BDiRmOosBwAm7j5\n9/thwu01mPjaioNMKg9goKWUt6T+R61oM2d2sabahiHHQUZYTlQQ1YeJAhCoDv6UgnToBQHAD2KA\nUuQckwlqea9LeD72FffIxc82LFmSrZlcJCye68nerVtktZIQGK+tIj5RASjFnpmC3JUDLJ1XLth4\n8Q3TWKv5+NjXns8A6pkGd5enCRZbWbkAO+/Ur01zHNA4xv1PsSrE//DyQ5nXCmG5MBmNajUYpbJM\n8S6fXkQIXrml28iZOXzX2QCtN/9P+F/7EgCgFKdgtZ8myuvBRAkQ5XWafSrnKgBBL0uSXj5r/UJs\naikAL8fnkQ5LBlnVODub0SkK+xIahXKMNSMB+P3MJsqcnAaSBEm7lZmnkmYzTecpTJQKokQT636x\n9O53Ily4gPr99yJUGD/q+9AI5anSLBNFTEs+i20/ZuAFwNxUOmc5lgGNg3jHsKXEwrSJ/LtM542o\niQKYNjfp0COKOLnYgMZBFIkNmAlANIBwZnSHibqKkWGizo+gnQlDgNK0VYNpQjPNHpqo7nQewCjz\nxHVxeolNjjfsm8C+2SISQrFa9ZA0WzAmJ7HvV34VN7/tHWl1nuof08FEaaYJa89ehEuLPSvRmg8+\ngAt/+zdYeOtbAAATP/yjmb+LhTFHQjTcSKYsUk2UDT2OAErlJCrC4pUiiWHLxdySqQtPpv8kiOI+\nH7qmQw96581ld3PVhE6pBgEGM1GCgRAmep209+ZXvpx+7vlzme+SDCNf9GMFRNU2GeCyaAIbCWzL\nwBGlGW7OZm7O/bRJvZgodr5OJnUmXuccZj3iotWVvpV56rEOBVGt9DPEMdQ32e8EhS+ZKMtmYI6P\nJ8rZjQwTpTBg6ngvvfwVAGc9BRDW+wjLAYCYptz9+kGU2msUCnCSAAUnO+Y0TcPBuSLWah7qrSBT\nmegcOMA2K/l8qokK0lSh8B8CgA0vuygmCpMWKQtaIfFlBZq4hnGtivxH/x4/s3IPcpaBoknl4mOH\niTSEBRiTYHLZgFhghbC8X28/sWkS6Y2Vf/wQjnzto/iv52/HwZkcoCtsjBGjXLDwCz9xKw7MFfGt\nJxYy6UgnpJjJMc3UuWZq0SBCBfci7bq8zDaUtx7O6i+lsJyn58NqFcbkpKxqq15YhmawjalGLeTM\nHA6s8h6aD34bQEc6ry+ISs02RbpILNx+h/kpzYAo3ouyRzovkW7lw0GU6p7fMNj82DmP9H2eBYgK\nI6xztlNotJieNn29qMxMarU0nWcYiBsqE5WCKDW1F28MEZfz9GJSq8mUofyciCJn5DgTxcdmLo9Y\nZ8+iqDg9vdRE3jEzGxnbMuT4cwxHCt8NTg/Zlq6k80arzgPYGkfjuKddy8mFugTRUajBJEBsaAgR\n92Tyt1Nc9yCqrbRL2Gz4XZYDndEzJZPLZYwLgRREGZ0sS4FpDsRO5+BcCfs5k7G00QYNA+iODc00\nMwLIQBnEveho58AB0CDo+WCp5oH5+VuRv/mWrmMCgFwSoOGG3UyUEMPSBLaZXdBM/rDEhiWviahE\n0h3WnNfQNelrw8ThjEY2ghjQtK4HraeTb5JlogpWHho02YlcDfEQOgcEiGKLZfVrX8Xiu98B99ln\nUPju74E1Nwf//DlQSjNtT9i/op1Pel+9Wrrzy/dgwBzbAKFUlpl3HRcHZJ3pG72jGlG8ztq9G5qT\nQ7i62tNoU76/T7/BJ15Yw4XVdDEV2ipzZkaeX7PKFmlRTSNBJF9M67U2wihJ+xwqxy6vkQKijEJB\nVoYl7dbQdB4AJAbb/eZsAyaJgSSBXihAyxdgUoKS1T0NvfzW3aAA/ukbL8jrZR84iIkf/hF2HHyz\nAiDTEqWhgGI37v3MAtlyc3XRT1pNUEJw4W/fDGt1Ed/TOgPHNjCJ9No7IWv3Iv+vs3Qe1SANDe09\nexhIPJRqE9XoZKKEdmhPWMWRApGAAgBMK4Fp6CjlLfzgi1nVaqiktO2I4pYplm4717gAQklGeC1B\nlNLPrbrJFs+yUkABADmlCpWEIZK2C3NyUoK+drUu0y6ILeQNB26Oa4X4sySYKHPXLsTVKvwzZ7rO\n34t9WLoJUzd7MFEd6TzlGXX43NNLWC7mAXNIPzdC2YZWmMg8tc4X780NbNx+G06/9g8RbW6mDF6n\nHEFx/Bcp41bYBqGEM1FK2yxeJBRVq4gbDWiWBWvXLJJmQ/pBqcApRxUmakg6Lylztn5tCQnXrolN\nkBNR5E0ny0Tlcgg1ExaJccsBdo2CKMGuieyz69gdTBRP55kWm/dMQ0eO8uq8EX2igMFeUWeWm3Jc\nRYEOI6FIdGZ7o+dyF9Xi6UrFdQ+i1AmWorvnW2ektv2KpiiXy7TQABjNDWQZJCDVF4ndVN4xsG8X\nG2iLa03QOO5ZDr6eDLYvEKyLagYogsaJPJa5/+O/dP1dgDKHRGi0wx6aqNTLx+5Y0EzORMW6lVZa\n8XSemQ+haRryjglPCMuTgFPADswgzgiVRfRqytupidJ1HXkz19OATzow797LdnWbrGHu2qc+gdaj\njwCahrmf/z/hHD4C0mohrlZBAl+yioDSCFm1AVCcuXNxN+uTG2K4OWo6T20NYe/ejWh1JWWRSt1M\nVC+bhPWah3/47NN4wwfTSijvxAlojgPnwEFofPw265yJomLnyCttOIj6yw/cj0/ddUICFbXPoeY4\ngKaBBr5kcfR8IfVuabUYc6tpcnfeKxKDaaImizZyPA1gFIogDvuuSSPues+Pf/8B3HJgEo8cX4XL\nz+Hwn7wB5Ze9gh0HT5sD2Y2SCqIiEiEh6b1SJ2LR49A29YyGh7guwuUlqS+JNFbSPYH02jsRxf5C\n6vck03mGIcXHei6PG//qTZh91c/3vCZSE9UQz326uZvNQwIKANCt9Oc907wC2PPkWLZigiPlQ7B0\nE2ca5/CRY5/En9z3V9j0q/K8xXMoGPZ6tYm9M/mMHx0A5JxUWC6YE3NySpoOU9+HbnJ2OjYYC6c+\nDpRKEDX9sz8HaBou/O2bupgSYZEgrh+QCss752g1CzBJ2fjtBaJCnroXJrH9otYMEMYEN3Mg8ewG\nAwcbn/8cNj7/OURrawjOnU2tIXKdFi3C8T+SIIqCounV2QbBUYySJ1UmqgZjYoJ5ArZaCLlOUdVE\nFeL0frRXl/DRY59C1e8tQ/HA7oN7/qwsjBDrhBMSns6zM+m8AAYMUNy8J92sdRYTOZYux59jODDB\nxoRuppvHPN2aJgpILRY+9ejHsaJUkkYxweJ6G7tn2DgIAg16QpEYGkISwiiWZNHAdozrHkQJ0akY\nmm4wuGxUsgmKOJCVi2d3tQsvsDTRhShblSR2epFI2VgGdk+zgVZdZwi8FwW6Mqnj/G4Lj/z4oa6/\nASnrEvbQRQka+/Dr/jTjDyXPiYOWHAnRFEyUYcg0nwA1NokZlauEwdNskWFKsFXguyWDT+55x4AX\nxLL/lQRRYdLT0bZXU16hiRK7HgAoWAW0BwjLjWIB5vQ0os1NueiZ0zM48Nu/C+fQIckCBOfPgQRB\nBrymBQMhphy+c1UeVKcHeOsU3UZra2gdfSI9rj5MlGZnU2dqb0bnyA2gYYjmww/yc+rPRKmLyaOV\nVLArHOjDxQXkbryJObLz8dtusLEhUlHi92IhiP0AF1ZbMkWqToqapjE7io50ni5NONv8utpdi7Ea\nsWHBogkmCxZyfDzpxQKIzY6lpHU/k7qm4SW8DUzsugygKEBNz+dBwxBhEGaYwRZ/TsXuXq3WS7y0\n9QXhDNBE0UYpUcYYpfAqFflfiybI6RQTyLKA+wzFQJOn80gHi2uUyzK91xmSzWuIarv0OAtaLBcx\nGpvQFZQi5hIa+NKHiLEOOcxP34LF9jIeWXkChBKcqp2R5y2fdcHExhH2zPRgvK10jIuCDWNyErpl\ngerMH+iG/Tz9FeqMdVYsT4qJj1Liwddt6C99BWZf9fMgnofGQw9mvseNPWmyOYiJYmnmtOAin+go\nmHnU+4AozXG6LGI6Q4jK5w9P4WW37kbT7H7mkna7/6Yoo4lK2aJmk/2sKRtwkc4NV1cQV6uw5naz\njTchCF12DqrFQV4BUe7aMh5cfhSvv/+vu4xI25ELizvO6xt1hJyFFlIQJ6RcWO6kRrC5PDzK7u/+\nyfQ7O4uJHMuQrJBj2tApe62usKMOzcoDRglrjm08motn8baj75O/X1hvISEU01NsXfE8wEgIYoM9\nv3qhgMRtj2xRdKXjugdRQnQq/I+GdUOnPYSynUwCAITr6yDQcCHIimIFQEi8tOt1MccGYSQeyh5M\n1Eq4ic/9+2k8fWPvSdeaZSXOUY+yVyGo1Hv4owBAtR0h0Ew4JESjHSFpNmWDYiB96C0SZVq+AIDB\nK+gizQKx2LkWiNiZcBBlm3CDWHG5dZjrbJj03Kn0TudlNVEAUDQLcHuk81RWxJqeQdKoy2avMz/9\nMyh+7/ex8+Fi2HhzM+P9xY6Bp7WiGNMcRGltNUXSO50HpKLb06/9Qyy+/e/lLls0+TTyg9OXasp4\n6t/+OwBA82FmedBptAr0Zu4eOZ4aVjbaoXTazt9yS+Y7/SZPfZIIFCl4Euk8kyaot0NFfNyRusjl\nsum8fCG1Pmg2WRHGAD0UAMQaGy/TeV0KUo1CETEHUUWkIMp97hg2br8N7WefkT3diOcxJkUBauL8\n2o3s+Ghz36lJh4EUL06NIInnyeeIcuPGyaItmSghBncrrDBBHJ8dByjyLvbcvga2wpY4vDqPGqNP\np7JFFJ8T1HubIzE0I4FOTdDEzOijBBOlhwH0YhHUNGBFFLZh4+e/6+ek5QAA2d+PKFWXahuevdPd\nIEo12xRCaJEeiwwLDolw82H2vjDQmY9QqLBoYRXlxEPTzKPtRZj84R8FdB3rn/4kTr72NXCfO4aE\nJGhHLsp2SV4/AICRoJS3JKvNrgvTqKqAccKZQDPIgihKCKLVFdh79g4E9ADTzgEMQP/af/pezL8o\nZa5kw+92O1PVqIZ4hpIwwIYKolpsHsgIy7k9g3CWt/fshVnOOpln0nkKiLIaLrNSAPD46pOZY6is\nHZepTQ1Am9sbiH6MTpQyUY6sznPQTtgYnbLT75npTOdZhmQFHcOBxjfNaoo5R0JEutllDDwoRMHU\nTD1GLahLXdy5FcY0l0vsmFyPQo8JEkNDEIdsY0nI0OrkqxXXPYgSVL+oPhjUsR1Qq7iyTBSN44w3\nkd2qoWEWsdHM7qLFgiJD77HTAAAgAElEQVRMHG3LQJ5T5JErmsB2e+oIelPk1jtDAKRezY0T1+2p\nPRKxXvfhGzZyScg0Ua1mZrEWgMImMSwzOyQMXrUX6iYEXswTNtGKaoqcYyIME7lgMW8RC3bUu8u3\nTKUNSOcBTBcVkVgKMEWoWgVzZgagFG1uZZDjYm0AmbYltKP0WC4mMZuUdU2H4aYPqShnV8NRmChV\n4C8mQwmOeji0AylAV0FU7vAR5OdvBQAsF/egfSBbWQl0M3enlxo4rXiQHT2xjsUnmGVC/uYX8fPj\ngn+eorSETQVPrcoiARKj1g7777o5iEqUa565rmGAQZV5ABDxiqMpBzKdpxcKCE32HBRpen+X3vsu\nbHz+c1h619tTE8jA79Ye8vNzm7z3Hn/GXJ4iESBKNMelYQgkiewfJ0qmJ4o28nzs2XvZJO8d587P\nuxgrbEc+ivw1jSJnstw09WtxnyhibgFEKXqzrrklCRkrQwwgMUH19Po4toGpogmTxKwdkGPBjhmI\n2pWfxm++9Jfxqhf9LADgfHNBgkdxXwUAsGjck4lSQZRoT2VMTSKKE7gwkddilMtssfM9DbZhI6cw\nUXuDTeSTAG0jj5YXwSiVsMSd3ZO1VbSffgqtqA0KigmbzUFCuKzpCSaKNvwglqyDZHe515Ydsfe1\nYzdj5xBXq6Bh2LOpc2eIQgQxZiZK6fid+jdsU5O4rf7PBL+GbbeeOYZWk4MoZZ6x9+yBZlkIzp7h\n/98LY4Kdd1Bnr5dtVQDklalOTwgKPru2nX55JxeezfwfUQRSzMs0scpEiXReqFvw+ZI/YafAt9Ng\n2bENabHhGDYbh+yA0vMiEUK9fwq/V4jna7rBPufxlacApA2QiwU2ruJAh5YkiHWWzktNrNnaOKxR\n9ZWO6x5ECYuD2RGZqLRRrSoszy5irUYbhchF3Spho5FFxzJN5PswDQ2mocMydZiGjlhJ43SGaG9C\nQXsaTIpyc3XylsfMO5d3ao9EbNR9BDrToyRRBOJ5GXNPAb6Kegy9YxenKyDK13l1RkxBk5TyzdkG\nKIAWZwEcw0aBmCyFmu9eYAXQFNf6A186hqfPMGYlp4Ao0W6gk40SppJGoSB3eu0njwK6DvvgQfk6\n2Vy03WaaKGWxVz2v8kYOOcOB6aagzgx6pPOslIkS+gsgFUqm6bzRmSgA2PuLv4Svz74cH93z73H0\ndHfVkfr+MErw/tvZrvbHXsImpX/8SgWVR9nvnCM3sPPj4zDk7JpNIsQKyyeryGiMIEzg83Yn3SAq\nDxJk03lqOxgShANF5QAQauy6TVmQ6TyjWESgsePJcW0HJUQWPRDfR8nkO+0wgN7J7vHz8ziI2jPD\nN0m8Om/S5iCKA/vUFqPEgAS/FxPF1DdHAKyk1YRRLqNZZGPLjAPkOIiqldm5qE1cHcOGQSjIVpgo\noTEK/K6qS4swEEUSAzQxQbQ4k8o4UOYaItsBsUzYEZVszpGJQ/g3h34Es7kZnG8tsM8mpCudZ5MY\ne3ul85QGxDG/F+bEJNbrPgKNMVEC1Hku9xFSmKjDHnsuWmYBbc743Fucl38ngS/1TBJEiXSWnmCi\nYIEiNToVz4o2UWZWHRHBBGewmmETp+tn8fePvwcfvftd7NoN0UMB6UZagKjJoo3HJueBqV0ovezl\nAPicMSA9DwDNNgOZuwuz/HrU+euVtcMwZLsYALD27pEmx36dCeEnHcXeJsqmrAq8h6Lfmc6rcmuF\nG3bL3wVFO9W/hlQyUaIQaDPUEGnsWjtIpP61VzpPU6rzUhCVBfq+tjUQZRQK8AomprklxzLvRnFu\npQld02A77DgpMaHFCRKDVXvL+abdxudO3I4/uPuNWO+ovL2acd2DKMFEzXImyh3GRCkNJEWkixj7\n29nnmR6qZnaDKNXTR02NFRwDsd+dKgRYKks1j+slmtScHKDrPbuNJ223Z6sDERsNBqIcEqLAF4MM\nE8UniYLWLZjWeTovhAEfERINMCIKJCbAJ1Oxe235AkQ5KHDamPZYYFVA2PIi3Pf0Ms6ssl2ZYyoi\nS5O9rlMXJbQa5uRUptGyvW8/dCt9v3z4Gg3QKOpiFwEGCPNmDjkzB8tLt4FGTyaKi26DBP7JF9Lj\nEboWz+ONq7PnLLRkgnnrZDvd/AQem/puJLrRMxUhq/PCEMfOVLG04eLHX7of/+5fpZPzZNQCbCe1\nreDnF7seJkvMpTjUUupdU9J5AODWebFBDyaKhmEqfC8UWBNjy0LSaslq00EhvrdoAjmSeocF/PdC\nX9HJshbBbDf0KOixkAkQxd4zO8n+Lrx3Opko2WEgX2CpwZAzUQVbXgN1LDkHD8HjDIkZeLK6sVnQ\n+bGmmxlhtpkYg9NI2eO3WeNbPwVRPt/Zm1EIzUhAYp0xUSAZxmNviR1DYFhIbAN2RDNl8gBwqHwA\n7chFtcY2J6JgQIwLi0SYm+rezBk62/QFUZIBzm0vRqhbMOIQAV/QWy3OOocECZ/r9vt8cTfyaPkR\nXD/CyeJB/P2NTGCfNJpyfitzEGXqJkA1aEaMCe4OL1J6IkVOcjZCS4MVEgmQN7xNfPGOdyJ5+pj0\ng7s7qKAeDG6PJTbSIkMwUbDx9blXovFLr5GpS9JSmKhCJxPFxl7gsWdif5EzmG2uee2Y88TGBgDs\nPfskExXxeUOcD6C01JpivxO+WJ1+eULCsffFP4CEg/egoDSJjwjypgNTN+FwTdRaO5GsMMIQ07zb\nRCeIyjc3YSJ1LCdJNxNlJSEC3e5bqdwvqhMmJtoEZkzhxh4opVhYa2PvroLs16fFOjTChOWBykS1\n27jr/L0AGMu6XeK6B1ECNI3MRPVJ5wEpc7J6iom761YJG/VOJorvMMMg47mUz1lIegA0AFjlLJTG\n5e89QZQw8lQWmi+d/jr++uG3MiZqgDdKy4vg6zY0AFNRtm+eesz5HiAKfOEPYMKLfcSmBiNO2A6Z\ngygBFpv82jmGjQLX4ZJeTJTCZCzzVjxpKtABpRRhtYqilcdMLUbbzU6KSb3GhPGlEqzpdOErff8P\ndHwPuybC+TcDjIUOLGI7tpzhwPZjEJ2di96jpFYKy6MY3skTyvGIdJ7Xsxqx0yyTdjCSDx9PK1U6\nm6+y96e+WqKR9ffcMIO9M+nkPhm3QCenleowDqJ8H5NFGzbtDaKE4NyrCyaqI20mPoeXj6sO+0mj\n0bfaVI0A7Lo5iDNMlM8ndIsDlM4efXkSwqYRNPRiyPhCxp8HsRCIsnEJoviCTzpcu7UwZaJM4f+0\nP7UtyM/fKkGUHniSrWrydF6iFCGI6rwtgShdl424RWqxxf2KEPhpOo+zAKpAfpZPTaFmIbINls5D\nVptyoMQExsub5+R5AykDW9CJBBGdkePO/KpJZ8uLEOgWNAABd/lvtigs3UIupPAnC0hMG3kOYhkT\nFaPCDY493QGFhrjZQCNk91kwUQCgUROackzCtVywQcQ2EVoazDDGBGdu7jpxJ37iGyv46XvqONBk\nz9zT+gqer54ceO0lE8VtZQRwq7sRdGEwqwrLOwE83zSEvJfiviITTAe8QXUnEy0lBoYBa3ZWaqJo\nkznfq9dBgCZMChDVm4nS+PgrTs/B4drPhMRZJspgOkInBiJLx1ojQKSl5pWHd5cwUbSlZxTA5uTS\nB9+MX7rrBHSiwdRNBuYBEI3fkyiCQRIEuoVwQBuszgiSEGtltspNNWO4kYdaK4QfJti/qyCBohHx\nZ0zXECShzCjEyvwQJtvHN+r6B1F+BNPQMSV3OKMKyxUQlROaFuYzdf551lWeTs2g3spWB0mRbdjN\nRPXreC9KWHcXmOi1F4gCmBg3UXbAj68+heX6ImgUDeym7QYxAk73TwsQpTbJFSAK3ddG7pI1E27s\nITI16CEBEhMEgoliD+b/z957B+uWneWdv7Xz/tLJN/YNnXQ6SGo1SAIhhCwsiSiCwBiwxta4BiZ4\nxjVmKA/jYYbCRRk8QNnYYowRYEq2xgiNBUgCBCij1Eotdb63u29O5570pZ3Dmj/W2mt/3znntlpU\nNWIoVlXX7Xu/tPfaKzzreZ/3eSMDony6sT5J9vdf16ympqndVIvCfHb8qU/yuf/6x1h97Apv+aMd\nig9+dO7z5XCEs7CAEAJHmxoCfORuOUfzWmEIlkWx3YCo/cDYrVomKkgrst6SEmCn+8Oms5lL2cWL\n7fU04bwkPbjER1Onbzjk6StDing+7NfUQ4P9dcPUtbYgbHOo+nhtMcR1bB68exW/ygnqgqK3uO8z\nVpHT9R28uiDBMWGhTFdJb1iYTIfFDrJnACi0m3MzzuxetwVWt6ib17QWRFXzmii98Ts6ZNx4ZTXN\nLzOCW5SXaJ5fE65sxLGFLBAI+q7qcxPOm/G5soIQS4Ooha5niiN3738xt/3k/8qpn/05lr/rTURo\nBjGOlU6JWSaqBVEujjEH/GpaozczMgGdrVYlMcKqkbUK5wFz2VkNY1zYHqUOybh7pu7A1/c/0SGm\nPeG8vitvKcD23QZENYkSHaZJq4Ep9BpUFTayEPiFpPBtsrAFA1NHfebTj+sECCFI3YBqMjai8CYs\nB0CtvIlCvZYYJkofOCrXJncFdl62oOPzj5iPv+hSRmXB9oLDtNg/d2dbku1hovTeMI5yLNdDeJ4B\nUcJx9mVYNmt8oUHm0e4h3S8aRO2Ra/inTwPgrq0hbLu1xZnG9NwuttXuE26mM3gX1T024vHm+T91\ncVeFv7R+0+738XSyhB2lLROVS1M42Cs0iNpNDBNVZxlv/Y57+Nl/+ErsmUNf4znYzSpe8aT6jbxQ\n8o1mjW72sdxyyYrnz0TtpLvsDtS93vdsSlxEpqbs0ZWuMVa2tbi+nBWWAzu7rYSicYj/q9D+2oOo\nKC3pBo4pIvv8w3kHMFFZxhfObCKGavMYHD+KBHYmMxXXmwywPJ8DUaHvmNDYbJYYYNJ1m1pcezNP\nzHXMMFF5lbMR3TT0760y80Cxb6nVgCi14TsHMFHBASCqYU1SbNIypXAEdlFqrUZFVVeGcYt0Rpvn\neISJ9pLpHhAymGGimtpNTTZIYPvETz4OUrL40YcRgLx4ub0eKanGI1NOwz9xku73von/9J3LfHTj\nId7+6DvMe4UQ2N12s7d7s3UONROj08M7wsMvJJnfUaxdtH+SBjPZecXOdpuJ2ZQMSZN92h1oa71t\nPPwIP/+fvsi5C4p5bPp9Y6el6g9kovTvjCbbPCzfh/BikyjxP/3AS/lH36rGTRTsf6aeLOnaaoxk\nwjFak6leqBZ99WcetazDbGuZqN25160ZZ/WvJCxPGxAly9Ynqtsl1SCqSV4wZTt0qFkmMQOnySy6\nBbjTgLQRx1Yyx7e9tjBu1Wii5pkouyoQslZMlGaZhOvSuede5bMlBFPU5lnFEY5ObohNxuAsiFLL\naPlVrqZW4FOnyQyI6uh70iCgUsJymGeimsNObrnkDYjawwg0ofBCg6jm4CJ1WZqefet08cBT5Y1M\nMkEQzIGosqk3WbmUeu3LfIskbMNSUzvkU49d5/NP3eTOYwNuW+sxtQKq8ZhxMa+JAhTjZlUE2r2+\nsTloIgOlZ5M7AjsrGbg9kJKXPj0T4koz7OPHqGzBJH/uDTa+FYhqahd2e9QaRD1XYkyhWbKlYJHA\n9inTtr9mm3/sOO7qGp1771ffr8e3FaeGMW2aq++7WlDPa1B7WFg8c2OLh5/e5F//v1/mN//wCey4\nlWUc+pG3MBq4PPQNawYsN9l5oNit3BXcHCYUWp8o84zQd0xx7aYVW611yl0X1f3lhWJFa+afSWE5\nXxUTtZPucvZUQL7U58GzCce/eJlr+hB9bLVLXCb4IsDRiVWVsTjQIGqnrR07vsUe+bVof+1BVJyW\ndAKnzd65RTgvLTOyKp8R/e4XIddpyicfvW7YnEBngsyG9Foflv0gym0MyvYwUQ3zdJum4G/NRHWQ\nRUFd5FydXkciTXpxozO6VR9kWrC9nM+7lc/eXyCfg4mSNokGUVZRmsU9rTJCDS7ivA3J+ZpRKXoH\ngahW8N2E84wvie2RXdIhCF3awtpo04jrKEKWpaqfhgJK8Tc/yLb2GNlrTGd3eyZN2FlZbe/ZcZFC\n4JYqnNcr1FRIXZfYDpDT/c+gAVF5nFJHEYHWOjSaKLmnbpb53O23I3yf/KzO+pqo8J3wA6SU3NiN\nObbaxRKCSXIQE6W+8+zNJ0ncDcK1nbkyDQO9aYyc/cDGrQu6GqDmVps+ntTqftd0eKrc48DfZIg2\n91ONhqrGok5pPmj83Ko1rJdLZQTaVqdLokMLVtEwUeo+3ENr+u8Ri42F0L7SQU3tQ/V9vdDFsS0q\nSpV2r0/hJpyny0YIz28BZl3Q7yg39cqyEZZFWqaGrZvIJnQXYZc5lQBCfQCYKUUjdGZd9dWCKF8V\niW42pYmt7rEBKbNM1Gw4x9frSGapEBeAs2cza0BkOZ1nnmP93BtgfVBryhvVSYLlqeoKUarCeaAO\nC0JaIC3ykRo3mWcR++34mzodhtMcIeCt33kva4sBkeVTJwmTSM2Xgb8fRIVGd9iE8/SG7drkroWo\na/pWSD+uWR5XiKUZvy5dJHn6FViKZMYIGTBAYhxpENXrUkVT5a91ALPcMK+VTj7pul1CJ2wjDXvL\nxDgOp//Fv+TQj75Ff38PhMBPy/k+ABx9bcVAzcOwFNSlTVqlvOMDZ8iLmuu7E8JUGyz3B3iHD/Oh\nH3kx51ZqpWGkDeeBEuNnjvLHcsOWEDioFVtt1YZAs2JZUSErm0pHHprP5jOHsufTdtJdksAi/vEf\nInctXvTITW5sTljJhxwudomLGN8OsDUzXNk6nKdB1HjUArzxVwDKf5ntrzWIklK2IEp7Nd2Kifo3\nX/p13val3zADRMyF89qBtzlMWCvHWJ0uS4eVHmcORGmAFB49gzuTRhr6jqlftnfTMSCq/9wgqhXY\nxVyeKFT+fJioKC2o9f00TNSsJqrWYm7vQBCl7i3BJqsyCkcgigKpj91JmRomqqGcfdvD0wtS2tkf\n6hGOo9Kzp204D6tCYGEVlTHObJozTUzW1qyovGmzhndxmcy5VM9qxZrsK1Dgq/YclZ3nBITaCyW3\nbXa8ATKOiM88xfb732vsDJr7rLUvlHvokDKCG4+piwJZlgcuusJxCO9ex9ndpMcOlaUocysIGEc5\nWV5xdLlDr+M+Zziv0UeE/Zx3PPEuntw5q/6us4K2mHUbV8/brwtCoa6/sByTraqjrSyHOjw1o395\nfPsp/vFH/jcuT67N3c9syHjqHhDCPqBJKYm1rsetFRMltR1HqkGKtSec1/h71XHEgk61vhUT1YxP\n37UJfRVy8GzPbCANE9WI+i3fa0tj1AUfvP4BvHBIaTlcmVzjJz/+M3zx5pep6pqtrLUzsMqM3BVY\nmj2ZdbqXhT4wWF+dGaAVBMgsM2GzyGndyNX/2HOHlaY1dctS4ZJrLC32mAh3XB0aNEV5FcCZaqTX\nsZ4bRNVSUsWxOZxFM0yUTBIcnVmZ6YNO6gkibzacp37/ruMLHF/tsjwIiPQz2byuQnxNyBVQ2b5W\nhe/pdWVPOK9whQGMy4TcvqMzy173egPsu9re46Ds5lrWxosuzkp8zzZhrKZ01ShqjGB71ElCHU0P\nZqIaGxs9pnpuV/V3U0fygIOUsKzWl8+2EZ0OnbRm0Ztnomz9HBsQ5aSSunQRdmmuryQnyPThWa/j\nfbdHXuXksqTwbPxc4lqOOnBWkswV7IxTwr62yrkliFJAJXcEgTYVbpioUoP3RhusmKjnH87b1fUO\nl1aPcfHeFTpJRefhT/Jjl95L/m9/QRuwdozEoLSEYqL0GCymrTZ2cos98mvRviKIWl9ft9bX139t\nfX390+vr6x9dX1+/a8/r/2R9ff0h/d/PvHCX+tW3NK+opaTju+bUESf7wyVREXNxfJlLkyuGwr5S\ntIh81jF6dxSzkE/wjhxhQfuLjGdCMG0YpUD47Wm14zszrtHzm04Tvjuu/VSeSxMFKtPoylRlJxgm\n6rnCeVlJHaiBuNyAqBkmodQgyq9vzUQltU1W5QpEAY4W/6Vl2oa5ytZs043U4peFB4tX7W6Pajpl\nc5jiuRbCLrFxyK9dNczRbMu0U3tT3qApIQCYSupdt4NEzmWyzGq/ZvVTgAZRNYHtG++rwhJseAoc\nX/nFX2D7999DckYxSA2zKMb6GpaWsQcDBaLSgz1lmta5914ATudXjYNw4VpsaPfkQ8sh/Y7L9KBw\nntZkOLrwc967zEM3vsDbvvQbAEgdXr5Wz9S909fh1YVJGMhFy0QZ0z0dzpMz9gxP7TyNRHJ+dHE+\nrN3tcX50iQ9c+DCbot2otutba1CqWhpBu1MrYXnhKMFr1PiNNVmLDYg6pIS6VRTR04xJ5c6D8Van\nqPrLc21Cz0GKSpm93pKJ8gwg8+uCz9x8CKdUC/Yzo/NIJM+OLjKa5iQN8xJFkKcUrkDa2ml8prxM\nC6Ju2Q0HNsPyaSYztTyE67UsV2Vj65BiOlOGyNWhxQSHVE+vvUaEjRu4bOxA9DwYF+p5B9yaQTCH\nhTTB0cB5NpyXJxGBUP+eaWuMxIWJ9juyej0qHTZ62V2K/V0ZBMSaaYt2dnAJ5rRAdWWBkPjaBNKE\n8/R95Y4g06/ZecX3Wio0Ft5zL562EOjftY4lrAPDee8++15+4mM/zSSfqoP1jKheCMGg67VMlD54\nybK8hVmw1splGQKhDmFOgMifv4u37IUsjyvWP/CYWdMALA2i4q6e85nOhJ4pjSScgjCrkTPX2hiX\nTvMphWfhl0rzNtt/tSjpDfS93aKgb8NE3Vx2lPdZlmkmyjEgqjmQFMIhK58/E9VkTS74C1x72SlK\nC15y7pPtb1cFHSfEqRsmSh0ezPOIE5a8BQLb//+dJur7gODMmTOvAn4K+OXmhfX19TuAvwd8E/Aq\n4I3r6+svfSEu9C/SojTHu/czTPpPYFsWrxt+ie/7yL9l+8YO/88HzzKNEm6+6z9z6RFVkqCsSwod\nUvhXT/4Hzo0uAG04JZlGhPEYS9Z4R44YJ/KmtAwAerF3Swluu7CpcN7BIGqUT7CFTd/tETrBgaVO\noGWiymjCZy8/CXKGiXqOcF6SlpRadNyIaGeZqMY/yK33T6yGoo6lZUAUgJPr8FeV4buN+LU127Sn\nCbXAFCfddy+9HuVkQi2lWmjtElG7RrDdOaVKtoy7On1Xg6gmE+5jz0xM+ZWGibp9oLJgohlhqX0L\nJgqgcizcUoG+UIc5MgEb/vL8+7RGpRHQi8lQf98yzmBBFeJtXOMPYKIAUxT6SLaNV0pqAU9PLphC\n1UeWOvRDlygt5xIV/vj8h3jHU79L4QiCykLWgtJqN/Cb8RbFtlr4LueeCUVZvsqG8uvChGlzyzFl\nj6Z6Te5YNZ5jIastSsdCOI7xLNvNhjBjXzB0evzSF97G+859gGeK1jH9RrifPWtaVlRGh2FXBd0q\nIfO03YgO8zUZoE0/e022URzR09402R5jPwPu9Gc9xyLwbaTVhPP0nG00UU3CiOcbG4fGtsCpJIUj\n2YjUfW8l22yPUwrhUFs2dRwh8ozcEWCpeVPPhPMao8y/CBMFrVkrnofVCZGNi3ltt2Bwholy9WEl\nkTap9tKavR5oQZRoSiRpEDXShy7/OUBUcyiqk8Swj012nrqYjI6tvq/QICp2JSNdPmWWJX6pBlGL\nPY9YrxNdGZmML4Baat85wHF1NtqecF7mKCCg/i0hffZZhOcRnDzF6ve9mZXv/X78Q0foud0Dw3kf\nv/opAB7ffookmwdRoGwOxlGOlNKwdnDwoej8VgvMu24HS1iETmgy676SRhCg7KhnP3j8Ijt/8sft\n72UFuSP48qZiu0WiAIywK9CMsrBLwrSmDjyELmPU81TfT4opmSuMIL0ZF7krwKpYWVWHgOdioqyF\nBaaaoa6iqRKP1zY1NWVdtuE8yyW/RR3Rg9oob0DUAGt5kT98zQKlaMdBkEl63gwTZQvSMjVRltMX\npvzAf7nEgt25JdHwtWjPx7P9m4EPAJw5c+Yz6+vrL5957TLw7WfOnKkA1tfXXeA5vdmXljo4e2pM\nvRBtba3PufF17P6QhGusrfX5hi2VzfG7v/mHfM4+xurWZzn9wQ9ifcSGH9J1utIphQ21JYitCWtr\nfdzDS1xDpXauFJqSvPM0i8e0pwiCOkzpez0KXUTRLSVOJ2NtTS26h1a6JJrpWTmyTGetBTFROWUx\nHHDo0ICe3yWr28/NtmxtiV3g7OYjFPaEcvM4Ya7SeZeOrILrsLIwXx6jKCvyssY+ujr3XYdvP4ql\nafCpDif4VPt+91pVUAmbvBYIpzYgyi0EJeB3BUcO6eyzZIs7r6Xc8V3HOBcnTHwLJ7QOvJeNxQHZ\nhZJA1Pz4mx/gf/zAO6H0SR/9PAC3/8O3cvV97+cPg2f4rk+MsbY3cK+eY/yhPwHgqd2aB4cpr7z/\nCDeiLTzb5e5Dp3hs+0lGRcJL9G9O15YZo0JqR+48Pmc/UPsO7kRy9NAyN5qMG8diuzvfV0GRsLbW\np6P1XX6iFoOV22+jfHqZ5Kyko0+/3eXBgfdb9e/jIoLDyRDXkhSO4On4WYJULWrrd6zy9LUxXBri\nd3xTFPT9H1b3+4ANbmEh8wARtBvmU9MnOX3jGoUbMKkd3NBjqR9QViWla+FbMb4Gsrnl4ngua2t9\npqEqoxFMtlkOTrI8TtlacugveWxlCpTGRFgL7b08OmzH1fkVyd0LNk/cGbLwwLED7xmg1w9NRtCN\n0XnCOmfT67C21qfCohAO3apkeaXDrgbhay86zQ3ALTMWGxZu0J/7jelkmcvAUDwG1u0cP7pAv+ew\nKaAXdjhxWD3D2iqpgoSnNh/nELB8eAl7Y4EdIBQKjDilJA1rdkt138N8SCEFCAFBCGmCyAuKroVr\nLWJ5HnaZm+uJptu6f+tb9kPTpJRkRUXgOYwW+kyAXIOokydXcS90qadjwIHaodfpsAM4gTTfvWsV\nxEDihpQab/c85pmt7owAACAASURBVH67rtXGY6fqHg+dOoK70CfXB6aOLW95rUuDUOlSSpUyv7bW\nJy1qvMZbrZAsd5a4AFja3DR2JRPNhnTWVvi2F5/i0o0JD9xzGCEEb3hVyO5Dy7AFYVojqsD8fpqX\nBkQtr/gs5WOO/vnvIwevMWDP6rsmnNepUvKrVxjcfx+Hji7B0W+C132TuvZwwM14+5b3di46R5Kv\ncbLnz71nZTHk4saEwWKHeG2JJl+2s7h/Pv/Bx2PuBcgLFgI1Lpd6fcMwrx1fxVt67nFQd2bq5QWu\n+Y1n8oKpK3hGs1NuVhPYgVIj2SWUHmgmipk5cXR7BS6BFdZkLizlNaurPeJmbLqCV9y/whu+8TRP\nvg/8A8aqrCrO7uwQ3nUHCSrSMXAllmMpWgjoL3o4mhEsLAc/9L7imG9aVEWETsBtR1ZYvrLAF4/7\nvP3uV/HD2SWWLj5BJ6tZXVjgulRrqXRsKlFy+NgyjaFMd5JxvAx4WA5ZWeli3cJg+i+zPR8QNQBm\nbZSr9fV158yZM+WZM2cKYGt9fV0Avwg8fObMmbPP9WW7uy98Nea1tT6bmxMev6oARkbE5maLXHu7\n17FOh+xe+iSnATFDSY6HWwid8XJjd4fNzQmJtt7/wpcusazJmry/TK1DgzeHY37yA/+Bl629hFd6\nd2ChQFRaTczvVkVlNEfDuCTS/y6lZDcdc7x7lM3NCYHw2ci35q63aYl+XJ97+rPIoy7F5XW63gUA\nzt6I+fn3/Cnf8+rTfN9r2tIhJo7e6aviq1VFbnts77Yb8R88/Wd8nQUiT/b9bj6NqWyHspIMoykr\nDROlyYeN7V2WqiWcuuR73vVZ1d/fcpV6NCHqWuyMJwfey7C0EcBr7h4gtbng+lNTxo9fp/uyB1l4\n4KUUx+/g2od/GhgzvniFjT/95+bzUztkY2vCI0/BtfEGTtXDKtXC9Ivv+hT+9y5z+siAiZ78sr/A\n1vZ82Cm3BZ1SMt3NqDU1kwpJ6vWxOl1jqDi8fB13c0JRlvj3f4ryYfXvkRVS+uqkvnlWPYdM2vvu\n9+KNCe/79Hm+zu9xOIpIAknuCp6+eZ7+VfWsfCHxdIr8hcu7VId6c99ROAKRVThVl5r22T329Jc5\ncmOD6MgdIAQXL+9SrvW4Nr1B6ko8mRm9UyEcNjbV87geK+bAOn+ek8fXsCVcPOrxxKUL3JwqZuvG\naJONtL2OXbcLqNc2l10+/aNfz7nRBV4cDQ98xmtrfa7dGBlvmovnHmcdmDqCzc0JUVJQ2A7pZMJb\n3/MTvPWqIAAirZWJdkbUjnoum1E99xu5FnXZVYm9ssV4lBiXZVlYDHdSLGExjiN+9sO/wku2r3II\nGMWlEdV3HF0zr5IUruTRDVV4eCPa4vwVXaMy7JDv7CLqmty1ySMXEQRkk3ZNSW6qDS+3JBs3R1ji\n4IX9iQs7vP19TzCOcv7Pt76CQOrnffEsa8CJY8vIa77WSHWQlU1oKXC/PRq3v7etrm07t3E9vabc\n3EXseQahE2DFahPdTSQin3BlJ+U0kMUjfvljv8GPrL95rgAuKOd4HzVmnE6Hzc0Jo2nG4oxBrWvp\nagK7Y7rA1K7YlD6Pr93HG179Wv7ug3cCsLXVskIn71qBT0Entqgu32PuZ5oUxg9rur3N37/yR4R1\nzoV3XiPQYvHtPDGZiBsPP6pMWI/etm/cBVZIUqRc29jFbdL5ZY0lLGpZ88Vrj1PXr8GxxNxnm4o9\nl64MkTNO3IXlsLnZst6+Z3PuugJRVlkRWAGbmxO2t0qWNPuzOy2xyva7n9w+y239YySRhSWEMn6+\nOuMNd33DXEudpEp7N1Df5RU1XTdkiGKg7ji0ysX0KmEmKcPAfE7k6povbFwndVQ9vZtXNsmutyDq\nvtv7NHkr8XC6r++KzU2oa6rBgDRTus2tyxsMxxZS10u9dnMHa0uN90I4bO1EB879g9pOPGTgqb3Z\nKtX3TTouVWcNLipw7dYenpYfCMdhmsb7vn9hKpAdyfnrN+YzPF/A9lxA8fnAuDEw+w3WmTNnTIB2\nfX09AN6p3/M//AWv8QVp12M1EHJialmb7JGTyQYiiDmxoY3hui2WtLLcnHgayrDZBKLJhJVSDSDv\nyFG6OkNqUozIqpyL48tsloqlcEtJYbeAMZzTRLUx86RMKOs2SyN0O+RVTnmAPqnRPck4oR6vQOnh\npeoRXhqr2fHeT16Y+0wjJO6GHtayYh8Sbx47X4mvkDsC64CaRHWaGM1UWmYzTJS+/ioj8Gy+efhF\n85n86hXIC+LAmgtDNK2oS7aEOsHe1hNGw3TvxRFYFoff8vcNmxYEXaLQZnr9xtx3TJ0Oo2nO1d0d\nhF2RTwO6WpgrnIJffc9jlFXNxbECwBfT/eeF5l68SuBV6v8zGzzPJtDeLoApMDwuJljdMUGmzhQq\nnKeYpM9+6U8BeHJjPxH7Ox96mkfGD7F5NMerKhYixehNiojdaYZtKU1GU3C3sTmYLfVROCqT8P7j\nyhBy4PUJnQDvugI1+SH1741D/ygfk7sCv6pMQkNuuSaxYhIXbIYr1JMxL9pW4OHiUY8zu0oPBSrT\ncSLaUN1oML9c3LV4O7awmTyHL09e1IaJGkzV4jgeqDmS5aXyOkpisionm45A++gIx2Fz6zI3YsUe\nR3JvOK81SxW+KrHk+TqcgoMQgtAOSKuU7XTH6MnmNFGDy4ha7vN4KuuSG5PGFqM3I262qFIlTK8P\n0ERVNnPO4nvb55+6ySjKkah6YSOh50asxtfddxzCDkNEUWLVEmqbnq+udVYTVWv3+GFtE2uB+EHF\nWUMnxEkKVRJKh32GUU4uHNJ0xEM3vsCzWrIAMH34i9z47d9i7cIj9O5SBbFLv2GrC+N67hWSRV20\nuwkXZa4gqyo+f8e37DO9bVoaarZpskK8M6DSCRuNcBnAHm0Zw846z8x9RaIy63J6XhUbbwrazrZZ\nbVDTRtnYZJsmZYLoTOayW4E5acasfUdTi+6f/tqn+Ke/pkKCN3ZjcmHjlpKe20VKyWPPjBUTJVoj\nW1DlvN725d/gvc/8CT/17z/Dz71DMe2XXnm7eU+53SbGkGZKe+cWZI7AK2sWQ7Xuv+k1x/mvvm2d\nBSdDAGJG79nTerQb8U3TT1WcGH1d7gpstzZ6rjrfvy5n17QL+OoyqdZK1tPp3PPJqow6m6mneovs\nvN1JRlG2soSyLpkWkQE9TbgZpyBYUmOpk9Z03JCODlQJ1z1w/1iMdfbsX5EMvecDoj4JfCfA+vr6\nNwKPNi9oBuoPgC+fOXPmv23Cen9V2oau4ySpVcZGpRa4w9kOq8UuqyN1uV5WsdDUccoluc4Qabwo\ndnM1oO4sLnD/5ByEHbxDh3BsC8+1iEr1MDeTba6XavF1S0lOu7l0fNs4M9duO4H31pHq6sHVAIsn\nt8/yzz7xc2wl2zOW/pI60XR9ojUEbrsJXN3ZNSCssXTo+A7ZQH93Z177NMpHFK4wfj2zrU4SKrcR\n6WaUzry5X1qmpEw5Vl03n0l1sc0otPjiM9d5z8fPzX3nI5uP8SxK+3T4d3+V3T9TAGQpynBW10zF\ndgDfChh1LGwt5q5sl08uvYSpHTKa5jw7Pq+uM+6TaaAknJztccrmMAEtqB87+4X3TWaTlZd4euRm\nlsRzbA79yN/j6H//j0AI45E01jH9bpJjdbpYQYCty0T4W+o9D13az7SW5LgnnmZzeeaEaytTwOE0\nY6HnKXGrpvibDL1Zb6DSEbh1xeGuCjsf6R6m53bpX1f9Uh9TGrKmXtk4m5DrRdiuGg2DY0DUOM4Z\n9ZWA+7bNy2SO4Maqy5PbLZE8zMaMRLs5j1fnN+rjvaP0vR7TA7KhmqY0UbpGmQZRUbdU2VJFTWm7\nRqgq4gy701Hu/N0uZTQ1FehHlU2SldSN5ksLy71S4nQjhBC4nnqvo00yPdtnnGnbBB1qsTyfSgMD\n1x7SZPqXzrx272akNjZ/uR2LuSPIY1/VEzxAE1VZ4jmdlGczg4fTjO1KF17V6eq9ha4BeF6hQNRA\na3KazWQr2WG8e5PCcpiUNZme93s1UaA2Ki8r5zQ+42lOYTnIXI2T7VStV3Wec+3fvY3xJz7O6hc+\nRCgacKSfYVnj6vXHKyQrodI9NW7ruSsoZIbn3lqqEWls0dWav6n2kitKZSwKYEVtBlY1mbB1ZYNK\n2ExFTqR1OukzquSSf/TYvt9oMv4a4fGTO2f5/MaX5t4jvGyfW3tXJ8BEScHZ7gk+t3Av02/5Lhb/\n9huYJgWTWP2X5RVbo5TCcnBKSdftkuYVRaZAlXTdOcnAZqwOOU9uKK+7cVwgpeTc3Qv86g+t4ayu\nUuiKCrIsVaTAEVSWYqT8smJtMAApuffiI6yNb7Dk6CzAGRDVgMfr0QaZZuzqNDFgP3cFwq7aElJZ\nRlTEc+bEibZgqU4dJ/FnNFF5ZcKtWZW3PlHiYJ+o69sR/8uvfpJ3/lm7ljSAp/HFauqiCrugu6Lm\nWCet6TodQn0wEK5nDg9Xfuy7+eQDag3v6ajBXxVd1PMBUb8HpOvr658C/hXwT9bX139ifX39e1Ci\n89cC36Ez9z66vr7+qhfwep93k1KyXbSU6TAdEuoFzkLyks229o5XSh5cWMeu1KnUCrQvhX5I2zqc\ntxgXWBL6/+C/adNqA5e4VgOkkhVPjJ9FAk4JqWyRchg4eFZKLeDXHm8NIfeCqCY1OdbGlY9tP8ko\nH/P08LwReQZ5jUw1iNKprru6Rhii5v/60i/zLz/3b4CWmegEDtWSGsBJYHFFWyRIKZmWY8VEFfMC\nYSmlclT2dLp4mSM1i9UwUWmZ8nsX3sOgau81u3BB/XZoMc1jvvT01tz37mYjEq/dtNLfey9BWhMW\nFWLt8Nx7fStg0muH6bnjL+HPVx4EIRhOM85N1YJaDQ9x/pLqM+Gq5zya5kz0ZN1xB/MJAECu13uZ\n57hN5ptd47kW3tFj9L/+FdiDgQFRTXZJN6kQWivUMFGrQw0Q7P2ZOZtCRfQ3ltuFO7ccyrpknCTG\np2YvE9UA6TsXbge5jCNrjnTUgnOkc4i+12NpU/s73XYagKm+x3E+IXct7Bpkuqt/0yVJVTHbaVwQ\nL7fFWs/cHlBbgqd2VX8Gtk8lK67m7bOLDqv7X1+6i9sHp7hn6e5bCnmbluYVifYo6+ixGgcWkzwi\nKyoqx1Pp+VLipoWxpLA6Xfy8NsVtL08q/vGv/Dm//UdqoW/SzN1SIkLtheRVLExKXI09J5OaqFQA\nz2lAlO+xI1WfeUVtwFWpN77mRL+b7+J7Nv7SDIiybdKsNvUExxMtANfzptS+Ns/VF00bTXOua1a7\nKTJr+YExa/UKiSUd7jysQPOxDz/Kjd96O//8Ez9PMtomc32SQrEW0Fo9AESPP8bVt/0KvdrFz+o5\nm484K6lsF6GveSdRY6MajUAzQ3Y8Nf2eOi0w93otiFrtqn5prB5yV1BUxZw33t4WaePUsFL90Izz\n9Pw5vufRp+lFFXI6oxyREn/3JkOnyyRPuLbmghAGtHoHgCgjsM4jqrri1x99B7//7B8BcLKv2Frh\n5CZbu2kdX1vgpCVXpjUfWnsFz558ELvT4ekrbfbc2StDpFTjxS0lXbejJBOVKgRd7XE339G+dTt6\nDoKyb5gUEbbv466uUY1G1EXrUZi7Ammn5J6gh+TkyiL9uEb88UfYfv8f0GvqT3bbAFEDTq5Nr5N7\nLbBus/MshF3NlaD6d1/+LX7m079gDkHxmTNg21Qnj5BqEFVOJoptqlsQ1SQbFZZzoGP5l59RoPDj\nX26taoyoXFs6zDJR/TWVyBNqJqrbgCjfI6syfvsDT/KZeMKZU7qyxlRXD/grwkR9RU3UmTNnauC/\n2/PPT838/1fO5/watN1sSCHbk/xoskUg2wd+XPubqNO65F7nGJ/Rb5dul47jGICzGdc0mP+L93R4\n/X2nzPd0AscsygCb6Y4KveSCuJ4gpUo19TyB704obMFTw2d4+OlNHnpig5e9XNfwMjSn1hroDXRL\nZ55tJztY3dsAZaRWa61K4x20K3NAiQ5Lcq5FNzi7+wxxpsWegUu2EBIAiW/xmWtf5AfXjzHOp1SU\n5K7AGxVs/pd3s/T6N+IsLKjJIiWyKbhZZeDNZB+iimhe3zpHL6mIfYtOVpNeUizTtOsgnGJfkeai\nKsn8FhhJS7CsK3tXy2tz7/VEYOqVAdy0PLqBQ5SW7E4TbvTOU2cBMu7z2NMTuAMj2BrHOTc7h/nc\n0ddxKTzCq66PefHtbYZepjObZJbiFJJK/1tzmv7Utc/heiWLwxgpJcN8rBb2QlIFqh+aEg6e7o+k\nX1DXEsvS4cGiIqknOMD11YCtRZvVYcXaKAW6VFbKQJf76YZqAZ7qTatxgD/RP0YpFat6V/c2lvxF\nXrp2H8NsxMpuib20RGdlEbhMlLThvLDZYCcaRAkVzouzUlkPHFLjqXBs/vzBeQ3WfSvrfPHmIzyb\nXucb9L+JnlpsX33slXz94ZcBCnRcmV6jqIp92hpQouHCcsm7PTyd+RoHFjcnQ4qypnZVTUe3lCrT\nVDMvZeDgF+rfagGPXp5S1ZJPPHqdH/rWu+gGDoWtQpz4E6q6wisj3vJHO2zd8yS8ErLMQuuoDUgW\nrsfNesIKau40Yb5susaJzhH+1qlv4D8++btE1YiVwSncxTbTrLI94qzk8qhkFXjvR87wlu952Vw4\nLzsg/NC0WSZqZxozLnd58czrVuDPMFE1P/GDL+f04Di/swG3PXyJMZf4thM+QVYz7nrKF+gAJurG\n2/891XTCfeIETg102wyzNK+obBdPA99tvbk3hrGg9DQNa5jY0ozHQDv+e2XNkd4ScN4Ucs5dAXaF\n5976XD7Rnl9h2YAoXdz8oU/wou1tXvQHUHzzJjawHa6wkmxjIRm5PSZZjAx8/NtOkF2+hN0fzNmX\nNK1hoqb5lKvR9Tlm8ET/Ni5NriLcfF92nmGi0tKUVmr+fPpy2zdPXFDMTWHbdCoNoqYZsnKVhMOf\nv38DnrxEZddJi+E0Y5JP6Ht93OUVEqDc2TEh18KxwFLeTvakILQD+pEu9XNzg3CgQIecKbPTd3sI\nBNMimhsTs9l5tVUovyo/oE4Szo/VtX36+uf41rVXkl28QHjX3QxtSaLDecVkQlbWWKJ1zp/LzjuA\nibq4oQ81VntQbg6gjWylIQssp2DxyCpTdDjP6RhLFmUcOuXjj1zGu2sTd2CBEHhjtd/eKov9L7t9\n7aXtL1BrHlqdKYw3HupSG1pXdGisBtfGihocK2mAF+vaUHQYeH0TztsatwzG5+7vMMraSdX1nbmU\nc4DaUROqomSaTdj94J9BNlSTTA/wX3//I3z2yZt88ZxC680JqkHoTR2hJn1/K9kxmig/l8iki+tY\neKXaZEaaiRJ2e61/fOHDJDPhvKivwFDiW1yfKpZuR9P5hQ7T7f7xH3L1X/8SMOPKrJmovM7Ba7MP\nkZK7/uNH+MEPDnEq2O0dURlN+qQ5WgjALkmy0mizAJIqmXd3lrAy0rqdwbwNgYNvbA4ANo9cZG0x\npBe67FQ3KMmph4cAwfaONqPs6N+PcsZJwTPdE+SWy7lr84WMU136ok4zbL2w505N4Nl8efMx3vnU\nu9nyC+USH0WMswl+IRFAqkO+TdV3c29LsQoj6raxExuPl5OLx/mTV6n3P3JUg0UnNwVAe3tAVDMG\nOm6HRBtTLlkdfu7V/4x7l19Ez+0qVrLX2We3Mc4mZjGVGkQVOpzXbF7B4oBTP/PP+b3vf/FcOOt4\n7yh3LJwGYEeHdYoZzdBy0LIzzbi9Vb2yhn3JllswEgcW10c6jKRDxd2kxpIKPIHyHbIkDKKazLGZ\nzlQa+NiXrpJWKYWrx6FVsxFv0o3UOOxtqtO/1CFvBx+vElSWMjq8Vqj+8EppGKqiDvjuwz+sWD+g\ntGOWeh72TLp+aavyJzcidRjb0KLdFkSJuRp3e1uSlYS+MnbczbeNPUHThOdjad2Rn0t8x8OzXSOQ\nBrj7coZbQR64YFXGO2m2lp+jXbyPPKmAd63ZLSklSVZSuYpFWRmWrP/Op8iuXjFeVU1b0vNxapeG\nzQ60UaNfwGLYx7YEQrvNK/uHCv85Mq/jKtHp96q/GiaqnukG57NKA7cRtOvA0O0QF6nyY1pfBw7W\nQwH0vDacd3F8ee61U/3b9I8cAKJm5s9NnXSzqf88O8NEPXFBg05b9aEtfcVElcq4N9uTLbabqc8K\nAcJTY2NnkjIpIvpuz3jXlTs7c0yU+tNC1JJQOvT1mCu2tuho4FrNuJ3blm1qEc6GeOfMSjWDZXc6\nVElsXO0/ce0h4mfOgpSEL1onrwqzvhXjCXlRmRB5Ura1Hg8K50kpeeqinl8zgHqk99KWidKsZljj\na8+/TqaYqECDKKnXBuwK4aW4ToizuIQ9VN/1NyDqBW7NYtaEvaKx1jicUMZstp65N1a0od5uhDdV\ngyoqQwZen6iMKeqSzXHK7z1wB+96wxK5Z5mJAYo9aCZH06TrG6Zm62MfZvN33kn8m7+BU0kjYB0s\nqtef0cLgZkCHbquJqmXNto5Zb6c7RhPVKQTUDsdWunilqosUVwlCgOu3g/ra9LpZALuBw87xBa6t\nOpw/7hl6tTmJ5jOaquzyZdJLF9vTrfazKerciCbdqmZpXBGMUwOAJs5yW1wTGPe7CA0gtmZc3dMy\n5eJRj2ePe0wXfISUnLquQ1j9eRBlS5/xDBM1WclY7Dss9DymWotWJ11OHOpBbSNrC8fXMfMoNwZ6\ngCl2aa5DC2LqLMHRtHTp1/iuzSeuKWHtVIthy91dRtnYhDki/dnZ+60FpN2SK5vt79yYAVH3Lt3N\n1pLDO958Lx8/qbKXhJsz6KrFYi+IikoNopzQgKhZf5eeHeJWUPueYbH2CssBLO3lUzoeSVaaPhl0\nPfwTJ5n4KbJoWaSXrt7HcqA24soWvPu7TvH2r3+leX3gtsDRaFBuQa03ICpdaj8ThxYbGtg1C+VA\nn7TTQN3nWOubeklN5s0vU48+u01UxC0ThWJs/ViN6WCkE0Iu3E/6pddyavv7CWubwhFUdcWVQq0F\nnSzkTs3ulsIhSkr6GhQKN6cbujgzTJTUc7TxS2rCGrWuiVlagkQzyFVd8SsP/zr/80f/d/7zmfcA\nGH+iQddjnMbG90j1syo7Y3dUf/q5xLd9pZWz9nvAZYENttLPSCHmijc39dNcDajrUNt3lDVVLal0\nmPe+cwkr1ydc/JmfptAha++YCpEtTXQSgMhbXWXHp3AEYSmwLVsBwiKjdmykJRB2+ZxMVFTGpJ7A\n0Rq4BszPsmhCa7WuuG2/jzsueZ0pEHV3A6L2h/JgVlgecWE0D6JODHQ4z833a6KCWSZKg6hhQi0l\nF2+02pvLN9U4F4GDW0GZCeUvVTp4pSTdU4R6NozndtQaeHM8opY1A6+Hq0FUsb1lAE9TVLqZv2Ep\n6DclBqRkZUdXb9iTmdaE9OaYKA2uU0+QFK0hcB0nKNtkNXeGWrPlHT5CXuUz4bwpWVHhoMZQXCat\n2eYBwvIbO7HJCE+yyoyd8YxHFECojVf9oFI1YS1BmNZ03U5rBKvXBmGVCDfHJVCgczxF1PJvQNQL\n3QyIStSkSjR16R+/zbxHopxZAZKtHazLSpy7m9uGdpzmUzaHCZdut7mxphbPnZn6bJ3AATczA9IW\nNtIOcHVmQjrVwt8LF3ELaTLCLA28pnpgNwxUZ0ZYvpuOKLXx2HayQ4FaNEMtdD+62sHTQsS0iukG\nLrMM97SImGqL/jBwmPg1737jMlfXPBOqbCZ5sUdYO/nsQ0aUKIIQkJSyRGqTuKCoOLE1P4HGdmhE\n4VavR+L4oJmx2ZBeWmYUrsX7X7PM03eoCz59Tce5w6W577Rqby6cN+7a9AaSxZ5PXus6h9Lj9qMD\nQCALD9GE86KccawWTIHSoTStqiuSxqgwTkz9s9KrCTzHTNCoo09kuzuM8rExN21CE5bvm0Uv8S2E\nl3NtJq37xnaM0Gn6f/vka/mBu9/Efd1vR1Z6gXByo4nqzYhboWWifCsgZz+IWqh1QVjPphfMf1Zp\norSB4VQbLgYBcdoyUY0GK5ETZN6GfO5fuYf1pbtN6ZTdfsB4927zuiza7KPW5O9gJirTLs7pSjsw\nY99iK2kNJgEGU9Wvsf7qSTgD6r35sTmKcqZFROEKXB3OHuUT/EiNaSfLiXdGgEDmIeevTnErxaYN\nsxGXdTWCxXyBH77jTQAUlk2UFvi2jy1srZtx5pzx0XqpBkTlE13jbiac16w7o3zM2d1nKOqCJ3T2\nY5JVhL7DYs8jKpK5OVfpZ9Xol4K8xtexyKUDFBNZaCnWWQiq0DNmr6AqGsy2omH3dDixGa9N6RCA\n4Z8qPzL/hJIqLI3U89glNwatoWeTesJUSej4DnaZIxtDVqt6TmF5XCRkvoXV1ApsslDTeSa/Ejab\nYavjGg90qRMnoPfAy1j+zu9m6Q1vPPA3Gk3bpJhyYXzJ9CHA4Y4ycW2e7WxrmKjtUdIywZkCVFUt\nWRm0z6DjOwjdp0VUM4pyPL20pHt21Nm9YmFZ9f9NvSf0vR7OcgOitg2IqnTiUcMo+SWGiQJY1etL\n6swbgTYApRGWV0ls6lFmnmXGptXpUCexAVUAka5naIUheV1QOoLCsqgilZ3nCh3FKNKWMTug7Etj\nHmzuf6Lng2Gi1L5aFboGp1ciLIs8dHU4L8Rvyo/pCAhOCU5OnXsKdNY1vaSeM1X+Wra/tiAq1eGt\nWoOoTNfdcdfWzMId+Q73n3gdAPnOjnF5ndS2KWswzMZsjRIIJ2ZC7s6cLrqBi/Ayek6PB1bv5xuP\nvpzK9nDrGqQkz9qB6laSwtYbrhajN0xNw0Q1WQtJkRg9FKhFeTPZJvMEnt7Ij6508SqlZ8plSr/j\nEnTmB7URQweuEavLpEdcTRXTpe/FT/TiZ7fMS3NCtMMAdBFbNBsW1hmnZjJzAYZWiKOFuN6Ro5S5\njbBrEPUcHk4Y6wAAIABJREFUE9XovdxqwM1Q3b9dQ2R7jPekslO6homKfIvSEQSdksWuZ/qu6wQc\nW+mY9xfaR6lhopb6Pr2Oa05IoASSs4tNA05KX1WSbxaYKNDvGY8ZZWM6mc7ctNvvSjT4iQML4WVz\nC8nmMAHtXxQ4Pt964jWsdZaRpRpLsyDKdWw81zJZS00/WZVnNu7ZVPaerqtWeLapDTkbzistLVLW\nm6cThjqcp66933Gp6opKlsjS4RXum/iO06/n9OAkgePzbafU3BCVD9LiJcnfJX3kmxlHbWit2bSm\nX4GJSpa6+vE4VI5glKpx2WzARzJdBFaLj8dzIArQtgtHljsMo5yoUExOw0SNsjH+tL2G8eU2cSRK\nS+xSUjqCi5MrJEIVE3arwpSDUUxUgRCCjt0FzVbMZopa+l7zmWdRlNVcOK8pMzMb1htmI8q6Is1K\nOr7NQtenFsUc+1vqMFjjsN8wUQCLUj3H6cxhIgkwhwXCwLi9gyqf4yyvMPmWByltyI6pjTppQqs6\ny+3IeMZCQ9dM80+qg+SifsY7xEYS4PlSrT+6dFDoO7hVjtSibGFXuM6tt5S4jCl8F1Hk2LIyxbZl\nmlAKy8y1IugynQE5k8UCRE1oBwjHYfXNP4h35OBwXsNEbSc7bMSbnOzfxs9/8//Bz77qp/BtT9lf\nuPk+i4Pm7xduzGd8PXtVgYvTR1vW5/ZjA6RmR7NxxSjK22xlG2od5ajqilE2xtYHoLCvxtqOZkz7\nXs8kplSTyQwTpet46t8IClomChhMtDUP887oC9p2wjBRaWoYytRrrWTsMAQpcWYsCLIGRAWB0ZEl\ntketHct9vZYkZWLmTHFAAeJmvq8uqPfv6MNzrFn1rj50FYWFrGxqWxe4D2w6qcS1XNymRp/eE4Wn\noixpbOMsKT1YL67/hol6oZthogqPjhNSahBld3uIRTVwJ77P8kBJO8vRyBT2zCwPq1Iof2O8Q1Gr\nSXy8pyjknZlwXujbCDcltHv8+Ev/AT96zw9QWC62lNg1lJNWa2BJSBrPJW1/0CyE4R4mKipjUxPO\n04v2xfFlDaLUQD223DEgqhQp/dDFD9TEWPbV4j/RtfI6vqM8UhDItItEMi0iw0StDLVR4d2nAVXP\ny4CoTseEpIQWl3aqlCM350W0O7Qgyj1yhKI5ltnlXJHmKE+QtSBgwHAm8+6phRPmFNg0WbqUjmBj\nyeGqzohzw1zVLdQMT9frcGSlqXflUcgCx5HsTjKitGTQcVnoeoyi9nqzKpvTkzQ12Eq/JPBs4jKh\n63ZIGhA1mTDKx3Q1CzNx2uuMtQgz9h2Em7E7aX8nSkuEXRLYvjFh7HXcls1xW00UqJBeq4nSoLdy\nySzPXGvTOk3asStwHQvftYmSkqzKSauMwppZZG0bP9ThPA2iBh2v3ewrl05xlO++443Go+v1p17L\n33nR99LbfhBLCE6triLTHqPpTEixCZ98BU1UtKJLnGjh+KTQJrR6ozicqjE+1P06DNoNPvUFuBmD\nrsfqYkCWVwyTCYUjsCVYlWSUjfEmLYiKrrWWGwB2UVHagkvjKyAEmePgFqmpIVYK24RCfSs0bMVc\nAetAn/T1fPTqnOE0n8vOSw4AUbWs2ZqOkGCYKOxyjomaDtSzsg9gogaV+vP6THZn7NegU93phFRR\nZHzFqjjC7vWo3vga/u+/s8bkDpWF2TBRkdYYLu7uzyR0tA9Z07bqyABz261IPQs3r5B1TSdw8KoC\nmjInVkno3TpXKS4SKg32gyo3jKjIUjLLZWdBH+DCnmGAAaaHdf0/9hcz39sC28exHC5PriGRHOqs\nMvD6rIZq83VkAAcxUTocfn1bza+GeXpW6yiPrrTj4I6jAyoNVIqoYBzlJsGncNpaqsNshESy6irA\nZ+lKA8O0AVF9U36rmoxnQFQ7r0FZ2jTC8tk22tMfTTHjNpwXU04jKgSFI+aYKFBAvfHWy2I1d6ww\nbEGU44FmonxrJpyXZSo7XVj7NFHNfD+2qvpre6zLhunfDjW7nWQlsnSptFdaElh4pdSZ0rrkjz5E\nWLoGbZ7aCF3ztV9Yf8NEvdAtNZuDw6K/YE5qVqdDqYswTtyAodRps5MRvjZ5yywXSvUAt+KxARDL\nwSKhEzBMW2Dk+hXCkvi0k6wxF3RLST2eP9k8ekgtaNJOlQZmDxM1a3HQeHjctaRcrc+PLqpFrCgR\nsubIgouNVE6+TkGv4xmvnGVPlb1odEOdwCEuEzzhI3P1W6NszCSbYEmHj51Utd3Gr3u58ugZDU04\nzw47qnYTbTX4pWJCZ5yyudguRkMrxBooLUO5eIi6bE6oxRyIiosUaoeu3WPUa0/XX1i4x4SjmtbQ\nvu/6tiXee8eD6vvcnOWBb5iont/haMNEFeq59Qe10SYNuh4LPZ8kq8zJaRZEVXFszOdKv8Zz1ant\nULhGqk+o+XhIVMT0tXZo6lTklaq1paV0pL6PcDNDYYPOyLJLU8sNoB+6qnwD80wUQC9wjU1Bc9KS\nhdsyUTP6kbDU5oOavOuGDlFaGPYxnwFRlu/TCVzyomY4bZkoc9ionH0WEJaw+Fu3vZpkEtDruCzp\ngtvDGUbPZEPdEkTpcF4ouLHsUJ44hZSQ1LHub33f+nQ91MBgx2vZrswVCC9ldSEwfbUdjU0yhFtK\nxvkYb9L2TXZDiarXFlW/W6UCLZcmqgZj4rg4WWJAVGHZZuz5IkTYFZ4n50ooSUvdq9RhBr8uGE3z\nGZ+oFjylewTmG7r8Rug7LPTU2J1loj7/DXqj1ckjYQ6OXkd6Or28ARkAE78wBzC704WqQmYZsiyR\nmSra2nU7SEuYcdSAqIbRsmpJ7AvKNXXwEY5DfaitG1kLGPo147w58JWkMweP0LNUFQbfN6/vBSfm\nu6RiDhp9VlBnpti2yBIyy2V3oB3Gu30qvyL1BIWtdIaqg/dnf+5tQgh6btdEIhpT0KbZta80Ud58\n2NFzLJwZPdN9p1WfNEzU7By9/VgLovJJxWia09Fp+bnXygaaUN6idRhZCyo7wraE8bDqez2zns4y\nUU3CgavtTKw4pR/XRP32GjLHYpLPJyY04by6MdRMUsrplNT2QbR6vVm/wSNdZSlT6qoGVhCS6X0w\ncgJEkePURVuLskyosxQRBHiuvc/ioJnvxzWIapiopExUTVVddDrJVAmbUleJm+p1oJqMcTSZUWn2\nSwTNOuiR6f1xMbeZ/g0T9cK2ZjFzhMdisIDdnKa6XfK+ejgTp8MoqbD7fazpeI6JqjI1YXfTkVms\nOk7Ikr84F+cWusiwx0wasWYN/LxGTOcf9NNdLW70Um5b6yKcAiFts2DOaaI043X3ogJR50YXzcbv\n14WpcJ/bSsPRC10svfn0LU3hywjPtXBsi7hI8O0AqYHGKBszKSIcGXCmf5Jf+ZE1tld8nIUFylHL\nRHndjglJeX5AYbus5urabqw6xvNp6nSw7r4HZ3WV8o51pA43OX7F1owmKilTZOnQd/skvmKZzp70\n2bGX9zFRlXbElJZAZmpi1nbCg3evGb3VQtBhZRCobEWhwWi/NsaMg65nFsFGVD0bzqvjGJkrJ+nK\ngtpRDvddN8TV2XfpUAHaXsP+eBajbEJW5URahJkHIQh10mxYgTgtsZw9IKrjGSZKuAWDmQW6G7pk\neUVZ1YYCL3O7ZaKSGRf8xjVeF23tBqqAcaN3S+UME9XtmIykDR1u7Hc8kkoDj8oxTMzeNokL+h1X\nsX/AcDLLRD2/cF5Bwbu+fRm+74eg9CiYB1HeSP19205VmNmfAVGehfBSVgYBi/oadpOpYXKCwmKU\njggmiTGdLbdU9umJQ30sWSNqSenApYkK88WOh50lxl+pFO39Ozp8ZrnzTE2UaxNPXezbrwuG02w+\nO6+aZ6IaHc6mdiUPfUeNRbsk9yyeeeDlvOfVa9zot+sTQGdmGnT1PEpnBPYTrzQJLY4WQlZRZMI3\nVrfbhlo1wN3LRIES+acr6nRvDwZkYQtUbqwMKFyLidazYBdG5F9FkVl/8BrPn5zAP1gTlVWZcsLX\nmYJLdsXYMFEZmeWxM9Cf7Q3AyXnszpBH7uyp1DYwho9fqTUhPYAlf3HuNVH5CKvGcuY3fyGECYkD\nfP26yp69crM9iDXt9qMDk82aTQpGUcaSfrlwJbuaqW363a5DZB6Q1FNViFl7l/XdHsJRbGc1nZhD\na6SlAovLp9V3bmzgF5Lhokf4wANsLjp85L4jBoQ2rQnnuTo5oU5i6jgisXxs6c6E8xomquZoT4Go\nyoCogLzSh7jG361KjRA81tl5lucr2UM+v2ak2V4mSs+HIjHRFtBMVOFRoZjziaf92sYTnDKnwqLW\nTJvwNYgqPXNNg8I2iTdf6/bXHkQFVsCit0CgdURWt0uqs6HGunSIs7iEm0zwq5aJyhI1ocbZZA5E\nLQeLpFVqUL3QwXBRtRtWrDe8IJfYkapCPfy6u3n36xeRWQ+BBW7G0RWVvSbqdoIGToBAEBeJMUG7\nfaB0Cjfim2bjD+rcgD4FotRG11xrUKvFI5OR2TyTUg1kmevNMBsxyadYVaDYKSEYZSPswQJ1FFFN\n1OLp9joIrYnybZ/UCXG059Y0tHn2hM/u6jFKy6E4dBt3/MIvkS2sgV78B31rjonK60wxhMECCMHv\nfMcyH3vtYVzH3geiiqwdoj0tSsyJWer7psxHFAksS/Dmb7mDe29TJ/ogbCf3oOOZkNnIgKiZcJ7W\nRFWODUKQW4rJCZ0O/oI6DebaMb2rq89nnmCUj4nLmFgX+C21GLYQifEEirMc7JLQbsdHL3RNJqHl\n5gQzIZDZDL2GQSgym1SHdmZFw00IIdLPphs4JFlpxk0i23FVH10j1Kzaxm4DolySomWi4j1MFEBZ\n1SRZST90VRgK5sKijb/ZrdyDGxDVJAEsdbvIwqeydeq17jsr1idSV7Kd7JJ4CpSA6mvhpawsBGYz\nG6VTw4r0C594OsQpKq6vuVTCgh0VCj95qGfKLRV2exqP7QCBpNSFXivLMQygXWvAa89vUvefVhvO\ny+5XySmeBlH1TDhvrybqmD7pbyfqd1Q4r2VRn7n9ZVxYXvr/2HvzKMnO8szzd/cl9oiM3Ksqa82q\nUqlWbWgBIUDC7DvYmB1szGAwbrfdy/Hp9plxz/SxPT3H3afN2D02bjdmMF4w2GCbXUiAEEJCe6lK\nVSXVnmtExnr3+eP77o2IzCwtHIw9nH45nEpFRsZy77c83/M+7/PSCdtEcYQqAZoz9NZuOFqtBeLa\nqK645mZeMhDdAYjS3M1AlKy4Gyo+6dgqzYpMJRZLeMlgDDw9JoBES7ayQguyax51OhQlEEmZOUUP\nrpjOSz3PFMmCVIxYVrWFqFGAp5osjcnXGRtHMXzuPpLnGzsHnnxx8FxavQ7YUUCsMcMhGeBA2ejw\nnlboVYsW81vFvM8OYq7B//q+6/jIGw9Sypn4ki3qtz1a3YCSBAGBlWTp7nSsJZFO4tt0ow6lvIGX\niMdTSwKtUCBaa420FwLYOi4qET3ZAaLhQP4D7+FPX1Hlkcn6hrWyLJkoQ7KZca9H0u3S10wMxRqk\n85wh01S7iqHqJLIAaTid15XAyY36WIaBqZn0wh6J56PaltDZrjt4pfN9qpZDUWClmWqiegODTQRD\nn8hMxVJvOVtDo9YaWhQIM2JfXIcURBGatKQOLO+BH/kE0cY168cdP7EgKl3MLN2mbBWz0nTNzbEm\nm7tetqo0Oz56uYwWhRQlsvVUk35bnHpaQStjPBzDoSI9cjI2Si606YAA6EgEnQ81jK6HXqnw9Euv\n5sK4SRIZWLgoZl+CHiHqTUNVVGzdphf2aAVtHN1mIjee/T7d+EtaBDIF5ak66D45WydRxefRAjGh\nAqVDzjYI4xA/DsgZTsZEXe4uEiURhCZKIBawhreGLr1x/MsiJWLmc6ClIMqkrw8AQdtV+cr1RU7f\n8U7x3/J02fNCEkm/5/MCFHh+RJzEBIlPEulUhxY418yN6IHSCPom4cIs793/do7tmB3cE2Bq3IAE\nXnpkDoA7rtvK4TnB9On2YHJXChYlCZzTBc6L/MGpuitBVKpFUMXru4ZDMV8l0AYgyg3TjV2l6TXp\nBj3WZEoyltdNMQe6qJ7vg5KMMFF51yCtJDSdUU3BMIjqhj1szabbjzZN5yly4WtpaX9E8ZxmT26a\nQ+C8P1mlKn3CVtY8XEtH19SMOTEwN2Wi0sfyjpGxQI2hKkdbszBUg+YzgChdEz0UFRTKbk5UUGoh\nqCGd0qiuo2epXOhcBEUhyDvyWiuMjytcv28iYxTbQScrwy54Bqr0jlnL6bTNPFpL3K8tE3kMWe0T\nDYmeu6p47WBZgC3VsrJ0nhJLV2ddXN+vvnYX9x4qcd0LD/Nbv3Ajhw9I09s4EL3wUiZqk3TeVF6k\n71f7KYjSqBatLI3vewqJbxMTs+a3UA2TUBtUwIEQFoMAUc33vp6Va/dwqaajOIL9MwtiHkWdTtY0\nW83lyGWi/1Emam3IMaFrayzJNKFeKmVpMIDTJaEB7cSyOS5BZpIbdzsUU4sQuTkqerDBCTx7H3kg\n0CRILGsh7V6AL0Gfp5o0xov83WvmUK69GUWmdfX+wPIk8J/bdpWyo7CRiYolm7iZnibVaO2eLWMZ\n2ohWseCazNTzHN4tZBJ9mb5rNTpEcUJJgqrATFhuyfSpHANxoJMENgkJhVICclwV5AFELxSJOu2M\nZZ4MX4h/6mompwSA7J8Wra0aTpIBYh0zE+ankbVUsQsohkG4uoqSxPRVE1O1htJ5Ay8yV3coWSUU\nzwdFQTHNDER15BzJRX0sU8PVHbqBTOeZljQ9DjKgCWTMVM4Wh4XlNY84iemF/UyyAohiBQloF7pL\ndLMCniZq4Iu+fH15wLLTzgAmq7Ii2ZGVpf8c2KifWBCVDmBXtynbw0yUy+W5Mn/4mhoXi1totr3M\nC6Yeivy3pxqstQSg6YSdISbKpSIp03RRTMvXQ2+weLRlF/Cap2P6MXqxmFGpRDpq5KAYHq6tgRYQ\n+frIQMzpDp2gw5rfomDkKRj5TFyeUvolLcw21EA1hC7LTogVaWDXFQtJpPVxpB4KoGC6mSYqa/0S\nmti6ja7qNLxmVtbtS12Jnc9l1XmWZokcu4yOo2JrFmV5wmz1pCjRD0GCQ/krltb6A0fnSGcsN1jg\ncror01GjC0PPi1AvHOLY5CHefttVGKqebdiJGuIaDod2jWXPL8iNw5JM1Gw9x7H5erb5pkxUP/QI\nNUhUNUvnRZqssoub2X0oWUV6tkoiRcuOZH/6pkLTE0zU8Tmbz161h94OcXJUjD6rLY84TujJ3k/D\nIMoyNGpFGzWySLT+SKPhzO+pF9ANeuQMh04/HErnDUBU+nNTFe+RnqSbfekNM1Qa3xzPUy8PToIF\n2acvnSemam+49jBoYO3aBrYpqgcbQ8JyRVEoDRnTro++L4T6/aiPpVkUHJPEk5uu2adV1IklwZIg\nANOF9mUAwqIUvRoqO7eZbJssZECuG3SzJqmFQMeR/ee6lk5Ty2H0O2hxxGTVxVbk3LeG2GJFOqMv\nizStblsDEClTraHsG3i+pvHY0QlUVaVWsgcNjGOfRssjCdN03qCMPAWn0zkBopq+GFOupVMt2hkT\n1e+pIO0lGtLEt28qWEMtYtKqYc9Uyc/vI3rVS8SGp0UoiZYxUVGnPcJEWZqJoeoDJkpucD0txJea\nIC9ncK4EqCrmxCS9sM+Xri/w4NYtLCP0Uf2kjWNp9GNvhInKSRAlChgUkc67EhMlNztdtiopSHlA\nS3oeeaqBo9ucryjk8nbWumncHPhBeev9A64QI0yUVRz5XSjlAZv5mqUHuK0T4u/Hh+bLcDoPoC/X\nQ1UCjopkUnxdZakj9oYBiNJIvFRmIDyPNEXLQIWWL0CSEMhGxEFYJVqaIT8mrn/UEkxgK6dlvoGm\nYmcH1jTyRo63zb+BV+54GarjZBWXfc3C1mz6oQA0WToviLF1m4pVQvNDVNtGURR8meHImKiwj2Wo\nuLpD3++SBAGqJZioJBmk8GDARNmmWONWWx69QKRynfVMlJxni8MgqtWCwCdQDPr9UWuTJDBZlnuK\nLef7P4cKvZ9oEJVEGo5pULZKWF5CrGuohkk36tPKaxQt0fcodSWuyEXMyrs0Wj5Fs0Av6mSnRtdw\nqEgTwsxwU7IA/aEJ3pJouS73FbVQzE6mSagTezaKmhCbbVASkkjPTkEgKOg1v03b75A38yiKQk1W\nl4Ry8SuqUUb/pizFxLhOkHgkoU6rE5E3cihmX1TmSTo9b7lY0r7hbFuAqMgzcEyDklkUJbkSRAWS\niXIK+WzRtzST7pBg2ctZlKzigEHJmKgoY6IsRyy2y83+kJDZYKYwzoHaPvaUd3L73IvJOzo9T+iB\nsvsoDQpBbNhFs8iaFE53w97I6QYG6aXJcZ1ffssh/v17rsM29UEqqj1I56EoJLZJnDJRsm1JK5Ks\nk+FSsct0LRW9K1rg2FJI6ZkqDW9NnMxUhRPlSSq5USaq54cDC4sh4AnwG++9jqu3zBAm4chCMJrO\n6+AarmDx1I3pvLRSr6H4RHGUed20PMmoDoGopZo5CqLkppCOS1sXi/IwoAOyNjI5W0dRFMo5a8Rv\nC0Qrh1YgLDPWhxdE2KaWnUR1TUUNZfNRq0egBZmFReLaJKoimCggKYrNzLe0bL6lYLgf9wikgLYQ\nqBnT7JsGDU28fjHsUMyZVKVdgmYNnYQVmXqVaT/TFkxUkiTEQdq5QMyZXtjLCj6ArKLKjbwRTZRu\n2hvSeePuGJqi0ZYpMdvSydk6qi5BXy/BSMTnXfWaRLEQVBve4Foa8gDoGwolq0jdHbAzamxmOqq4\n082YKC2XkyLr/DpNVIKfePRTlqWQ57zVZduv/3uqr34t/dDj0Z0O9+27Gr8nxqyvtLPq3oGOsENe\nOkt7ioGeWJKJugKIkmxYCvjySFZsNT24mriGI+a0JZj1JFa4enrn4J51FZ5LpJooR7dHDi8AgZRp\nbMacbpUZir0ylZfOF01VNlgidCUINGJxDaqpJkpXWO2Je52OhSDQSCTTbzoeGJ4oXpBaL60oxlOw\nKHR8DV/F1FWsgosy1Iuv5apZBwtbF+756+frLTM3sKM0h+o4WcFDT7WwNYeEhH7oZUyUGaRMVBEj\niEE29c6YKDlHclEPyxCgL5SWPaJQJTUoHexdqbDcNnWqRYs4SbjcFPd4gyZKZm8u9xazKuhwbQ08\nD1/V6a3DR0lostKNUB0HM2uN9U9fofcTC6K6YR8iXWgQrBK5fkyQG5xiAUpOjrWujyrFwyoJWqFA\noZRjte1RNAv0k+46TdRoOs+TWo9eR+piopg2YnCUm9IHpeAOlZLr9GUpQkcRp4ok1EfEulW7QiL/\nly4IaYkucgKUtCgTIu6QWg3HjenH4nuvrHnk9ULGeKVMlKu7FJ0cRHpG74aeIa9TUaQUpHdJOgmt\nwqA6z1wHol515E28efdrZYpqcJrr+2GmiTJMaRja7GVduYl0iq7NLxx6Dx89+vMcrh+gXNgoXE4N\nCtMoWQXWfLFh98P+yMSEwQLaizsc2FHLetgVc+s1URIIODZRr0viD0DUWrgqr5VD3anRs1W0OMEM\nE8wgJEIh1IR3V0YnhwZV2dk+tTno9sMMgK9fzF1bz56/OtRGKDXcbHS7+HEgGvz2gqF03mBlSdvy\neIb4LOl3XOvLFMkQiFpReqMgykmZKKnPsFz8MB7p7waDBTJlyMp5k7WOTxQPNvmiWcyqr9ZH3xsF\nUQBWIu6RYvbwkx6NggBRae+wCx3BRFGXYKFUZFVWxKbfMUj6RNJJPxeoWforNE2akomoREIPWJWM\nlW6J729g05Wl1qE8/ZuuTRQnoimy9Kzyk/6mqQjVcVAMg0LSZ6U1AFGmZQ9ZHAxMdMtWMUuJOZYA\no7opmrp2+zG2Ij5vo9/I0syGF5LIa6zLjcmTIGrMGYCoJDQzG4ZRYbkAZnnDHdVESQbFL0iAUCyK\nA+fUOJrjZAyaqZr4PRMFhUjr4liikjNl/6JOB1eRur9ER0tMqYnaPJ2XmrHaRbF+urKvabcxYKJy\npkOcxKIq0vAhNDm4fSBl6D7H/TLVgm1I5cUJvnRzbQwVB6XxS285xK+87bA07h2AqLxroA5VacZJ\nTE9ex9TTqCiLOwJDyQBaOhYCT8vYf8Xso+g+BhtBebAomKNVL6HgmqiqilYYMGmtnJZ5BzqaQxQn\nVywGSXVPAH3NxDUG1XWqM7A4cAybilXGDBJi2dLLjwIM1aCbehdGfQmiHLRwwOqmh7ZhXVTfj1AU\n0fKlKm0iLq9Jmx1j6BDjhZlX3kJ3iW7qkN5okAQ+sW7S6Y4CRDWyWG17aPkChhTV/3Oo0PuJBVH9\nsE8S6dimTsko4PZj+q5M10gGo5x3SBLhtJ2GtW2OSt7CD2Jyeo5EiVCkT4Ujq/NgkM5LwUnq89fz\nwkwEnJftAwJX5KMNxQRU/I4Utsdi0hAZI95Cw73JUlBQswWIUmy5OKphxkTZ0jujHbTphT20xGKx\n2aNolIUBnhVmn9PRbSo5i7g30A34PR3X0ihbJRIS/GHqWtNQLQvdEJPH0iw6Slqer3N427Xsq+3J\nNuU0T9/zokzrpRliwVlaG2ai9Cz9lH1vWTW5Iq9F2utrWGdRkp+x6a3Rj7wNTFTmWLyOrt+oiRL/\nKo5D1G6ThCGhBFGrvgRRhkPdGctOSU4/RvN8mc6U6bwhL6cJyRAodjcDUSkTZa9jomBQft0Y8h1L\nmahhQ75OLyDRdNC0dek8yTiZKg2vSUWC0JSJSiKTS1ffzD/cIBjGUt5El2avKRhJ70dJilGHxyEM\nFsj01FkuWCSMur+n7F9qrZBGkiT0/QjL1CTglSBKtvNWrB5B4rFWlFYYUlx+SYKo5JbrmP3Vf406\nNU7TXyNOYplSVAgVj8iScyEgc5KPbZs1XfbHVHsi3Sg3fk2ySXriZCAqPSiYsmqs0wsJ+rIMO+5k\nbMJpAZ2HAAAgAElEQVQwWFcUBa1YJB/1WFkbCMtNy9mgibJ1mzGnhpd0QR2wqqou5sdax8eV1gmr\nXhMv8uhbov9Bdq/lPI8tQ4KyEroidXiBkfXUHEnnydL5vJkXjYqjQDBRcjymqVJTmok2vFH2xNZs\nSFTKdonE6OLaOv2wn+kI404HW2rNOomGGpugBVhXAFFp9aZbEOuYnYqXG7J1k2lnwmNFD1F0nyQ0\nmZscmFy2u9EG5mWzSNfM9fYGfT/MnPmHDy5plPMW++cGFg+pPUbJXZfKCwdFKU7koyjgKmnvTYVO\nmIIouf57Crr0HewpTRQtRgkH64Em2TniGEXXafRiijkxJ9K2Uomi0HHUzPamKIHQ+vmahjU9SIP2\nVZOiJcZIN+wPQFQQ4+gOVauMGSZZlsOLfUzVoDMkLDcNDddwMnNbxbKy9bs9zER5EbYpDgqp19ai\nLFAaZaKiIU3UgIlKU5CJYdJoQNwdpGZLOZtGy0MrFkUhSpL8TybqHzP6UcpEaVj9EDWBtrxRnaCL\nq7tZamBxqG+YvW0u24xMxGBTbbkAyFOlgpIxUSmr1ekoWSVTTzI1dkP8znfEKc6WguxUE7Lky80i\n1IUruozq0Akqze+np89EToY8QbbIOjmxWCz3VvEiH1MVKZccJfk3nSyd5xoOpbyZObmL97ewLT0T\nJnbswakrzZNrEkQZikFHfj+tXM4o6fVMVM8PB74ukskT6TxJByfGhhYR1WIqfJZtBQLR62uYiapJ\ngHlOpiLXM1GGJrQV60GUY2nYppaZv/UliFJdJ2uYHKY90aQ7tqM71JxqdkqqBAb0evRVEzW2aXpr\nA/YlNCi4ohJUsSSI8q7MRMEwiBpmotKTslh4UiYq55porjtitjncob3hrQ3phQbArnvD7VzYO07D\na6IqSrYxrNdEVWVlYWPdopwxUfLUOV6RJrRDruwl2SJpfYrED4XNhGUlUhMhF9UFcT3r4wle3CN0\nU5OYUZG9ky/j7pmnbJWIEyG8VhSFckEHNSaUzFIh1LN0HrZDUxdje0qKk4vpHpiCqHjARKVhy3ZG\nnX6QVea2/HZmEuiuG2d6qYQT9PD8kLDVRjFNTNMVXe4le6WgYGkmdVdo9hSrOxjLapiV7BcNMe8a\nXnO04EECovQ+j1dnURQFVVGz9H7k6yjy3sXdTtb+JfUCGlTotUfSy6sHt1O88Sb07XPivyWQT5li\nS96rolkC08OxhN6rP+StZkrtTDtSITJR1CQb7+sj80Yqi2thpGBTbrDYdtY31EtEq6SSVUBTVfZV\n9wAQ9MwNTOlmkYKoVHqRRrcfZozQZiBqfYyXxTUsrNND9cI+PbkmOJFHvexkjZgDQ6Efd6UeUn7H\nnool2calQEgkIn/wmikTBaDYNmEUZy2ZUkfzuJAjVpXMgLkqbQyG22kNh7VtbvB5NYuSBE69sCfM\nkwHTF3Ny3KygxeDJoelHPqZm4pviecNMVFoRrFr2iH4zjVQDCYP1fLmdgqjBnBvWRLWDDpGmkNhW\nBqIU08LzY4Lzu7K/qRQsVlseWj6PEsdYQXJFLeaPM34iQZQfBURJJCrAijaxpBPXZEl8N+jiGk6m\nkzk3JAq3ts1RkQhajSQF64iFyTUcNFWjZBWzRScTjIcGzbZPz4tGhNcA7bxOLxqknhJPDM7LfTGh\niIyRViGbM1Gy5FZWnjhxkDFRRdm0NwUWtjxBhD3xb6S3Mjo9Z+Qo562spyBIV/chENXMaajSWTpN\nVaRskoaegUR9qMN9YZ0mqu+FmU9UTICmKiw3+xl4sdSNzMx6JipdMN3NQFRL6GbWM1EggOd6EKUo\nCuMVh4VGlyRJ8MK0o/mAkQuV0cXS1R0MVc9c2muhRdTt4GsmamSz6jWzRS32HFxLZzxXR7X6XFxt\njjJR+sbvm7Kaw+atKYBf6YnFoWDmafcC4QHmuFkKD8RGlugakewJl6ZD05QMkU7BNai7NVb6Dfwo\nyFIUWd88udDX5EL+bEzUZFWM3eHxWpROyettDvry/mmWBGJyQ7/jyC6IFQqlkE7YJc4NAMowY5eT\nm+qA/RXXqVJJS/7lidrzM88sxbVZk+8zlpWSSysLmd5UNwNRefFanV4giJ/QZKW/OpKWGw6tWEJN\nYuzYI2i10AoFHF1UYHmRlx2aVEVlwpEgyu5m6a5ICbJDxlWzU6iKympfMlGZoeUQiNJ1fuHYB7L3\nzw5VgUlfdkGIOp3MVDhjooZsDnpeiCYtWZItU0y+9wOUcuJ10jGYjp2CBKg2eRQlQbcDemEvK2yJ\nOm3UQIyVtUjNGlh78UbrABhUCBYKVVTbRu9IQ9i2NPJ03Owap7qf+WmRyvv5q9/F4eBtJL5zReZl\nOLYUZnjV9ju4bcstI493vRASFSOxN03nrY+pMRfH0kRz86HoR8Mgqs90LTfoJ6cLd/3Vlkcv6mOq\nBn0vxlFdNEXL9H5Bf7CmDYOoxJQ+SHJ+Zg3OK+LftE1XTWYfVq4Aouy57YPXtB0K8vAt0nmyMCJI\ncDSbumRCe6nvYORjaSamZdBTTdyoh2mouLqN04+zz5yuCevTeSmISpmoRi8lIQYpxp4XZq1k0lDy\neWKZ0lFkEUi8OsG0tptXzL2UasESDbQdqXnrxyOejf9U8RMJotKTOJHOWMkmbIoLvWpGtP2OKPXX\n3SylcWaoh5S9bY5pafGfihAVLRLWA3KBr1hlGp7oxN0NeihokGg0OoJ98BWdRBlc2kVXnEzTTSHx\nbeHaPOQjMgqihsCJBFHbilspmQVsQ5TwW5GXaaJKJWkMJ40E8/IE0WqI7+epLZb7ggau2ZWNTFRg\n4lh6Bt6Woxa1179RflZxwlJN2chYzdOT1yFt8QJC66EqyoCJ8iKIdDRFoxW0qRSskXTeZumt9UxU\nbzMQJU/g5zMmahMQZQox7Xqh83jFzRy7U/bHyg00BwGi2iSNtI+hKV3Yaz0VoojAsEn6OYI44MTq\nKZRYh0AILetyc1vpr4oqtsyRfnQTBqhIi4fhU3GacmtIcWpOz9Hth+RtXXRf740yUYqdWlM0qchD\ngR97qOiQqOQdg8ncBAkJl7uLQyBKVnumAmgpbl1tj25S7YyJSkGUmBtpewwY+N2srUvnpfcPUzw3\nHV9vvW0PNbfCir9CL+yzvG+a3MFDzHzsV9gljWVhsOiWs+sk5nG6r3R9g1BRUfpdKtKWoGX0WdNd\nEqAgQV1WORXmUFDQ/MEYBtFP00lbQfVE2ksPcyz3VjKmcf04SytY82GfpNNCyxey5/RCMc7TBs7j\nrpifqt3BtXWiOCJmcMi4du8EJbOYMVH9dUxU1Oui2c4Im5mBqNCgqwyBKLkJpWLzgRlqh74XYVpi\ngKegPl1rUq1NOh4q6eEiEONFtcR3CgwVFEUUY0jg0AzUTIx/pWqpVtBGVUSFl16tgrQM8WQTZ91x\nsuu30BUHk5SFNzSDybzUol4BNAyHqqj81PaXMDlkDQOD8WgrBVa9xrOmBnO2wX/84I284YU7Rh4X\n2jDZwinx2D9XyUxbA0NBMTwurnSkls6h54c4lpEdAAH6ncHBXR/SPSVSUlBI03nyd1plkGYEqMsU\n4BWZqNkt2c9msZitP92wj2KaxKqCHSQYmkFeFkK1pVheMFEGjqXR0Rxy4YCJclMQVSxm7PR6YXla\noZlqotZktbA7bHHghTi6g0hcI19zACY1O32uwqtnX88rd9yetd5JMyFuP872tX/K+IkGUUloUC87\nhA2xSXUclZONU4DwfEp1MmeXBhNfr1aZrcuFpzUY6I5uZ6mrql0mTuKsxN1UUr2NL07fikIktUuB\nBmeUBnES46TCukTNxKQgNuthEDVMQ6cLSckq8B9u/nUcdgNghN4IE6UrGufa4pRTc8RkXbwkmx0n\nzQyxV+0K5ZxFMqSJIhTC8tQY8ELnEuVbb6Nw/Q2MvfEtAMRGlyRWMXFoGAUSRcGaHvTZUhSFvKNn\nmihRpaFQsUqs9leplx2abT8TPW8GKtJJtyJTbikgyw25KG9M520OotLegMMxMZSKWuwtkzNczPxg\n4nroKL0h7yr5Ge2a2ATHL8n0bK6E35LMRdhFD/NoqqioGZepG+wuT55vPqMmqiQZnGEQpSoKtZJN\nK61mUhwSeQ001xXO6lLHE/e6Wblyo9/E0DXyjkGIh556lTkGU/K+XuxcYv9cBVNX2T4p3rsX9jFU\nnbHCM2ui0gVzMyYqZTDXM1HpppUYYj4OM6w1p5ptuLZbZOYjHyN31QEOj1+dPcfdwERJw9OC9Ijp\nqPRUC6XXpSQ9sQJbJVY02pqDKZuqliWz0+pb/Nq1H8FZ20OsDOZ24drrqZUkC9Lo0fNCjLhAmERc\nlPosx9jIRAGUwxZKGGZMVHpN+9FAA5aOCSMnKs+GmUKAsbJDzalI89vWoB2RBERxr5+xB2nUh0BU\n24tR3RxhY5VweRnVzaGmovshJqrrhZlBbQrwZvLCnDZdOzIQJZmsoCslCIYABZbpoDqiV18K6Bv+\nwDrgSkLftt8hZ7ioiopeqZLIdGAGovJutiYs9ERKZ9jvKd1ALyz98ELilNnOaQWCOHxO5fF5x8h0\nhGn0wh6hrhAbOntqBrcdm83W4kgXDY4vLnXphT1s3cYPYhxTY0thsF76fSOzDzHq9QwshdICorgu\nnWfWBsUEAFNlMf7StXJ9DNt5uKVCBmB6odAJ+qaKJIhJZPP1NdUnTmL8OMDUTMZKQjvoxB6WKtbD\nFETpxVJ2sErF7WEUE0ZJxkTlbB3L0Gj56UFktDrPtUy2Fmezx9LuEAC6O1jXZ8bEWExd0JvSRHgs\ntP8nE/WPFcMuzPWyQ7Q2AFFPNJ4EhAdQms5rtH3+x8wdxO/6RRRFoV52MHSV5uowiBoMgHQBu9RZ\nEIaI0pSs2fYGOXvpJdMs6DzVOiteQ7M5uLPGrtkSs5I9AqjmcqyseXj+oAIupeGHWxgArPZiQlQ0\nvzdoEOy4WUUfwPayOIUsLSckkUY7brLSX8VQDfJGjlLezASWIlQcS6PujKGrOhfaF1FUlakPfJDq\nT70CgEjrkng2nX5I08hz/0vfR+Xlrxj5bHnXzFoRdL0Qy9So2GWafostE9JWYXkg2l4fOVvH1NWs\n91z6b5riAqhKgX1K+W8GxlK2Kj3RpjFREZ/h4kqbpd4KdWdspIqlrVqYS1dl/23IU2F+Skz0ytPi\n1BOVa4Sdofvi5XGlBUA6NlSry4lzzWfURBmauB/DwnKAesnGl+X1qnTCF+k88V3T+x73euiuYFdS\nYXA5bxIrAao8XeZdIwPHlzoLHNld5+O/cisTEgz1IrHQp9f4yiBKen7Zom3JaDpvc01U+reRJjbK\n4ZP48M8p4wdw9di+7OcUxKaMwnm50dvSMqPbUelpFkm3QyW2iAyNN80L0L9olqG5StRuY8oU8kIn\nYUthBt9XMM1REFWXAPvpy20SwEZ8p7TX3maaKIC6vHdaPp/d424gqlBTEFXUyySJgpkXG1iqOyrY\nDh96nWiAvqUwQ0LCk80ztFzZiHdFjPG4190Aog7Vr2JMmyVuCOdqY3yccGmJYGkRY2yjb1qz36bV\n9bGcUSaqYOYpmcXsUNILhSlqTTJZ3Yb4Dn1tNatS1HI5onabcEXMh4bi0O+metPNhb6toJ0dCPWq\nmJ8Tup+1GzFzuWyjX1zHRAHMyIPt+cXN2ws9l0hBfV6XrKv3w23AWXFMziZut1EVhbjfR9F1XKsA\nhsf55bYAnZI1cSydbcUBO5QEJmcXZNNf22b7//FbTH/4oyzf8mpgAKIM6RrvTg/+FmCiVBCO4M/A\nzJk33EKIijtRz+ZYZrxqqeQkIEoBYE+LM+G6qZpsnyrSNHIogNlp4BruKBO1ThM17BEF4mA9WXNp\npyBKkgiiYEhUXR8dP5h9Xqs6GLemO1gT0gxF2o9vQVr0TPR1Vr0GUbyxOfOPM34iQVTKROmY5Gw9\na+3QtVVOrAomyjVcxkqDhemcM0Fh314AVFVhquaycMEgliZpqdklkE2G02tP0Q0GdvaNtp9NVFXe\n2H7ZzTaXvJnnl958iH/99qPsKAk32t3lHWzJi9dL23HA4NS+HkStdX06ugNrTcJmE1QVLZfLgAPA\nvvG0VYJC4rk0wxVWeqtU7YqoVsqL6rLp8DCH8i8AxCTXVI2p3AQXO5dHBqYX+cSqR+I7mZlmWKmj\nmqMaorwj2gBEcUzfi3BMLfseY3WxeF9oio0hZWGGQ1EUKkU7O12tyn+HQZSpGSPXZDMmakoaHKZV\nXmlMVMV9Oru6RJRE1J3ayIntoeIucuEUt87exE3T12WPz87uI9BADWSLn1p9RFMW9Qd96eqZ/qXD\n8lr/GZkogIpVotFvjqQWxkoDs8G0iifVRIF0WA8CkiBAc3MUzTxNyWaVCiaJGmSVkQXHyK7HxXXX\nA8SBw9FtHEucGjcTlisIf6M0Jqsuy81+1sG9YOZRFZUVqddII/WMCVSxcA8zUen4h1EQlTdyHBs/\nxJ7KLlSZEp9w61iayVMS0BhpX73QwNNt6PeI2x2sfJFdNQF4L9rSWfrMaQJpGnvaswijGC+IsQyN\n6iteRf6a6zBnZ6mXxDh66rKYqzlNgKSzMkW+HqxnIEpWcmqFYvY9lvsrI0L6pYZH4jnEhrgOKdtz\n7Z4ZrtkrAOLWgvjcJ1ZPZU25g8UF4sAn8f0sPZdG1a5wR+3NJJ4oPDDHx0Xz4SDAqA8OaHk5Vy40\nVgijhGpJmhUOzZvZwjQNrylSfpHQcqX6uoULpqhgThYGXl+1MaJmA//iRQLDxtPMrFx9M3YniEN6\nYT+bt0ZVHDQmNA83tVQoFgZMlARR+aF5Pl5x0DWVc0s/fDVW2vamZI4aJj/fyGxaXJdIiqYTz0O1\nHSp2EcXwuLAsqknNK4Ioi1MXBulv1bLIHz5CQwK8NJ2XO3SY6f/lI9RvupVthaEUnW5QKVjPCKL8\nO97Ab+98O+VqYSDV6K8QRAFNV8H0IqJeb6RAJQXTpiZA1JIpWGBtZYGqXR5iooobNFGpBnLYcHXn\ndJFEHVgEgfCOi5ME19I5Uh+AqNz+A9nPujMYn2kGaKLqoijwlPTcqrUTkRHyR2UEP+74iQRRTzXE\nwlcwhFFlqonquwYXOmJBdXUH19az9ASI/khpzIzlCKOEuCEWufTvYACijq+eJCEhJzVIzY5HT6Jx\nReaBlaE8776qSMUpisKrd9zBf7z53/FLRz/IbFUM1OHT/Y3T13L95LENJ+BGx6dlFojWmgSXLqFX\nqyjaAKwUjDzTxWp2Gkj6LkEc0Am7mf4hZeDyzavYYwqwkFYNzeSmCOIwY3oAVuXmmHhOZgpq6BuH\nTsExSBD0rtABDHRWhXIkX0umWKyNIAqgWrCEL1IQZQLzVHCeRmr3AINU0nBMSebiUmdh5PGMiWqL\ndEHdqWVpD3vHDpYTG8vQePOe1/Ize9+U/d3OynacqQEVb01MkHgumiKuWdBxsgVlzKmhoGQtOVJ7\njM0+J0DVqeLHwUiF3ljZydpepFqTnGNkFVdxr5f1NdQKBcpWmYa/RhRHlPIaiprgeRqqouBYOgUz\nT97IcXFoDKfRk81FRdWbtUET1e2HuLY+4pMzWROao3S8qooqwHf70ogOLS0y8GihoGQaMIADQ4zT\nMIgCeO+Bt/PRIz+X/beqqGwtzHK5s0A/7GcAMwlNTDm/whWRxtI1ldfcNMeBmw8D0D99Cv/SRWJV\nY1VzubzSxfNDbENj7A1vYvqDH0JRFExDo1KwWFgV96tsiHGbAk93HVhP03l12YhbLww2qowxk39z\nfqlD0ssRKn0aXjMrrhg2YN0mQdSFzqWsjZC/sEC4Iuaevk4TA4NKzlbXxxgf6H9S9gIGFaDn1wQw\nKRZlaf6QsH42L8rhz7Uv0A1Eq6GUCel0EpJenpXocpaiNOV7BUuLhHl5T8Mra6JSdipl19PvMqX7\nFIMOvqJjl4rZZ0291wpD6TxNVZmuuVxc6hDHz25zsFmk6bPNtIjPJ9K9QMsXSHyf2BPSCsW2RPW2\nmmRrjJoM0urD6bwkMEdAVBppU+b0+iuqSv7IURRd58hQqhuE/GG1NerZNhyNtmjlUisJW4z0oLPm\ntzOD23B5KdPWBobKPRfvA4QkZPtUIQNR6tIlxpwqbl+2TxtJ561jooYsaXZOl1DStmlyL0vBrGPp\n1JwKR8YPcnT8IO6+/dnfKdIYdziVaugq4xWXkx0dFIVCU6wDy73Rw9uPO54VRM3Pz6vz8/Mfn5+f\n//b8/PzX5+fnd637/Qfm5+e/Nz8//535+flX/eN91OcWSZLwlSfvJokVJnUhCIzW1kBRKFYns+el\n6aTtUwOQM6y9manLzugr4m8yrQtiQ6xYZU42RE+jki0m+2KjnzFRihQamoWBvmlvZXf2s6ZqWc5/\nsiY2kXNDVPUtMy/gnfvfmqHwNJptn75bhCQharcwauJzpemRLYUZVFXNTrjR2mDxTZ/jStfkiyvd\n7PNmIEr2+ko3AoBleWIbro4x9I1+MJnNQTegJ/1CUuAWaR2h11F7JIGwA9gs0oqOhZVudsqqFEdZ\nnECWVheMfFb+PByTrvju65mXgital6Qi2ro7RuGGFzD+s+9k8qP/gjCKM/C5PuzJwQLoTk0CCgVV\nXM+g42RMlKkZbC9tRcs3QAtQc2uUzfIGoJBG2lz6VPOp7LGUiVLRUosg8o6BlqXzulkrCK1YYCY/\nSRiHXOhcJi8P76GvkXf0bPxM5SZY6q2M6MSCOCSMw4wxqeRNWt2AIBwCQv1gg1vzjmkBCB89M1i8\nZvPT+HHAQncxe+wb9wvmyFc6lKwiujp4nTQF+Fxja3GWhISzrfP4iUynBAaF2mB+paXbr7tlB0de\ndAwYgKiwPEaiqJxf6uAF0aZ+RsNmpPuG7jc8ExMl2z/l8tn8SudO+jcXljpEa4J9eXT5iQxUDLNB\ndXcsYytDXSEp5AVIkSk9fZ0mBgaHoeU1D6M+kT0+DKKqdhlTNVj2xH1JsyTD1aKzBQGiHl05zqrX\nYMKtj7Q5idtloiQtkLAx6kOC7bJYX9J+nJulyNJK2ZSJStN5k7pHKWzTNHLkHJO6PICkkTdGWfiZ\neh4/jFlsbl4B+EyRJAmPyPG6tZSucRee9+sEUcD3Lj9AySyQr4jrHLXbxP0eqmUzLdfPvikOcGkD\n9dl6HksbXNOinefkheYGcXtLyiHWt5kBODKU+gKxVsZJsqGDQBppj8tqyUZTNSpWieXeKmt+i7V8\n6su0NKgsNBQeXn4MgPnKLlEMJFm7ZOESju6Q9xICQ0U1TTRVxTa1TBO1Pp0HMDedQ7G7kAzY+BTM\npnvO+w/8LO878LMjWYEtBZVX3biN33jvtSPfabrm0vIT1GoNa1XMo/UM+I87ngsT9TrAPn78+AuA\nfwX8TvqL+fn5SeAjwE3AHcD/Pj8/v3ne4scUj516mO3feIJb7w647onvcPlP/hjv3Fm0Yontlbns\neTlZ+TM3NWAIhk/bV+8Qi1bcqrLDezEfOvi+kfeZG6JmC5bLRMXhzKW1bICoW8R7xVODBS3V2KyP\nXTMldE3hgRNLm/4+imNOnmvylfvO0e4FhPnBxpGCqNTRPF0QX3OTfP/G8IIqFnlFUZibKrKw2mNJ\ndtlOS6+npdD09NpgU1/JmCibBZly3IyJSn2KFlZ7hFGMaw0YstV+g7nJAorZJ/HtDUabaWyT5nqP\nnVlhpeVh6Gpmn5DGTdPXY6g6P3/wXVnKZzhEP6jyBhClKApzkwWa0pG87tRQDZPyrbfRCsX3vxKI\nMifF4qhXq1Qq0swvmcHVXZJefsTLan91LyigjZ1HMXy2Fmc2fU2A7TKtdap5JntsrOSA7mMkzoiw\nO9XFRN3OAEQVimwvzQFwunmGTOIV6uSHTAKvqu0lIeGBhYeyxy62xYk63dwmpXg31WpAykSNXv9D\nu8ZQFPj+iQFgSk/ZZ1sXWGr0uPMHF7j30cvsnCnQjlojqbw00hL0mdzUFa9PGmkq46nWuYztSEKT\nsanB4UYd0lHo5TJ6tUrnwR+QeB7mlJgXD59awfPjTUHUcK+0I9tnM0NL2Kjh04ZEsACrkZ4xpKmO\nKm+4BGHE6UtrxE3xOR9Zfpwn5b1OGSAQbNvM0H/r9THC5WX8BbEZG9WNTNRUTaQ3Liy2M3YIwKgP\nrkmSQNmo0Vea5F0NVd+o0UtTid88/x0A9lZ3o2tqNkfV/uDeVe3qCOtVmhH3LvFclETZwP7CkL3B\nunRepbeKHQc09Tw5R8fQjBGDzGEmCsgKfs4tbK6L6vZDHnxyia/df56/vPMUf/bVk/y/XznBn37p\nCX7/84/yxNkGh3eNcXh2B7ZmcbJxZtPXAWEA+d1L3+fLT3+Dz578An/+xOf4syf+mk88+il6YY/r\np67JqurClWWhTyyXs2upFWW1Y0/sKalNwq9e84t88OC72TVdptn2NwjD12RHhbyzca8Yc6q8esfL\nedf+twGDQpk0Bb0+0tR8Taaqq3aFpr8m2CjJRAXyswMUpFWOqqjsLM2hKArVLdP4ik58WQDOnJfQ\nsZUM/A33OxXp+5ievsC3LtzL35z6e/763F+gum201ky2VqcFQ5s1qx5/x7vF9z94kDe8cGdWUJBG\nul/3cxW0dhcjiP/JQdTmO9lo3Az8HcDx48e/Mz8/f83Q764D7j5+/LgHePPz8yeBg8C9V3qxSsVF\n34TF+FHF8hce59jjPaAHrNA8KR6vHT3CO4+9jrvkQjE1VqVeL3B03ySf+vIJAOr1wem4Xi/wb959\nLf/pU/dzx1VH2b9tVNh3aHYv9y+KDalaLLBvR42v33eOs4tiwdjxa/8S9fQJ9l5zgO/d/fu88/Cb\nRl5/fRyZH+feRy8ToDCdsmBxwt/efYrPfPnESNPX0pZpOCN/3jZDvV7gtsr1LEWLvGLPbVSdAvV6\ngQ+/+RDLzT6fbdwJwHStnn2GAzvHeOT0Ck+cFZT2zFSJer1AuXo1n3gsz/cWHuD9178FQzPoX8T1\nXHoAABhESURBVBTfKfEdllvydFN2NnyffTvG+Ou7TnNepnlKRZtd07PwAHSVDi++foonT0XEgcXk\neGHT6/GCwzN88ktP8NDJJZodn7Gyw/j4aCrsTfU7eO3B264ISgG2VaZ54NKjuCUtS7cC7D2gcvqc\nWOj3bpmjaIlr/Ym/Pw7ADQenN/1cye7trAC5mWmmt0rAGl/LL9z8Zj7yrW9SLbvZ392sHeVvTv89\nlV1P0wlg7+SOK977UnUf+gM6T3fOZs8xbAPlUR8lyhGr8iQ7VaSqTLMI2EEXXZbBl6fHObZ9H598\nHC54FzgwdxQeFEUVlaKdvebt7k189skv8ODqw7z+8MsA+MwpMU1fOn8j9XqBY/sm+Pr957nY6HH9\noRn8ICII45HXAagD+7fXePT0MrptUCnYHEh28ucn4K++9wCXHh4saq988TR/8ETMdKm+4Rr8/NhP\n84r9L2Jr+cogM41r3P384SPw0MojGaD54GuOMhst8MSXvwiAWy2PvMfqwQMsfl2M/dkDu6ifcvj2\nI5eIE9FWY/3nmZstcddDF5mbKrJrrs7+M3t48LI4mW+ZrG8AUmfHx/EkyFkIDa6bnsDSrUx4vLhg\n8suf/xadXkAhV6GWG+N44wQ1r4Kh6tyw62pMfQB0f/rwq/nW2fu4de4GtEtfZOHUGZKzQsM5tmML\n5U3G0FQtx8WVLhN7D3JWPjaxZzv2WJ6v3HuW//6FR2nXVfSxmPndNokuWMbZ8RplR7xenQJ7T+zk\n8SVRdPOCnYepVwpUSw6dfotpcw61sMD82E7ecej1cH6BlKee3rMVLsWQqOTUCpe7C4yN5UcY9Mc6\nArhNVWvU6wWioskZwLz4FCGwpue4ZlKsP7PlCVYvN9BVnS2T9ZHXOXbVFJ/5+pM8dGaVl9886Km3\nsNrlk3/3OHfef44wunKqzzI1PvTmw0yO5Ziv7+QHlx7FLCSU7MH68sTSKf74/s9wYuXMFV9HUzVe\nedWthE/fSQMwVsUYyE+Os237XngIVAmiuj0FTVU4tG8CQ9eo10XKqrN0iu8/sch9J5d5+8uFFvf8\nYptLqz1RUTtZ2vS931F/bfbzDYdm+NzdZziz0OH2Gwc2DFEU85dfP8k3HxTAZ6zkMFZ2mKlMcKJx\nioXgUgaijO4aiTS53Tm3j++1vseu6hxb5OH/dz72Ih6+8EV6Z89SqzhYvYiVMR2jkFBxipSLFmcv\nt6nVcpx49JvYh7/OPb7PPY8PXfe4SOPEXi40+hzeM86nvy7G2bF9kxvmYP1Nr2bX61+RtYBaHz91\n0w7+6s5TXFRybANqbSjkN+5FP854LiCqCAwnj6P5+Xn9+PHj4Sa/awGb330Zq6sbc+Y/yrjlFW9m\n9dgN+I0gE0dquRxasUTQVvjw4ffzjXN3U4rHWFxsUZCb0VTNZXFxFNHvmizwnz96C6qqbPjd4dIR\nZvJ3cb59ETvKMSO1VadlnjtQbax9h4k78LHDHwLY8BrDcfVclXsfvcwX7jrFa2/eztOXW/zx3z3O\n6YstXEvn1iMz7J4tsWU8T2X5LOe/Kf4ucIrZ694x/TKiNixKsePRneJkcfbhQ9y38AMKSSl77nhJ\nXJu02qXf8bLfXT9xjC8//Q3+/pG7OTpxiEcviUGfeDYnnhYbpKFs/D5FWwz8B0+kegBIOmKIXWgs\ncsseBU4Jnyxzk78HcFShTfv+8QXWOj6TFecZrtuVRZU1Q5zGv3fqUfbX5gH42tm7+Ielz6PaCYXu\nLvrNmFbY4NNfPcmd959nx3SRYztrm76fX5TplLFxEikwv7TU5fKC1AUlSfZ3uaQkmjlLwWNV3fw1\n09iSn+FM4yxnLy5i67bwnlJjui2Vs7LqLvQCejIFtnr6XJYS6Skmbl8YFT52+SRXFaWuIDIwteFx\na7CzNMejCyf46mP3kCQJdz31XcbdMaa1LSwutpiQY+L+xxe4af9EBtyNTcb/1durPHJqmY//+Q+4\n/dotfPZbF6AEK8ECV20/wtU7aszvzvHpk58U90Mf2/x+U3zGazMIg8P1Azyw+LD8TAbX7Z4kbA6A\nTaAZI6/lvPAlIEFUVBrjur1j/O23BcNazpkb3jcnHfR3TYvP9MYdr81AVGvVp6OMumWb23dmIOqh\nC11uWGpTtcpcDAUDete3OxS0Erdfu4Xr909wX2uVr527i3PBRfZWdtNc9YDB4WhKm+WNc4LJWC5I\nX6QHHgSgozkEm1ynyarLhaUOTzciFMsi8X2aWPzeJ+/ja/efxzI0tldmOMsFrjlo8T053zvNkKA9\neL0bxq/j8aUnyRkubiC+f04yBRP5Kj937b8AoLcWExtDLaOcAuV8j0bbR/UKtM0VTpw7l9m0+FHA\n3zz2VQCsMJddcy1fEIUxQNPI4/d9FhdblHTxvfNGjqWlUcapnjeYqrnc/YMLvOHmZYo5k28/con/\n8Q/H6XkR02M5ju2pM1lzqeQtTENDUxUURRQLFV0TPYlZXGyx1d3KD3iUe558ONMa3X3+Hj79xGeJ\nk5iranvZX52napfJGTlMzURVFBQUckYOve/Qlk3Blx57AoDQyRO1NYpmIbP7WFwKmKy5NNbte0d2\nVCm4Bn9950mu2lbmkVPL/OWdp/DDmJ+6futzmhM118A0VO577DKLMvPQ7gX87l88yMlzTQquwVtv\n28VYWayhOdlu6dHLJ2lJELV29kKWzts2dxTlofvYV5ofeX99cprk1Cme/uZ3UZKErq3yxPmn2VGa\no1awePJcg//rG3/Cdxa+A5rGLvsgN8zNU7UruIaL33L4ze/dzyc+/wjvfWXM1+47y1jJZq6ee45z\nfxA6sHOmyIlHDbYBPz/1asbGXvC8X+f5xjOBtOcCotaA4VdQJYDa7HcF4J/cuGHPgf1XvKj7qntG\ndDSmofHbH7rximmctIHt+jBUnV+95hd5fOUEeyq7OK8O8vSqomAaz0+zf2TPGLmv6nzu7tM8danF\ng08uEycJN1w1wdtu2z2SIw8Y0PX6UDnzleKd+9/Ky7a9mC2FQbpg+9QouzNcfXXT9PV89ew3+dPH\n/5zPPvkF1vwWk84kp30HH3GSHRbkpzFedjB1VZT2IwSGhmZQNAtc7ixkvdVunN820hNrOBRFYX5r\nhXsfF5tTpbC5durZ4sj4Qb5y9k6+ce5b7Kvu4W9Pf4kvnvkyRbOAce4azp2x+LRzkkfOrHB+scNs\nPcfPveaqK95va8tWpj74IZxde9AtHdvUhCuxTLc5Q+lJVVF56/zr+P2H/jvAiKB0s9hX28Pptaf4\n3Km/Z3txK396/C9QUAkubeW7LbEh5x0DIydOh8HiAoou+xIWCqiKyvbSNh5ZfpyHlh8FRCuhlXWV\ndq/cfjv/9cE/5OMPfiL7nK/afkdGs9eKwurgxDlhRJimTfLuRsbvRYemuefRS3zrYfF/gMKRAlq5\nwbtv2IaiwH996P/hYmuB6yaPcuuWm5/xGjyXePncSzIQlRp8ptokANUcVRLYW7ehlUpEzSbm7Cw3\n2RW+fN859m2t8KZbd7I+Du8a47ajM9x+rWCdx5wqv3Lsw7T81qZpY2f3blr3fBuARxYClpo9zDgP\nXCaJNK7ftZ133bE3Sx2O1W7ja+fuAmB3ZeP7D0daYRfJyuLNhOUgvHO+/8Qi55e7lPfME3XafP6e\nc3zt/vPM1vN89E0HuRCc4uMP3suKv0wv7KMqKoY6ek8Pj1/Nlqe/wd7qnuy7lmR6fv1cV20HrVAk\naq2h18Z43S0Gn/ji42wpTfJI7ykudRYyEPXnJz7HmbWnuW7yKPOVgZzW2bOH9veFiLmp5zIpwLis\nbi0Yo2kcEGvDrUdm+NSXT/Df/vZRDE3l/hNLWKbGe35qLzcdnBqRZDxT7CoLR+/7Lj/A1WP7+MwT\nf81dF+4hp7u898Db2Vvd/SyvIIAggHdWcIDpPdpamM20RUQGM+Mbv4tlarzihm18+qsn+fX/dg8g\n5vj7X7U/07M+Wxi6yp4tZR4+tZJpVf/PP3uA84sdrt07zjtfPp/5u8GgIOd082kSWwFDJ1haEvex\nUmFbfRe/8YJf29BzMH/0GGvfuoulv/oLQFS5L/VW2FESxtTaxFN8Z+Fx8kqFpYcOcttrrufQ9NC+\nVIAju8e4/8QS//YPxHd9ybHZK661zxa3HJzmayfE+Pr+F7/L9MRVHNz57PvgP1Y8FxB1N/Bq4M/m\n5+dvAB4a+t13gd+cn5+3AQvYBzz8I/+U/8iRmjw+39BVPasy2jKuYegqQRizZTy/QRD+bJGzDT72\nlsP8zqcf4IGTS4yVbN5xx3ymzRp530oFFAWSJNNEPdvnHAZQIPRL42WHhUYPU1dH8tPj7hgfPPhu\nPvX4XxLEAS/ecjOv3HY7v3jnt4llLjztoTYcqqowNZbjqUuyV5IsdZ2v7OLey/dnG/yO8YlnvD5H\n99QzEFXaRGD5XGJ7aSs7Stt4ePkx/vMDf8Dx1ZOM2VU+cuTn6e0x+O1PP8A/3CsWv9uOzvDW23Zt\nKpYfjsI1A9uDct5itdXftDUNwKH6Ad60+zUsdBc3tXMYjpdtfRH3XX6Ab5y7m29wN6Zm8trZN/Kp\n77ZAen/lHANNs1DdHMHCAppUkKdtIV48ezOPLD/O3Re+i4ZOvFajMD26Uc5Xd/HhQ+/ja+fupmgW\neOHMCzIhLIhNavdsie8+tsD9J5b4qztPoQA3HdioWbJMjY+++RB/fddpPD/i8K4xwlKRP3nsz/ij\nR/6Upf4yLb/Ny7beymt3/tTzng+bxZbCDO/a/zbOts6PbMhauUzUaOAvbLRwmPuN36R/+hTW9AyT\nwO9+5OYr3mfL1PjZ2+dHHtte2nrFz+PsGmy0a5HGb/zRvfgTAfoEjFkTfOCl+0e+d8HM8y+v+TBf\nPP1lbpg69ozf1R7qfablCyOi2+FIvXMuLHbY/+GP8tiZFT7/mYcYK9n8yk8fpuiaJD1xjx9ffYKz\n7fOMu/UN98NQdf7Vdb808lg699LCl5HnT0wQtdYwamO8cGuOvdsqPO0d55FH7uFi5xL7anvkeLyH\nmfwUPzP/xpH3zB08nIGo9/z0TZkGKC3gya+zdknjloNT3Hd8kYdPCT+jndNFPvDq/YxXNi/cuFJs\nL25lW2EL9y8+xKlvnaHpt5jJT/FzV78r05c+W6TtWrynBbupV8TGfqh+gOOrJ9D8Ev1WhT3Hypv+\n/cuu3YJr69x3fJG5yQK3HZ3dVFD+THH19hoPn1rh9z77MKutPstrHi89NsvbXrp7A6BMbXASElAU\n9GoN//w5kjDE3XfVyHOGI3fwEObUNN5TZwABopaln5Rb6mFseQJTcZheu41Fv5N5eg3H+1+1ny99\n7ywnzzU5uLPGbUdnNzznucYtB6dYaVxP41PfZsulx+m12sA/bxD1V8DL5ufnvwUowHvm5+d/GTh5\n/Pjxz83Pz/8u8E2ESP3fHj9+/Nl9+X8CQ9dUfvENV9PuBRybrz/7H2wSO6aL/PaHbqTTD6gW7Csi\ndUXX0StVwmZjpPXK842PveUQpy6sMV510NTRk/ZVtb38bzf9G5IkyRa/csFkZc2jnDdHvECGY7rm\nZiBq64RYZI6MX829l+/n62fvFq9zhXL/NK7bN87TSx2++K0zbJ3cfDF9LvHK7bfz8Qf/iOOrJ9lR\nmuN9B94uTlkO/Lt3X8vxp1fZNlnYIF58LrF1Is93H1vIWLf1FWwAL36O7Iupmbz/wDv4wukvkTfz\n3Dp7ExNuna9V7+HSSpeybAUDYIyP4587m1VrpeLWfbU93LHtNr789Dd41/63spircN2+jSfa3ZWd\nz8iCvOTYLPcdX+S//KU4K73o8HRWjbc+iq7JO4ZAR5yMcef5b3N67SlUReXdR97MNeVrfiQAKo3r\nJo9y3eTRkccm3/N+zv+n36bysjs2PF/L58ldPahqejag/HzCHHLsf/n12/jq989RtSus8TQHJuc2\n/d5zxa38wqH3PvtrT01jzW3HO3ManuHEnoKoJy80uW7/BH/wheOoqsIvvO5AViZfsytsyU9n1cQ3\nTV17xdcbjsO7xnjqcpu9WzeuMWNveBP+xYuZf9V42SFsC7B2rn2RTtDlk499Bk3ReOe+t27QLw7f\nk8qWAZCfkJW169mQNGxT51d/5giPPbWKY+psnyr8UONLUzU+cPU7+K3v/Re8yOPGqet4057XjFTQ\nPVtkpqbSYsCQTNSN09fygikhHb5wtMtkdeOBE0TG4paD09xycHrT3z+XuPXIDI8/vcr9J5bQVIXX\n37KdV924+dibcOsoKCQkqIqKNTND57I4eJhTkxuen4aiqtRe+zou/t+/B4rCpZrB5eXHuX3bi/lO\n+x9Q1Jgt3gtYXBSFObVNSAnH0nnNTds3efXnH4qi8LoX7eJS6+WsffbPmV46Acz9SF77h4lnBVHH\njx+PgQ+ue/jxod//AfAHP+LP9f/LOLAJa/R8w7H0kUqvK0X1la8iarVQ1B/e6mui6mbO1VeK4cko\nzN28TVN5aWwZL/DtRy6za7bE0T1ikdlXnRddwSMhSn82ZkZRFD70xkO8+NDUphPyucbe6m7+w02/\nTsNrMuHW0dTBBlopWNxw1ZUXjmeLw7vG+O5jC9z9kJDYrmeinm9M5yd5/9XvGHns373nWp661KKU\nHyzsxlgd78xpvP+vvXv7abOM4wD+fZ++LT3SA+VUCvREgdEBDgYCQgdGYYThsul24SFmUaMXGg8x\n0cQL44Uxaky80ujFjPHS+BcYsxkTE3UuY9MmC3NsmoGTboyDU+KoF6WlHW0pL7Tl8P3clTxt3zS8\n7fd9nt/7e36/CkmjiW/UCQCj3iEMugaiPwTlUKTOacEzo0348tQ4OveUY6TLlfVzhSTwfOtTmFyI\nNuarczpzXqsAAIamAOo+PbmpYS0bkhBwvPAisBSBv9WHYwM+XJqZwAc/n0vZemO9TPva8O/E5WiL\nljQcdgOq7Ab8ELqOP/5awK2FRRzr9yUt10uShCN1I/jw7CdQCxmdle1pXy9RQ60Vve2p63P0/nro\n/cmzduX6UliLLPjxz7MI/3MDtxbncMgzFL9jOJFsNi/vBXk7vuUJEJ2JejrwOKpN6WcqhCShyZXd\nbFEmVq0Fb3W/BiGJlMu1a5GttvgsKADIlpWwGftfjIXcXFHLAs8dDuDc+DS8Veb4smgqJo0RAXsD\nzk+HsBRZQvG93VhYng2M3b2a9rntHTC27kMkEoHp1y9wIRzCR2MnMXn7Gu6EHZibL8FUeB5uh7JQ\nq0TpQD/+uxhK6tBfCBv75qeCsQT78/6eNpMWlzCbMXgFWx3Qa2V0Nq4s2WlUahxw9uDrq6dhVBuS\nem5lkthRXim9Wpdyi5mNal4u2o/1RjHplS07ZlKkVsFfnbwUELuV/c7sLOSSklVfWOu5kk5nf0MZ\n9mdZl3E3naxL6kaeL/kOUDHG5takx16LC+/1vgl9mr5g62Huvx9/h0Iw9/alHSOEhCeHG/D252dw\nbXoBXU0VeLCjetU4v9WHUc8QjGpD2p5lG6USKhyvP4yPxz7D+Mxl1Ft9eKAmmHa8+533sbS4uOpC\nsPWuppK5lNi7bL0kSYLO68P8mZ8AAMKofNZ8I2SVQFt9dudrb1UXzk9H67WMzS3xv2sq1m4zIsky\nJAB9zi5cCIcQunERZo0JmGvDlevRoO0szd9noNIb4Hz51by9XzoMUZS12PYr5RnqD3RFMvpaVl/V\nPOQ9iEOe6HKLkqu+rUavVaOx1orQlZvoaCxLatqaS4mNFBOv4Gnr2IwABQAqnQ7OV9b+kfA6zHjp\neAvUKoH6FEtvMYOugU05rkz22vfgqG8EkiQQdHZnPNdVBsOq7Wy2G63HGw9RhQry69Fo86OtrAVu\ncy0kWYb9yMOYOfUNihJq8LJ5jQPOHqiECsGqbnx1cxJTy/WIuZ5524oYoihrsYJBpYFhJ4SnRCeG\nGzExNYt7/KsLdXNF616pKxDq9H2yaHcJuDdeSrBZBmrSz5ztNFq3Z+1BW4iQBE4EHo0/tg2PwDa8\nvo1GhCTwiH+lX9XRoB7f/xINUbGmorsJQxRlrSdQCVdF8a48UVIpMWvj3YDzpai6BsX39WH2u2/j\nHcyJqDC0bg+0Xh9MbdnVme1EtmIt3n22C2O/hVFXnfpOxJ2MIYqyJoTEALUFlD/2BDSVlTDsbVl7\nMBHljFCrUfP6G4U+jIKzW3QbaluwnTFEEW0zkizDNniw0IdBRLTr7awiFSIiIqI8YYgiIiIiUoAh\nioiIiEgBKbK8FxoRERERZY8zUUREREQKMEQRERERKcAQRURERKQAQxQRERGRAgxRRERERAowRBER\nEREp8D/eruE1Y4PQWQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGYCAYAAABic7c/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXeUJdldJviFj+fTV5brrrbRkrqRkG0hFgYJZhbQCO3Cclhm4LCDAA2wHKRlAGEGBoQEaISEEw0IIWh5jSRaErRvtdp7U91VXVFVXT4rzcvMl/lc+Ij945owz+TLqsoyXfGd06cr34sXccPd+93v9/1+V4iiCDly5MiRI0eOHDk2B/FCNyBHjhw5cuTIkeNSRE6icuTIkSNHjhw5zgA5icqRI0eOHDly5DgD5CQqR44cOXLkyJHjDJCTqBw5cuTIkSNHjjNATqJy5MiRI0eOHDnOAPKFbkCOHDkuLhiG8V8A/AKACgANwBEAv2Oa5uNbdLwfBvAW0zT/u2EY7wLw/aZp/som9zEF4CSAT5um+V8Tn/8MgB8zTfOd56it7wUwZprmHxuG8R4AqmmanzAM4/cBTJmm+cvn4jg5cuS4NJCTqBw5cnAYhvEhAN8D4MdN0zxOP3s7gG8ahvEG0zRPbMFh3wRgAgBM0/w6gK+fwT5+FsBtAH7SMIzfNk1z9Ry2j8M0zVsSf343gBe34jg5cuS4NJCTqBw5cgAADMPYBuBXAVxjmuY8+9w0zfsMw3g/gBLdbieAvwJwBQAFwBdM0/yQYRh7ANwL4N8AvAXAOIBfN03za/R3vw3gR0FsBMcA/CKA3QDeC0AyDGMdwCFQ5cgwjFkAtwC4AUAI4BbTNP+iT7tFEOXsFwGUAfw8gD/us921AD4FQtjmAQgAPmOa5qcNw3g3gN+jbWsBeL9pmk9QhemtAHYAeB7AYQBT9DzfBeAHDMOw6CFuMAzjWwC2A1gE8BOmac4bhnEMwOcAvJ1ekz8F8DYAbwDgAXiXaZqnB92XHDlyXLzIPVE5cuRgeCuAl5IEisE0zVtN03yJ/nkrgE+ZpvkGAG8G8P2GYfw4/e5qAHeapvlmAL8J4OMAYBjGTwO4CcCbTdN8HQjR+iQNEd4C4Iumaf525rCfAHDQNM0baNt+nhKhLP53AEUA9wD4JwC/bBhGvwnirQA+b5rmjQB+he4ThmHcQNvwo6ZpvhbAfwdwm2EYVfq7KwF8p2ma/zlxPb4Goph9zDTNv06c+4/T9jYAvCdxbN00zZvpvv8OwJ/TY50E8DN92pojR45LALkSlSNHDgYBAF8HyjCMCoAH6Z9lAF8C8EcAvhfAhGEYf5j47nUAngBRVv6Nfv4MaJgOwDtBCNdThmEAgARCfIbh+wH8OgCYprkO4MYB2/1XAJ81TdM3DOPrAP4WwP8F4POJcxmnx/8eur+XDMO4l379dgD3mqZ5hH53n2EYSyBKEQA8Zpqmv0FbAeBu0zTr9N/PA5hJfPcV+v+XASyYpvl84u8J5MiR45JETqJy5MjB8DhISGrSNM0V0zRbIOQIzDgNQn4EAN9lmmaXfjcFwKbfu6ZphnR/Ed0W9Hd/Yprm39DfaCChrWHwkSZ1VwNYNk2zmfjsSgA/BOD1hmH8KP1YBvA+JEgU3RcS7QGAING27CKiIkioEgDaG7STwUv8O3nuAOAM2C5HjhyXMPJwXo4cOQAA1Jfz5wC+bBjGFexzSlTeBiCgBOYxAO+n340BeBjAj2yw+zsBvCcRIvsDkPAaQAiO0uc39wD4f+hxaiA+pOsy2/wCgIdM09xpmuYe0zT3gChIrzcM47sS59ai7WT7uwrAO0DIzr0A/gMlacxIvxuEVA7DoHbnyJHjMkFOonLkyMFBfUn/AOBzhmE8axjGEQBfBXAXgA/QzX4SwM2GYbwAQjQ+b5rmZzfY9ScBfBPAY4Zh7APwHYi9QPeBkJi/zPzmlwG8yjCMvSAE6MOmaT7NvjQMQwXJyvvTzDkcAlGh3pfZ308D+HHDMJ4H8NcAjgLomqa5H8SU/lXDMF4EMaX/RxpCHIbbAbzXMIwPbLBdjhw5XqEQoiirYufIkSPHKw80O/ArpmkeoMrWXgA/SElUjhw5cmwauScqR44clwsOAviiYRghSN/3xzmBypEjx9kgV6Jy5MiRI0eOHDnOABsqUbSQ3ScAvBYkw+Q9pmkeTnz/awD+b5BieB9ihfVy5MiRI0eOHDleyRjFWP5ukEJxbwUpnvdR9gXNzGFF6/49aGG9HDly5MiRI0eOVzpG8UR9N4A7AMA0zccMw3hj4rsOgOMgy0GUQNSooajXW1sePxwfL6LR6G71YXJsIfJ7eOkjv4eXPvJ7eOkjv4dnj+npijDou1FIVBVAMtU3MAxDTlTwPQlgP0jBug9vtLPx8SJkWRrhsGeH6enKlh8jx9Yiv4eXPvJ7eOkjv4eXPvJ7uHUYhUQ1ASTvgJggUD8IstjmVfTvOw3DeNg0zScG7ex8MOLp6Qrq9daWHyfH1iG/h5c+8nt46SO/h5c+8nt49hhGQkfxRD0MsqwCDMO4GcALie8aACwAjmmaNoA1AGNn3NIcOXLkyJEjR45LBKOQqK8BsA3DeATAxwC8zzCM9xuG8S7TNB8E8CRIFeJHQeqw3L11zc2RI0eOHDkubti+gwfnHoUfjrJudY5LGRuG8+hiou/NfHwg8f3vAfi9c9yuHDly5MiR45LEPSfux+3H7oUqqnjL9jdc6Obk2ELka+flyJEjR44c5whRFOGZpb0AgBOtUxe4NTm2GjmJypEjR44cOc4R5juLWOzWAQAnW3MXuDU5tho5icqRI0eOHDnOEfYu7wMACBBwsn0aYbRh+cQclzByEpUjR44cOXKcIzTsNQDA7soOuIGLenf5Arcox1YiJ1E5cuTIkWNTOL7QwpMHli50My5KWL4NALhu/BoAwMn26QvZnBxbjJxE5ciRI8cICFotLH72VgTt9oVuygXH//r2y7jlthdhOXkKfxZWQEnU2NUAgNPthTPaT2f/Ppz4oz+At1w/Z23Lce6Rk6gcOS4SLHWX8TfPf+qMO90cW4vmE49h/Vv3ovnYoxe6KRccra6LKALWO+6FbspFB9t3IAoidpV3AADq1uBw3tKaha98+2UsrVmpz0PXxeI/fQr20SNYvfOOLW1vjrNDTqJy5LgIEEUR/vDx/4kXVw7gsfmnLnRzcvSBv0wGQ3dx/gK35MKjaxMFaq3lXOCWXHywfRu6pKGmVaGIMurWSt/tTtXb+M1bHsW/Pnocj7yQfqbW7r0b/gr5XfORhxB0O1ve7hxnhpxE5XhFIAhDhGF0oZtxxni+/mKcxTNwvXDAdn186t9ewtKQNSj9tTUc/cCvo/38c+e4lZc3vFUyqLnzOYniJKqTk6gsLN9GQdYhCiKmCpOod5cRRb1908GTa/zfthukvms9/RQgSRj/wR9G5DhoP/PMlrc7x5khJ1HnEc8dXsZc/ez9FNahg3BOnjwHLXplwA9C/MYtj+KW21680E05Y5xI1JNpu4NnnfuONvDQ3nk8tm+Rf+aHPpwgDqvYR1+GV19C58UX+u0ixxnCo8qAu3D+SdTat+9H89GHz/tx+yGMIu6FWm/n4bwsLN+GLusAgJnCFOzAQdvrfaedBHFy/bgMQtBuwzl+DIWrr0HRMAAA/vpaz+9zXBzISdR5guMF+OuvvoAv3nf4rPYTBQFO/smHcPx//O45atlgdA+aaD72CPz19S0/1tlgrt7BatPBU2Yd+46tXujmnBHW3Sb/d6dPh8vQssig1bY9/tlHn/4E3v/t3+FKlr9GOly/cfbXwvNDfPSLz+GOx0+c9b7ONfrN7rcS/goJ5wVrawgsa4Otzx2ajz2CpVs/jYV/+HsAhMS0LW+DX20dbMcHu/KbJVFhFOKf938Rj75CQ9ZhFMIJHBQoiZoqTgIgfscsrASJShKq7oH9QBSh+JobIZXKZL95MsNFi5xEnSesd1wEYYS1s5y5uYvnx3QcRRFO/+XHsfDJv8PJj3z4vBzzTHFiscX/fdtDRy9gS84c605Motre4FBdixp5WTgFiJeWaFEFKyZRjbNu12P7FrDv6Cpuf/z4RRUuXfzsP+PYb/0GIv/8ZIeFjoOgFT9n3vl6D8MQS5+9NfXZvU+fwq/8+YN46fjZ398zQSfx7K21NxfOm2sv4PGFp/GZl750rpt1TnGmWYdO4CBCxEnUdGEKQH9zue3Gx3D9BInaT4p1Fl/9GohlQqKCTk6iLlbkJOo8gQ1+bevsSJRz6vyE8SLXRUhn26MOxkGng84Le7eyWX1xPEGi5pcvTQNm021Bl3TU1Cra7uAOs9UlCkSnjxKxapP7dK6UqDCKcDtVoFpdD4fnLh5Fcv1b953XkKVP/VCQJACj+6Iad92J5hOPnfFxQ9vi76Egk/Xi73mK9AF3PnFh1MHuWZCoo+vHzurYoeeh/qUvwDm9dbWXXjrewC997AHsfXnzRTJZjShdKgAg4TwAfQtupsJ5XhzO65omRF2HfuUerkTlZTUuXuQk6jyhyUmUd1ZhCPdUvKDlVoYzgk5MRiLXHelYi7d+GnN//mdoPfXElrWrH04stiEKAq7bVUPH9uF6wcY/usiw7jRR0yooq6XhShQlT0k1gGHVJqTJXyNkKmg2z0qpOb3cwcJqF5NVDQDwzMGLo15NFMYDTvORh87LMZkfqnDNtQAAd2lx2OYASOi9/r++iJWv/8sZHzdMhA0j30cUhtgxWQIAnFy6MANrNxFK3myJg5fPkkSt3XMXGnfdgfm/+auz2s8wMIXvsf0b3+MsGIkqyOSdGdNrAIB1t9WzbdJM7tA+y2824S0uQL/mWgiSBLFQACQp1R/nuLiQk6jzhPUu6Wz8IOrJxNgMkkpU5G+dLyJMvrRRhMjb+Fjdl/YDAFpPnT+/QxhGOLnUxo6pIqbHyOxv7RKrXeOHPtpeBzW1irJSgh3Y8MP+5IeR8Q4dyJLkdiWjRJF/D1YR3cDFBx//KO44dl/f75l6+pZXz0JTJOw/R36zL5pfw+89+icIwjN7D5Ln137+OfjN5pCtzw1YZp5+5R4AmfdjAPz1NSAM4a+unvGEJ+xm6gc5DgK6r0bLSYWEzhe6zpkpUVEU4fAaCbeX5OIZHds+cgQAEHpb946z5J8Xj6wi3OR940oUDedpkgoA8MLe/tPxkkoU+bd1+BAAoHDd9QAAQRAgFUu5EnURIydR5wmtxMDe2oQp9Oj6cfzpU3/JPTNJEhVa9rlrYAbZGHzkbtxpKdMzAADn5PEtaVM/1NcsOF6A3TMVjFfI7O9Sq13TpLPUqlZBWSEqQ79sHiARzqNKVDIrj5OoRCbPsFDs4bWjmO8s4rl6/5BYmx5jrKxirKzyY58tHph7FMvWylDFbRhYBWdB04AgwNo9d52Tdg0DC+epu3YDwEh1e/wVQjoj10XYPbNzDaz07yLXSd2HgyfPf4g1qYJaTpAiA8Ow5qxjzSHttQL7jIilO0/CeOq22U3/dlTMUUtA2/JwbL5XQRoGmytRhESpogIg/Z7ybSkZLRcUnp1nHzpIfn/tdXw7qVzOPVEXMTYkUYZhiIZh3GIYxqOGYdxvGMa1me9/0DCMx+h/nzAMY0iVm8sXzU7c8bU3GIw+e9dB/P03iLnwky9+BsebJ/GvR+9GYFnwV2M1ILRG65hDx0H3oLmp9gaZTj90NiYmQZt0ON7iIrz6+Qn9LDbITH12soixMiVRm/RpXGisO+S61bQqyiohUZ0BBINl53VoWNgOYiK9ajUQel4qk8cb4osyGyRTdL6z2FcValP1tFxUUNSVlAJxprD8WFlJtn0zYFlyU+/+PyFVKli983Yceu970D3w0lm3bxCYqVzdvh0ARiJFXiMusph8b/vhob3z+JcHj/R8nj1O6Lip/uP0BfAAMk9USScerfUR37dkBmoYhX3VmSQ6+/elPG+R78dh1ERIdxieWdqLg43RM6IdL0C9YUESyTD20vHNqa9WhkQpTIkKes/VdgNoqgRNkbg/ynr5ECBJ0K+6mm8nlcsIO51UGHsUdF7Yi6XPf7YvWXW8AN9+bg6PvpivjnC2GEWJejcA3TTNtwL4TQAfZV8YhlEB8BEA7zRN82YAxwBMbUE7L3mwcB6wsbn83mdO4dF9i/CDEIpIOirLtxBmZiOjKlFr996NU3/6YTgnRzeismMJCplJRe7wjjKKIgSJMIv18qGRj3U2qNPlEqbHdIyVSYd1sShRfhCONEtng0tNraJElahWH3N5FEV8AA3CCK4X8k4bIEpUQFUosUBCm8OUKEai/NDvW1WZpdGXCwqKugzPD+H5Z+c3O5moh2X7Z0aiPFo5XN2xExPvfBcQBIh8f0v9UYxEKVPTgCD0TDL6IUmckoSqH2576Ai+/vAxNDLPbtZUHjlOqrzBanPr1OhB6Drk+DPj5BlrW6ORa8tLt9Xa4P7P/dlHMPfxjyKkVgLn1ClOnkYpMXHfiQfwDy9+Bp94/lMjq17zKx1EAK7YVgGATZeS4CRKIiRKFiSIggg37KNEeQF0VYKqiDw7z52fh7ptG0RN49uJpRIQRSl/3CiY+/M/w9q9d8Ne6CVKH//S8/inO0z8/Tf3I9gkOcuRxigk6rsB3AEApmk+BuCNie++C8ALAD5qGMaDABZN07w43KcXGVLhvIwS5a+v4djv/lZPZtvyuo2CTDoqy7cR2ulOJ7RHe6lY+MPbYDacBDMyyuMT5FjOcOIXtFvExCySRyrpW9lKxCSqkFCizswv0XY7I/t07n7qJL5w73Ci+KFbn8Zv/u2jG/oqmjRUW9OqqChMiepVGLqOjyBRZqBje6mBaNVehUdJk76HzGQHZeh1vC5OteIMp9Od3o6WhZ0rBRVFjQzi3T6G9s0gWVS0659ZrSWmciqTUxh/xw/g2r/6G0i1Gjp79256tj4qglYLEARI5TLEYhHhKOG8xPs2jMy2ui5WmoQ8ZX1nTG2WxsYAAE6XhK+v2EaytlYuBImiz8BUjfRNjFRtBCsYnUSFCQ+mRUNcaSvDcBLbsNfw1cP/CgDwQn/o+nVJzNXJfb16RxVAOmtuFNgZT5QgCFBFpX84zw2gKxJURYLjBQi6HYSWRYh6AmeSoZckmX6zNyR5eiV+fjd7jjnSkEfYpgogGXgPDMOQTdP0QVSn7wPwOgBtAA8ahvGoaZoHB+1sfLwIWZbOps0jYXq6suXH2Aw6yVCIJKbat3zwRbjzpxEeOYjpt7+Nf275EWrFEtACfLio6oSgCIqCyPNQViJMjnCeyy55sUtyOPJ16YK0tzAzBW9pEdWihNqQ37ZbpJMqX3sN2gcPQfWss74Ho/y+RTv0G66ehkd9BV0v2PSxu66F93/jjzGh1/CB7/1lzJanB27rByG+/tBRdGwfP/vum1DUlZ5tzOOrOLZAQ0AFFeMVfeD+vAVyf66c2YY1m3Z4Wu85uJlq92pBhSbE0XMv9AGXkNfxG65F96V9kN3+9+HY3BFEiHDD1DU4sPwyGuFKz3Y+5WtX7BrDxNgSaVZR69mu8cyzKF55JbTJiZ7jZLddPBxnPKlF4YyekYVmAxAEbL9hD0RFAVBB681vwuLd90BvLKB6g7Gp/fldC50jR1B9zashCP3dCCetDuRKBTPbajhZKSOwNn6+lztx+Eq12wO3P2Uu8X+/PN/Cu99+Pf/bFgipL0xNorW8DFkgz/ieHTUsrHTRsrwt7+uy+w8ico2u3FHDkweWICvKSG2Qm+SBqulVrNtNaGUB01P9f5dUT8JDL2H6e2+G5SSef3v49X/cfBwRIlxZ24nj63NY8E/jNdNXD9yeoWkTonbjtdO49+lTEGVxU9dXmCf3Z/vUJP+dpmgI0fs+O16A6fECdFWGu9BCOSDEp7Jre2rb9vQ4mgCqSojKiG1ZfSoegr31dUwb16e+dxLEqVIrDO2fcgzHKCSqCSB550RKoABgBcCTpmkuAIBhGA+AEKqBJKoxZM2vc4Xp6Qrq9c0ZArcajcSMcX6pnWrf6lHy4rbrK5hfiPnqgaPLCOiz3bS7WF0gs1R5bAxevY61xQbCEc7TWiGz4LXFVQgjXpdWnZpiy2RG1lhqwJ1J/3a1aePpg3Vcua2CHauk9IK08wrg4CG05utndQ9GvYenFlvQFAmu5XCVZnG5s+ljH2ocgeM7mG8v4ffv/Rg+8KZfRVEp9N3WPNHg5tq9BxZxzc5azzafu+MA//fhYyvYM1sdeOwFGuoJuxJChxDlhdWVnnM4fiqt7p06vY6OnlYuVk4TkuLqZPZqtbp9r8UzJ0gm5Vtn3owDyy/j8NKJnu2W6bvqdl2ItEb13Pw69IR+bR87hhMf/CCU2Vlc9cE/Tv2+3z08thKX6FhcbaCub/4Z6S4sQqrVsLJmAyDvlXT9q4G778HpR56EM7ljU/urf+XLaNz+ryh95+ux472/BEHqneS5a01IFXI+kVaAv9rY8BnrzMeEsXlqYeD2z5vxds8cWMTiUhMiJXOtZXLPoxLpghdOk/utSgLGKxoWV/vf33OFfvew0SSDfVElD8J8vZXaZu3++yDIMqpv+99SpHSJqtNjSg3rdhPzy6sYj/pPVrqHYuvB8hNPovIjP4b1k6Q2l1gowO8MP+8HjjwJAQL+j6vfiY8/+7d45uR+fEf1tRue7xytOVei59ZsOZu6vis0U9Rph6iDhoAhw/LS+wnDCI4bQBYECPTdmjePAQD8YjW1rSsSm8LyqSXYE9tHakf9saf5v71ms+fYyTIw8wtN+PbWZXq/EjCMSI8SznsYwA8BgGEYN4OE7xieBnCjYRhThmHIAG4GsP/Mm/rKhB+E6Ng+9+xkPVHM4xG0WikPzcJKF45PZP6O1+HhPHlsnGw/YjiPycCjpGXz39BtlQmybEE2nOf5IX73Hx7H5+85hM/cdZCn0utXXgng/Kz1FEUR6msWpsd0CIIAWRJRLSpYazuIogh3PXECv3HLI3j59MYZTPM0nDWujWHVbuBLB28buO3el2N/y9wAY29ycdFGc7hHq0VDd2W1jKJCUr87fUJdLDmB1W3q2B5s+nywsG/gUFJRJi/9oKzKI2vHIQoibpp+DXRJx3IfT1TH8qDIIlRF5OG8bH0q+8QxAIDXx3fRD8kw5SjhvEOn1vD339ifShYIuxYPcTAoNFvrTAqM2kdeJm179hm0n3265/soDBF02pBo9WipWCIZdxuU/fAbq5AniDo3zOB/fJG8n1dtr6LZ9VKePuaDYe+83SbEtlJQMFHV0ep6W1oXrem08eWDt6XWc+zYHiRRwATNhk3WjXIX5rH0mX/G4qc/hcV//kfYx46hcfediMKQh7rGdRKaHBbOS/nJFhdJUg29hurOXYh8f2CZgzVnHceaJ3D9+DW4duxqlJUSL62wEZgnbYaWS0le27Vv34/5v/uboSFjljjBjOUAoEpqTziP9fPMWA4ANgtTT6VtxaxqedYTOwwWfaYBwFtL939Zn+ao2ZU5+mMUEvU1ALZhGI8A+BiA9xmG8X7DMN5F/U8fAHAngMcBfNU0zUt3FdgtAvNA7Zwqpf5m4GtytVqpKrbzq13YAXmp214HnpXxKY1oNOQkahNp1mGHbCtTL0Z2MO7YHiyHtLXZdbnnQ5mahlSunBcS1bY82G7A60MBwFhFQ6Pt4IHnT+ML9x1Gfc3GNx8+tuG+5iiJ+rmbfgpT+gReWN43cNu9R2LC0S87KgjDtPl3A6N7x+tAFEQUZB2aREKD/bJ5GPneNkGJlu1zn0lVJaTJp8RaKpFnrV99LzfwcKJ1CrvLO6FJKgqyzp+zJFpdD+WCAkEQeMgy63/xlzdX1TlJnDYylr9wZAUf/swzeHTfQsorFDp2yngLAHKNqIFnUjPKX4nvp3OiN/ki6LSBKIJUIddYLJLnbdj7FHouglYLysw2SJXKQHIXRhGOnl5HSZdx9XaiViafHeb9Ye+h3SHXr1xUMUHJdNaMfjZgBT0Z7jj0Ldx/6mE8vhCTy67to6DJ8TORrGD+LVJzTKrV0HzwAZz44O+j/sXPwzl5gpOmCUqiht1/VpdLniSTOL/RgL+6CrFY4tdi0PVftsi1vrK6G4IgYFd5BxrOWl9fUhaNlsMTKYD0wsBLt34arScehzs3N+jn/BisPhRASJSXOTarFairElRqb3Hr5F2SJ9Ik6ow8UckM3fXhJCr3RJ0dNgznmaYZAnhv5uMDie+/AOAL57hdryiwAomzEyXsP97oyfhg1ZCDdq8SNebHHWSnTYiJPE47kRFIFJtFA701Z4Yh6LQhaBrJDAEQZrLzkgVDgyDkSpQ8Ng6pVouXydhC1NdIJ5wkUbMTRZxYbOOB54n0X9Ak7H15BZ+9+yC+68ZZXLW9f1htvr0AAQJ2lGZR02pYsRuIoqjHI7OybmOu3sG1O2s4PLfeV4liJHmsrGKt7WK1NZwstN0OSkoRoiBCpZ1vv2weVmKAnG8DHduD7zMSVcZidwkhVaJETYegqgj7KFHHmycRRAGuGdsDANBlDU2nN2TRsT1uHmbp7FZGiWJmX/acDIMXePBCH2WlhLbX2TA769F9sbrFnrfI94EggKilPRxisQhBlhFscrHs0HPhrSxDnd0Od2Eezum5+DiiCEEUeWYeI1GMoIbdDlDrDeUC4O2Qx8YQtFoD34cn9i9ipengbTfNolSgal+if2BZgIw4uF0bQAmVgoLJKrkGq02bE+uzxcu/9quQa2PY8z8+CAB4ao4ku5xup++Frkr8mWDPZeh5aD7yEKTaGPb84R9h8Z8/jfZTT5LzaLVgiRklik4AoihCy/JQLcbEg12vwjXXobWyAr+xCm91Fcr0NM88DS0LqI31nAOrscaSNCZ0ouI17AZmS9sGnnsURWi0HMyMFyBLIiRR6KvyWS8fgrZ7d999sMmPkiRRogI/ChCEASSRqk60SKquSjx0yybTWSVKOoP180Kry72zXmZi4bhZEpUrUWeDvNjmeQBbGqFWVlHSlRSJiqIoDue12ykS1ba81GzN6lASRaX9UUhUaFk8LXgzSlTQ7UAqlSCqpDOInOxMKh5MHS/gMx+pXIZcqyG0rJFqSzF89fA38XnzqyNvDwANSk5YWAEAds9rPx8gAAAgAElEQVSQDufofBNFTcZ/+oHrEYEs2vq1PnV4ALrYcmcBM8UpKJICTVYRIeo7c2Uq1FtevQ3jFa2vEsVIM/NBbaQUtLwOKgppNyvO17euDFX+Jujg2bF8TkSYEhXQay5oKulE+5GoFiE+e6pXAAB0Se8pfugHISwnQLlA2jMonOfQZYgEYeOupMuVCPL8bkSiTiWWNWEdPwtpC3paiRIEAVKlCr+5ORLlLS0BUYTC9ddDqlTgzs0hCgIc/a1fx9zHP0pKdzASVWZKFBmch5U5YBlRcrUGUVP7KoJhFOFfHjoKSRTwrrddxa918hqHlgVIEkSqRri0gnmlqPDnYCOlc1SEtoWw3YY7R+7pqt3AsTXy77lOvFag65H6RtlnIlhbQ2hZKL761ZCKJex47y9h5j//NPmu0+Z9Wfb+f+Hew3jfXzyE+5+NFR42sdSvuYYcc24OkWNDmZiAVCSEMej27/86bhweTx6PFaMdBFY4lBXtVRWJK1FJdY5VFe/aPj7y+WfxQkKZdkMPAgTIQuyrU6m67CbqYsVKlAyVhvOCxgoEVeVknUEqMtJOzrfRcnhW8iCE3S6UGUIYs+G87IoZ7lmWLbnccVmSqPbzz+HUn30Ebn1p443PAVq0RlS1pEJXpRRRCjsdRFQ9iFwXTjvdMSfDLDbN9pHHKYkawRPFCmACwzv9LMJOB2KxBEElHUqPEuXE5+AHEVc8BE2DTGeHmxnQnlp4Fo/PP7WpKsa8jlExzo5jJAoAds2UcfNrZvFz73w1AODluWbfcgNrzjos38aOEvHV6BI5Z6dPiGvvYUJ4v+OaSeyYKqHRcnpWfG/S+717pgwBwz1RQRjA8i1eqVzhSlT/4nxA7Inq2jHJrmrMA0WOJWoaRFVF1Mc3wmo17a7sJOcra7T4YXwenUSNKAAoZFQHgPjmmGIQdNoblhewfPL8TY5Aojw/xPxK/Lyyc2fEPBvOA0gIKWg2N/UMsYWE1dntUHfshLdch7u4CH91Fd39+7B+/338HeJKFB3Eh01KgnaT/0ZQ1J4wGUBI4lLDwptfNYPpsQJK9Fqnw3kWpEKRn69PSWS5oPDJw7kqc+BkwlQvLsfJEcmCrI4XQlOkRDiP1i6j10kuxyQgVlFi5XFcI+qd5ds4cLyBu586iQjArXea3L/or65CLJWgzhIjtXWE1DSTxycgFuj1H6CsM48hq7k2WSDP2+oGJKpBfXesVIqqiFylYUQaiEnUS8cbeOl4I6WYeqEHRVJSCjZXlxMTIycZzqMkKmqsQpmY7FG/xQIhy6y//9vbXsT//MKzA88j9FxEvg+5VoOg6b1KFD2nAiXBpzun8VfPfXJggd8cw3HZkaj2c8/i9F9+HN39+9A9TyvAM2WiWlShyGIqBu1lPCXueuKBF0IEUYKsMJPpJjxRydj4RkqU5fj48v2H0e7YpPMulSBSEpVVNLKzmcBxAEGAIMuQaIgjWBuNREVRhLbXhRf6qYrWG6GdGegBYNd0TKJ2z5QhCgLeeuMs3nbTLCzHx+l6r3L0XJ3Y+K6sEomekaisT8gPQrx0vIHtk0Val4p0jtllfNj9Hq9qqJbUoUpUm5vKSYcvCxIECHD71pUhBKZWIu1z/bjYZlUhAxdLABA1DYKiInR7ydip1mnoko6pwkTqfJOksZUhqKU+/hf3dFxnClG0IanvVaIGbz+/0kEQRtgzW6HnzkhUHK7MQq5WEXnepooSuguERCmzs9B27gSiCN39sa2zcdedPeE8kSshgxM1gib7TTVWczPvkHmCKMuvupLch1iJSoTzrC7EQoGTKLaPgiajRgf75ohrRa584zYsfe4zA701qXU5w5DXVtpe2kYLsi4jDCP4QQhVFknSgSzyZ4Kr0Qklhfl5wk4HVmBDlVRObmzfxv3PEeL2Pa/djgiEWEZRBG91BcrEJO/r7JeJUVqemODXfxCJ6gwI563aw32azNDPlShZ5EpUcg1Kf3kZ/toajtNMvvnluB1u4HE1mUEV2fp58X1izzMxlotAFAFWF1K1124g6ix8SZ79+rqN5TUbYdh/ssAUK7FYhFyp9Hii2LGr9N2+d/Vf8NLqQdxx7N6++xuErxz6Bu4csO7m5YTLjkSxRXKBWDLearBwXrVESJQXJEjUCl0HjFYk9hIzHkikc1LYS0ln4XKtBgjCaCQqsT9GoqIowj/u+xzuPfFAatvP3X0Qtz92Al++nQwiUrEEQSMdQDY0l134NHBcCKpKsuSYyXdEc7nl25wsrjmjG4M7tFJyKUGixisa92okVanrdhF1zDy5llIqwijE/acehiLKuHk7qSOr0RXYHT99zq2uB9cP+X4Lan+fEMuiqxVVjFc0rLacgeoIJ1G0wxcEAaqkDFWiKrTzIySKhndo6IINsoKqQVDVnkrzTuBisVvHrsp2iDQExwoDJpUhrkTp6XBeWolKD8YbrTTfpTPdslKCKqlDjcUnaSjv2l3kWXI86ruxqRKl91Gi6AAUbMJc7i4SFUHdth3qzl0AkCp6662uwKeDEAvn8fDKkPMNWlSJqlYgUBKVzSYzaQancQV5NhlRzSpRYqHA9yHQ+6vIIiddo1TVjsIQK7d9DWv33YNTf/aRvtukilnaNroeebauHychtbn2fJxVRtWTgi4nSBTpa1g2GRB75YJ2G5ZvoyDpPHPN8m2stV0IAnDjVcRAbrsBItdF5DiQqlUoE4QAMWO+MjEBiXmiBoTzWm5aiWJG9g2VqCyJUiSuRGWLpfrNdRyndeDmVztc4fZCL+6vKVg4L2kPsD3miSLhPCUifzPlPwlRJ9eLeVo7tocIGLgMEy/QWixCqlbgrafVWXYPKyXm2yLKF1vDc1Tcd/JBfP3IHZv6zSsRlx2JShKPjdazOlfg4byiAlWW4CWUqKBNSwmw+DUdAHRVgkBJVJUOkGAqg16AqOsjhvPigY6F8zp+F08tPpfKuAHigcuhGUCirnMlapCxXFepFO04fMa92XBey4vbyBYoHQX9lChBEDjJSZMoMhh/9u6D+NiXnuef718xsWyt4E3bXs+JyCAlKns8JodnCWUzEb4dr2jwg3DgotMsdZyRKIDMXPsrUQHfLwB4XgDbJ7N7RvxAB1lRVSGqSo8XZ649jwgRD+WlzzcmNdlzZdlKyXR29vyxTj7cIHuIL4mhFFCUC1yZ6odTtLAoI7/cWD5UiWIZehs/Q81HH0Z773PwFhYgyDKUqSloOwiJsswD8XkFAV8uqVeJGhLO4z6qamLppMS1iyIcPLmGiaqGqRo5lzI3lpPnKfJ98l4V43AeaEhIlSVOpkdZGDpIXBPnxHFEQa8Pxj0V1/AKbRsdGn69pnYVAGChs5RKzQcI8WPKGTtnuY8SxTxRBVnnz5vlW1jvuKgUVf58OW7Ar6tUKpG+rhAnjijbZnk4b1CiDFeiqLpbU6sQBRErVi+J+toDR/DES6ROF/NYxkqUxItS8sQZmi0YWjaOL5C+2vVCrmK5gctJE0O/cB7vPxVS4kCmk0hR7S3cK8gySRKxbfhByCMZg8gzu35ioQCpXCHlIBLjHuuvmJFfAfVYbiKcl/JPhv3J3OWCy5pEeSubS88+UzQzSlQYEUkcAPesKOzlpANRpagAInk4K9Q0HJMoHaJeGGn9qKQnKrS6iMKQz8iyhKVNO8OKQl4QQVX5DHhQOI+FFELP49tyRaA12swmWYNmfRNKVD8SBQBvf/0uvPlVMykSNTtRxKv3kFntgROxQvbMElEdvmvHm/hn2gBPFF+QN0OiLCc9ICXvd4V2VJ1BJIoSSGaCBcjM1e27YKkPQYgVCy8IYQUOCpLO11iE6wKSRDrePl6cU8wPVU6QqD7KGzMLs8FNlki9qG7K9Ezrlk2SbKINlSiqmhVlHbqsj6REXUOX33Cynii9l0RJlEQFG5Co0POw8OlPYekzt8JdmIcyMwNBkqDuJEU6I59W67+OVHnmoSS6f5EbfYcYy6kSJVcrcTgvoUQtrnbRtjxcv3uMe2CynihmopcKRT6ZEb1YiZIlEQVNGolEZZd8yt6rKIoySpSFjteFIAg87GsHDldmmI+nqMvoOj4x4PPkkiSJKvHjWZRESaLElchmx0GtpHJSZrsBv67sOrP9yeMT0PdctWE4r+21oYgKJy+SKGFcq/UoUY4b4BuPHMMtt5FyJg26XNQ47dM0RYQfhCSESUmUSuuRtdbbaCauO/PveWG/cB59X5PhPCfpiRKhUCIiKCr6QdR1hJaVSjoYRKLYGCcWiom+OO5XnUw4T45o3bk+S00NQpI4bWbi+0rE5UeiWB2dWu28KVHrHY8bCBWZXHK2RAkjJzItahlR0lMpqgklinQiguuRwVGWIRb0TXmipHKF+lZsNKg3oON1U1lg7KWU2QutqnwGPCicVyvFJIt39KyTG7G4ZzulRG2ORAlCTGYY3njDDN77IzdCluLHWxAE/NpPfCdedeU4/CCEH4QIwgAvLO/HmFbjfiggJhV2JpzXph0YI0a6Rjr+QcbyalHlYY9BtVhaXq8SpUhq/wVLaWq5LAkQBBLOs30buqzHIQTX4/esnxdnifpcZkszifMlhCSpvDGyVEosaVPU5FQIgQ3ybAKwUQq2xUlUEYU+GYFJnFpqY6qmc5Nv1hMlDPBEARvXinLnTwNBAH91BaFlQd1GzMtSscSTNoCYRAWtJsRymXv9pNIonihmLK/ygTFZbmJlnZzH9kRpgoImQxBiT1Q8GOp8giL6pNClKBLiVSmoGy5oDvSq7snJFUAUvmR/QsJ5XZTVUmJS4XJlRqO1jUqajCgi94cb8BPhPEHTIMgy/HYLQRTwZ60gabB8B5YToFZSodPQuO0FfF1CZuD3aAJQ6XWvgyCKG4bz2l439T4BxBfVdFvp5ImEqtrsuFhcJURoaoy0kRFFzw/hN0ifyYq61uuEOOygtf/mVzrEyxX6UAYoUclwXqrYppxQorQBJKpQQGhbKSV4IInqJsJ5lIAmJ7Ts2EzRDiJyT1vu6CTKSfRPG4VJX+m47EhUYFkQFAXqzDb4aw0+69wKHJ5bx3/7xMM4VW9z6VTNkCgWJmMDUUQ7kEpBASQau6Yqheh43GQoqNrAatRJMBKlzJBBM7S6KYMlIy1hFPGB3rHobH8UJYrF1T03VqLY7HOERVqBjBLlbo5ElQsKr7MyCpI+koNrL6PrW3jt9I3cHwTESlRPOI+SI1bPh/mErGw4r+NCUyRodJYJxB3XYmcpNYtj585CDwCZuQ5SonRVJr4pGhZ2AxeapHASJXg+J1H9vDisEOGkHq9zp/HwSsITRTtrpkSRfytpJcohgxira7OxJ4pWc1aILyaMwr7er/W2g2bXI4kBogBVEWF7rMTBCJ6oDWpFOSeOp/5Wt8dLaag7iEInqCq0K/fwz/XdV3DFSBwlO6/V4pOQfu/QKvffxGRQFIRUCZQkYRRUFRAEiIHHnymAGP9bXW/DjESWRcnOL2suD6zM4uYWUaLKapEXjnQChz/HKl0WhT0fHdtD0OpVogRBgFgqcYLN/FCKqMChz3itpEJX4vpJ7Dli17n0HWS5luqbb059Piic1/Y6PFGDoapWECFC243PO/ksH55bx+nlDiarOid0bMLr+EGPEsUsDzdQP9v8ShdBFCCMwj6eqN5wHisroNEFiBmJGqxEFXqUqEHqdhzOK8Y1tRKL18feSmoLiMizuO42R16APTn5XtnAsP9Kx2VHophRU56YBKIolXVxrvHsoTpfnZ2xfvZispeI1V9iIRGhy8J5ao8nSnQ9HsYQaSE11nn6QYhvPXMqNbsCYsmbDXRht5uaOaw55AVILjXh0Q5VUFVieBfFwUpUWSWZJZ7HlY9Rwh1JtBIy8mY9UdlQ3kZg2Wbtrodj6yR88eqJ9OKc2Ww15h9hvqZKgSpRzFieVaI6LqolchymRDlegIXOEv7w8Y/i26ce4dt2MunYAAnneaGHMEqrV5YTcA+aIotwfB9u6EGTNCgSaYvg+dyc2s+Ls2KtQpc0lJSEAtInfBkrUUkSRUzEzESbDedt7IliSlQhYS7uVRNOUj8UC8fqisRDEMM8UdKInqhsVXKmLgCARs3l8vhEquihtvuK+DiF0TxRjNTF4bxEFXtaloBVHWcoFRQ+UDLlStQ0CIJASJnvQUks4F4pKAjCqCdbNgsWztOuuIK3L4ko468MbQsdv4uKWuYkyg28HmN5smp50G4RopcpvCqVSlyV5iRKUvhAXC2pXNV1EuE8ZuCf/S8/h90f+B2uDLJ7H9m9Wa9u4MEN3B4liqnLSa9hUlV97vAy1jsuV5YAxJXEvQB+o0E8RtV0PTb2jNbXLHh0QtDjiRJ760SxSbQii8QTFTIS1b8/EwsFRK6Lbrc3+SML1ucTLx31Kzrx75yMt9IHuSZhFI7c/yavY65EXWYIacowU362MkNvLpFOH5OoWCIG4o6SZbSBKlOVosKz85gnSnR9CJREsdlto1XHw3OP49mDddx610H8waefTLWBr7dHwxRBt78StdiIO9GAzfYVkm0nqupAJWqsrEGKQgiI4pCDrgOCsKEywZAM543qiQqjCB3bS2XmjYJKQomy6Krp2Vlr0iO0/vBDOPQLPwv72DG0u1ljeezjYIiiCK1uXH05DucFWLZWECHCYjeuTxaH85KeKNq5ZQybLJwHgGZ5enx71lGLrt8Tznv4+MO4/eg9iKIIK/YqJgsTqVo0PJyX8kQxJSq+vpWCgjCKOGmMw3mb80QVUiSq1xfF/FCsXIWWqK02tE5UaTTyzoziDOpsTKKYUqNMTPAQO5AmUYIsQ9D0geFqUqCzCblCSBQbGJPhvGwmGENZl9GxyOQocmJFmP1fCnyuZgPxpIAlrwwCU6L0K/YAGKxEMQLkdFoIoxBltZgIR8WeKPZc86rltk+IY6kMQUwPK1KpjKhrAVHEnzVFVOBFsRLF149LGMtFGjaVymUUrrmW749fz4TCGkUR/NDnk5IsieLnkAhDJSecD+0lpS52TMWTC40qfq4Xwl9bgzw+zi0L7HpViyoKmoS1tsuVpkHZeUnikSRRqiLy7Dx2r7NgilK3GT9z7QGLBifDeTzpI0E4marLPFGMRAGxUr0R8nBejMuQRFkQC8V4TaYtXJ4kWc2aGcmz4TxGTriPgM5Wk0pURS0DUQTZC/hLwTqSbx99AJ8zv4JFm6Rq19dsHtvn+xcEPksPux3uiQJi5WepEf/GS1S9BkCXD+mfnVcrqZCj2EMFUAm/WBxZiWIhLVmUsT7iTMhyfERRnII/KpLmXUYadCmtaiTDeYv/+EkAQOvJx3iYhWVFFfqk/VtOgCCMuFTODLOOF3ASkfQeWDTEVVTiDCRWVyYp/zMfF1O/VFnkRlVNUknHHUUQvaAnnHf/kW/hm0fvQtvrwAncVCgvdb4JQtNPicpmgzF/IQ/nJQZm+8RxvPThP019xsJ5RbmQCHH0Dv6sUvnubZREKTJXPnnF8j5KFB8whlTKj8IQzskTUGZnIdDrxAo6AoC2iypRk1MQFQUSXW5Fu+LK1H6kYnFgOCm0bUS+z7P5hD7GchbOm6ikz6OUUJaSBWzZ/+XQ42o2EIdk+mV/hp6L1dv/DUGnA291FYIsQ91BzjXriWL3ki903CXfl9USZFGGJEhwA7e3xIEWq7FBu53yQzGIpRIQRdC8CAWJPOeKqCCIfAARqmUVskSM8sRYzjxR/ZcSihXW+Hp+6+SD+G8P/j5O0zUwsxMj7uvyE0qU3WvlSClRTEW2LITdDuTaOH/GGMFVVQljZQ1rbSdWosQ0Eer3rHMSJYkjhfMkauOwWwkSZfW3ogTcS1fgYe9+ShR5diIEiJ+dZXu08TDZN21Uf+uVjsuKREW+j8gjITGFzjKzWSvnCrbrY3k9fnAZicoayxk5YT4CgXa0SSWqrBShBAKEKB4o2IylZZEHuJWI9bMCdgAZUERNSy2VsGo3INDaIA1KWlYSVbXD7AxYi/1XLMRkO7GxXOHpuXEHIBVLo3ui6OxxR2kbmm57pLj8oMy8jcCUqJbl8fAVU54Y+hWflGvj/JiMiLE6UXaCRLHZIfNNxZ6ouDBm8l65oQtREAcsE9FbnC9WoiQ+k1clFYqkQApIxRdOZmmHLNPLaTZI1WdWwZmfbx9jecf2IUtCasAu0zBmm5OorBIVn1fzoQex+tjjaD8Tl9GwfAuqpPLsLAB9vV+nV7pQZZGviahrEqkfFEWJ7LxeJYoPrkNIVNBqIrRtaDt3oXTTa6HtuYorWACgXbkHM//ppzDxgz9M/t51BaRyJaVWASRUMkiJSprKARJ6B+JCqABRokq6zEk2AzPydyyPv3NJJUoO/TSJKqSJbRLNhx7C8le+hPVvfwt+YxXy+ASkMvWNZZSorGLtMhKlkWujSSqcwOW+SfZc86w6x0PQafcsWQLEZQ50J4QmU28oC3kJIS8eq6sS8UR1056oLARRhCDLqfDoiysH4AYuf8azSlTS18XASNSbXxUnWaRJFO2rV2l5g/GxnhUcNIWQqLbloctqePWE83pXIUgpUbIYk6g+JQ6AuGq5myJRw5WoZDgvSniiUsZyIQSEkHtC1+w8nLdZbLgA8SsJLPtEKhRHMoeeDVjK61tfMwtJFPBDbyUz2dgTlVaiRF0nYQI/oXaIdOCUdJRCiW8HxAOkbZHOsONZYJx4KRGaCx2bZMjQl99zLLTQxo7SLE53Frjyw8IBk1Ud4pqXOoagagg6Hdx34gF8/cid+PU3/r+w6fpZuir3Tc8VS6WBK9dn0XbbUCUV04UpnGjNoeW1MYvehUVTvzlDEhV7olzYdEFURpoYeLFNO342QsdGy/KgUg8D0L/EAfMpsMGQe6LcAGBKVCJ86QQuVFFNLxPBPBSpujJxcT6AhvMiDwpiJUrxiVeJZ0myul0B+Zwt45FVogp9shG7toeinl6+olxIh45C2wZEEWK5DEHTUwUJ2UK+1qGDqH3P95J9+haKcqxEAP2Xt1lvO6iVVZ4woCsSsd35YVybqo8SJYgiBE0bqkTx+k3VKmZ+8qd6ltgQBAFj3/cO/vf2n/05hK4DQUqTHalUgnt6DlEY9oSvsllq8cDr4vbHj+OhvfOYX+mmqusz8MQH24PCFGHmcVM1yKHPvTqp7fuQqM4LpB6ac/IEgvV1qDe8ClKlnGojA+sbmRLldTvAWKzoaJJGjOVuWolihnC33QGiKGUqT14rANCdiN93HvISA56cwpbEynqi+iG5uHYURTjVItXzj66TUG1VTVf+TmYY8utDJzzffdN2PPESCbHvmOz1RHmNBhR6beLK8Q4gMBJFrRWUVPNyI2w/G4TzpCjOiBaHGMsBwOnEfdJGnqhUOC/xTrAJWVGXIcjkuNtL2zDXnh/dE5V4b9fstb6LtV8uuKxIVGAnZE6etTD6EhGbAfNDXberhn/3nXFNnjhtlno86GyK1GTSIAYkhbmgyTycp0kqikGGRNEZi213AI35TUgHkFxLK3QciKrGB1Sr2wKKZN20pW6dK1GsttHsZBHycTYrYkqUitBx8JXD3wRA1l5j/hxNlfrG86VikRR589yBHQMDWYC3hJpGOj7yIu8a+htOVgqbe4SZKbxt+bB0BwIEroowsA5XXYxJYNDtot31Uuv0MVUoaSzPrjmX9ET5NJyVzBBi2XVJcJWmnxJFfViqLCKkMrwmaVBFBQolSzwMSxUQmZKrfSsvAQCv+5M932SxzY7t8/AdAw/nJeoYiXqBZAvOTMNdWuKdKVvE1jp8kP++69t83TQ2sHgZEhVST9me7fFgzNUOLxjqiQIIgRyJRJUrI3X6UqUCCb3EQCwWSckQujxS6hzorJ/1MayA4qFjdXx5Md4uayoHEj47J0isgxiH1ZUogJLgc3E4Lx0WDT0P3QPkfrf3klpo6rbZRMp7VoliS0olSBTirFFVUtHxOnCQIVGU1PtcfeslhoxM6m7IJwicaIghSU4Buc+NpoMgTHui+oHUQCPPTsNZ44VBjzdJsshURm3tF1LrJkqWvO/HX4vldTtVLoVZL4K1NUKixsfje+G6gEZ8U6wMR4Nm7GX7k36qq5eITIQRRlCiyLPkd7oAyHUZWidKEEhWJytRY6fDeZoiQRQEqDppx2xxhpKo0TypyevoRwE6fm9ZicsFl1U4L0zGivkiludm8c4sFqgvaftkuiNQpKwnyiEKlChC1FRIvkfSXmUJEKl03odEMWLiWKSzS/pZVhOhuchxIOpxmrXrxMbLilpB0yGDSqvrQRQEzIwVuLLESJGgakAQQKBrNTmBS0kUCUfwzJIEieIZep3hSh9ZN6+DslLmJGoUc/mZKlGMdLUtF3ZgQ5PUVHkDIJb+C4txrD/sdnuyAUVRgKZKqRIH2Xapiew8lolmBw43hZMKx5lOt68SlQnnKSJXKlWRhsgCmoKv9VeimCdrqhAbpoFeY3kURejafqq8ARCTqLgYpMWfR2VqBpHjIGg24TebnKx49TopJRJFvKYVECsRXiac17V9BGHEjfkAEunvAc/I6ldsk517dqmbJPpV1T4TSEPWz4srudNyJPRdXV9Lb1vUeicAnHT7AQ//8fdKpmFkIS5nkMw2TcI6dJCr3CyjUd+zh0zWFKWPJyqTgELPoayR8+ThPD9dbJMRXJ+GB8U+6hEjAJob8VAX+78kh/w6MCUq6HRIlp9e6NkX36eq8KzTk614DUe2fFSv76+3VlMn4fu76epJfF9isps8x3CdhvPGxjkpAbVdsHAeAKzTvq7HWC72TopY/y9LZA1ChZOoAZMDei18qtLpqtSTic2vQbcLsVAk3lS27l7CE8WiCACgqKQdNa2KgqxvOjuvQJXlzRRJfqXhsiVRElsZe4A59GzBBtbsIK8o6XBe6LgpuV4KPF5fSKCDpCIq0ELyO5FvSzMrHDYwk/9Pj+loWyQVmXlIhIQS5dLOsaQUUZB17o7kKJAAACAASURBVBFodV1UigpKBSUxK0oPxkzpsHyL1iySoCfWfUqqA6MUJASIEuGHPopKAWNUpRg0G4qiCE8vPod7Tnw70QFu1hMVG3Ed3+GDehKiIEKVVOgr8Wzdb7fheEHP/SxqMq8+DKDHN5UscZBc5oT5wJzA6yFRCv3bGxLOIySbqgLUZ1IIss9ImkQBwM7ydswWYw8IQFQBWZC4J8p2A4RR1HNtmSeKh/MsOyZRM9OkzfUlrkIxomEdOgQv9BAh4qHTOO07raCst0kbeP2xxDk7bkAGA1qRvR8ETUvNugHguUPL+P/++mEsrVnwWait0rvQ62YwrIwHm5iJmUxaFn66ni5B1E8Ji0l3yH03fBFwSqI0KS59wYht0n8JAN19dP3LRHhN33MVBEGAVK70lKPIhvPY33E4T4UXevw5jJUoKXUdpD4+JtaPyEHEFSh2/0n5qzhsG4QRgk6HrBcoDh6eBEXl2XknW3Op70RB5H0JQ79VCJiCXBzQhzBPVERLZhAlit5TemxVkbiStm4xJWq07DxZEgnREQSoGLzsCwCIxXS9p+mxwlBPFNte7KtE+XxioqjkuAVZx5hW45GJjcDCeTMF4ofcTJHkVxouWxIlaCQNP9vhniu4bnrGxtAvO49JxKKqQgr9HiVKkRToEfkdC9Gw2a1IZWE3JJ3Dzikina82SYYQwjBV8M93SGdXVEjqMnuxm10PlaKCsi4nwnP0WGwwpoJL17PgeiEKanrdp2SNk1GVqG6idlBNHa5EfengbfjUvs/ha4f/FS2HDAJ6xpi7EVSFzPw6lgc7cHr8UAy6pEFI1FfyqN8hS6L0jBLFyF2ZqjjJNOluoiYSM5e7odsnm6ePsdzJGstFCLQYq0Z/r1OizbO5lF4S9Y7d39N38NZkjauZ3cySLwyVhOpBCLrNVQZlmhAzr16HM0cGtYk3k6V03MUFTtCYIsCUCC/orbEFxCVBgESGoxvQRIn+KhRABo3QdVPFJ//iK3vRaDl47tByHM47R0pUXxLFw3lxTTcg9j/+wo/ciH//pt340e+9uue3Kn9e4nAeIyERrQWmISZRk1Ud02M6njywhL0vx8tYdc0DgCShcvNbyT4UBep2sqyNVC4PVKIUqkQxc34lQaIAwOLkgS5ezUhUYqmRLFj/RkhUWomSlfg+MbIcdLtD/VDkmsRlV1hGHlOUx7UxSGK6X+ivRJEVD1iIPAvmiRJalESNjZM+ThC4dzWpRLXYNRyh2Kbnh6lSFZpA7umwYpsAUTkLmoRqUYHrhbzkRBKh1eW1zPqVOHASSpSkkOMWZDKJtXyrZ6WGfmDjxnSRqNq5EjUEhmGIhmHcYhjGo4Zh3G8YxrUDtrndMIz3bk0zzw14EbJCgUqd+tCCeWcDx2dZLOkXtF+dqNjArUIJfWiKmArXKKIMNUyTKDGTeeXSqrMsu2S15cR1ZjSdH8Onsm6Jkig/CmC7HizHpwuBKonwnJY6lkQH45bLJGUZiiJCDft5okarWh5XsU4qUf1nQ3uX9/F/d+jvstlNG0EQBJQLpMpzMryUhS5pEBPkyKdkMFuXqqDJKU/UMCUqWViy5bXhhz7CKOQdPMNI4TxZBFtbkXXSOlOisuE8nwwsr5q4Hm/c9roB56tzosPCBCUtq0TFnqjI94AgLrkRk6gl2MePAgDG3/B6AGTJEdYxM9P+QCWqO5hE2a5PiNuAUB45d7JoMFuJILlMhiKL54xEsUlCv9pYPeE8RoI8DwKAsbKKn3jHdZio9p5H8nlJFtsEEkqUEJMoWRLxi+++CZIo4KsPHCFt6nbhHD+GwtXXQKdV17XdV3D1TipXENo292MCCRJUKpFJEw0lllQWzkuXwWDtZP9nxTqZApJEPAmL+ASBe6MSj5iWULUGZeYxJIsNd+nCuTNFooZO6uM927P2Zz1RRU0euOIB67uFdhMQRUjVKi16qkHyXSiyCFEUMFZJk6js2nn9MgO9IExlWWrYoGI5W4TZsVHUlNiH1U4TnigIiFeRXj9W6Z6FdKOIlM9g901SqcJNlSgAI5WZYX3TNFWichI1HO8GoJum+VYAvwngo322+SCAiT6fX1RIZucBZNa0VcbyuChd+hL3VCx3nYSBW4OICLpE1qYSxABCJJLwEh0gI4VWpqYqEVMZfDgQBQHbxsnLtrpuc4OtoKl8NhjQ2W1RLvCXe5UOBNWSilJB7jGKZ4/VcWMCIwoCdBpeSMbz4+zH4SSKpf0X5ULKExVFEVHTWEX20E+9qJaX7sw3g3JBQdu24UfBQCVKkzVIlERJlQoiSsD1zPEKmgw/iDgpzhrLU54oL61EsQ59oBE1QTCY2lVI1IniSpQ0QIlKhPP+49X/Ab/8uvf0zND5ecg6V8oGKVFs3b5W14vVlgyJcudPo/P8c5DHxzH+hu8EAHirK1wB4OE8rkSlQxLNDq1infREJRanjWynb3kDBmaqZxOI5w4n1Bnb4wux9qtntBmwcPVQJSqTBALPg65JQw3tKk9ECHuKbQZUiWKhH4YrZyu4akcVp5Y6cNwA1kETiCIUjBt4favCtdfFba8wc3n8PjHPjKjrEDUdokPuAyuKyp5Jm9ZZYoSH3ZsokbSTBQtHKgF6svOYEsL2KUYh4Do9Zv0sBIXURYt8H07gQhEVTp4mC71DEUveSJU4cHp9f6nf0L5b6jQh12o8vChqKrFd0Hs1Rgl/hy3hlQnnMXtAsoSI7wcpEqVsFM5jXljXQVGXMUXLfyyv9S7XA8T3QRAESLrOn0nXDxFF8X0TaR9SkDROokYJ6bG+a6ZIw3nu5bsI8SipTd8N4A4AME3zMcMw3pj80jCMHwMQArh9lAOOjxchy5sf+DaL6enemaZNw2PjsxMYn67gVKUEZ3ml77ZnDdpR7tg+BkmMO82ZBpV8VQXT0xUc8jxopQKmpytYKhXQBVDVBOzYXgOEEEIkYXq6giLtQAtjZNtosoolxMQmEF0UdBlXX0GL5QURxkrkN6WxCqa3T+AowGXoXTPTqK5S3xIlQTOTJeycreE0JVHT2ycgl0toVctYBzAhl9CAA5dWuB2r6qRtImlDbarGr6WwfRJLAApCMPT6nqBj6HRtDDtnJ1BSi1j3mvj5D9+DhZUufutn3oS33rQDi+06IsTSf0gzF7fPVjE9tbkBcbyq4+TqKgoAqqVS3/ZV9CJkPwREEdrEOLqLdfLbWiG1/Rgtlliq6KiVNbjUfH/l7nHoqoyA/h1BgBXGHV6keiiPkc63Wiym9jnlEDKpFkT+uUQ77G0zFUxPV1CrFoAF0gHOTI5herqCAsg2tckqpqcrUKdrmAN5RrZPTQ69D5PlMZxqn0ZlXIW8QDrymalyz29qZQ2W62OsQJf9GCPHCscLOCaKaD35BGnnO94OuVSCXC4jWm+gUKGhlgppf0MgHbasC6lj0ERCXLFzjH8+PUEzxHQFketALc0OPJdGrYIOgPGyAm26ggMnD8RfiiJE6iHctmc7xAG+qlEgzU5iAYAu+D1taQrU3Lx9EqXpClzJxzEAYkDKRgy7DzN0UJQVCQpVnKZ2TEIdq+BEsQAbQFWXevbxmquncPjUOtadAMVTRAnc/pbXY+w7bkD1Tz6E4hVXQKYqUXvHDFoAKnBRoftZoORo265pzJWLkJokM1WXNVSnVYydpKURqPq5c/sYUfaonUCiv5/cPoVqpm2t1TGcAlGitk2NYbpawfgqLaSqxfd/olaATolGgT5Xg7BcLqILYLKqIYCPgqJh+9g09q0cwBWTvc+HbFGyJof8u67jY/dM7zPO0LB8UuTYakPfcRXf7kSxCMlqoqDL/LOSLsfqzHhv20tKAV7k8s/9MEKlGD8LTF2cnB1Hod/YFUzhBADZd1EuqrhqFykB44QRpqbKaL64D5UbDLg0s7E0EffFxwoFCD45dqNFnq8a7bsVLaTXvgZBD4FjQKi6qfZHQQC/04FSjX2E4jHy/+u27wb2A3bU3Zpx9BLAKL1IFUCSZgaGYcimafqGYdwI4CcB/BiA/z7KARuNrQmfJTE9XUG93ur5vLXMClMCfr2FUNEQdLtYWmqe8xoXrY4LWRKxupI2cHY65CFeb1pYWlhD5PvwBQn1egsOM497LlZW2hCkEIjIdyL1xDQtF/V6C22bZncwEgUXuiJCosrNyYUmVsZJh+SEIlZb5AX3bQeAAKcVAT453rF5MluXBcDuOjyct9pyIVghmG+6EmlQxABNWpsqCkLU6y1odNBo2wFAr3uH7ru5tAqlz71gWFghnXXkiKjXW6gqFdTbDbRona0DR1Zw7WwFh1aJWVkRZXihj2a3A0BDt2WjvsHiq1mIAC8fIfpy32dFDGUoXgRB0xBpBcC2IEQhPM9PbS9QYnfy9Brc8SIa6xYUWURr3QLbSpFFtLo2uq4FWZThhz4WGquY1+m5+0Jqn1abXM/Gept/vkLfG4fef8/1ebjXagWoiy3ILlUKnQj1egt2l5yj7EdwO1Hf82TQQQbYo6fnMb9Es/T8oOc3RU1Gfc3C8mnyzLiQ+Dbart18cV/5RhI2lMbHYS/VsV4n5xo65Fy7bdK29XYndYwFum5elLjOLlVF6vUmdrsuAqn/PQMAl3oH66dXoEYqnj9U59/VV7uwVxsQiyWsNM5Ogbbo892qN3ra0mkQhef/Z+9Ng3XLzvKwZw17+KYz3vl2q9VqSUdCA0ISIDGWhY0l24CDy+WEYEycSjkh/gNlO6GogOOCcqoChgyusk0IFBjbkVUSMoMAgSQ0oW4JqTV19+n59r333DOf8417WFN+rGHv/U3n9FUrRfryVql0+3zD3t/ee631rOd93uftZxqTgyHUxDEQwvqMLbsPmXvvST9D7lp8nAxLUDHERBhQWKZr+juurFkw/4XHd/HGZ54HAOSrF+37Nq+hGEtg7ComU9fv7dlbyDesg3kxGIEkCQ6PJzBRAlZIEBBELMLBwRA+CzbOM1CS4OR4FObMiFOYvr2eg8KgmDq3wj+HymB4WuKgGCKfeDatus9aKsROsCzccReFMPbYB3eOMS4zxCRGyzg/Kt2Z+axn0AYT+7xJpVGUaun9GI9yREaCagWdtKvz5BG4kuC0GrdJzFC4lHU2kjPfGdMY4yILfy9KhdU2wn/7OfdkKDDis+cj3fWKVGnd3x2J9dytU9zI7+D2L/48Lv3dH0X64IMAgJJW14+mKcTIziW+mwUxdj5QxF6XcV+BO5b4hcNdHHSrczj+vd/B0W9/EA/8s59D7BjnvjfWzSJElGN/eLz0fv3/PZYBxPOk8wZAwyiFbm9vexHIjwC4DuAjAH4UwE9sbW29++5O8+sfgep0WgWatiwlPNUX7qWIUqqZVB5Qb2qpQxuI0KDU5cNTLzKkCnDAKnL/L1lTG+U1UYaWSGOODZefPx7U03lJJfp2v7UTVa03+i4lsdKOnFBcwhACOINB43bsLcPR4q3gJ+TpaC90JV+jJgoA1pJV28vJAwSnN/KuuNe6dtL31Pi05uw8EUc0uMFPu5WH97AIkdQgSRJSk7EWM+nDdq3tBWA1UZ2pFEHMKQpZwsAEe4FhOQoVLjPC8jl6IS8sb8WVT9R0Os9bHJjpggCFYHK5KFZcf8ZBOQru1/PsI7qtCHmpIMZ+LFW6nms/9g+x8h3fiZVv+w6kr3rIHntjE6bIUYwssPCaKF+lNZPOm6OJ8qmH0qWd56WMfJCaGeLtwzGGE4E3PGjTOzadN99V+8UGDRYH50jnec2jEmcWQiR8VhPl76Oi89N5APDgNcsSPHdngHJ3F6y3slCc7Svw6s3XrdbMz4spuNSIKQ9Aqa4pSmLa2HQmEQMt3W9eUp0X1TRR1Dh9Fm8Ky+NQ6btY9wZU11SLEoUqkPAE77z6drzr/u/EN15848z745qwXBwd4fmf/Md45WRnrs1E+EzE0HLzTD29SF37naSWjktjDunOfVpYDnjNYcVEC6nnp/MWNSD219BYx/oLqy6d189DL0ixv1e5ldcE/qzVCmuB11Z6WYDXVRLD0XP9O0eiOWcXt27CCIHxl79Unb/yHnUxVuOVc7frejnGeZioTwH4PgDv3draegeAL/sXtre3/4n/99bW1j8FsLu9vf37L/VJvlQxnS+u2xwsMu+72yiFmrvAh7YvStd8YFwZahCOukmSakA5DYH7k+LEfaYSa7Z4CxOTIYltH6ZuK8LRoIAuK98g3yoBQoKSFhKWhKqugZv0e+0YccQQGQVVm0CVA4MtE6HFOQauMq4CUbPVecw1VK67WM+LrFadByBU6JEohyk6oS+dB1HXO1dwY3AzVCPejSYqiRiImzwWaaJiGiOWBujEoRIr1WXDLRpA0KA9uzOA1lbTc3FtqhdfzFBo59GUrmN3vIdM5kEnNKuJmhWWe5DmzQDjOcLy2LGS2l0TWqvOay0Q0PvoxXYCHZRDHPbt8S+szn7GV+iNB84XqOblE124iCs/+l833u+b+ErXXikAvqD7aoKo/tgKdutgw99j5TrYs2X+QW4cf+Qzz+B9z9u01ltfexFffe4Y48y2JokuX174+fNGZXEwT1g+BaI4t/0rtQwVaIsirvVaNGUJEkVBi6Mot6aPZhZEXVxN0W1FeOH2KcThQUMDNR3eC6reUcD3FAWquaVtqvGc1HR60/NaGjNw4fRb86rzato8D56JSz1T3tREhe4HCxrx+gi2EUWJQpV2MU9W8Lde831z308JRUQjFKpE9vRT0MdHeGBtFyZ928JjJJwidRuZOogicQwGg7rPbxozSCPBMB9EJTyB0BJKKxBQKG0aIMozUYpHmDejeYF47Nr+rPcSMEpw2M8gjHVbV4NB5VbeAFEpTFHAaB3mET++iLfL0Bwt7iswmzorb6Q6efwxrL/rLwOoxm3krvuz/RtQWi3UXL6c4zxM1AcA5FtbW58G8IsAfnxra+sntra2vv/re2ovfci+Tef5nWhluLmY2tfa4Nc+9ERDoHqeKIReDqLcJAnUmCgHosJOkyoYx0AFATlzwKi2QF5qXQAhQJLY92yupDgZ5NVkHoTGCYiQ6HBrxOZ3l4PcM1G2mzrXCqomjnSZC6SGoR28pUwAFP58Ta2yhK+tgbY7KG7dwu6v/DL2fv3X5l4nL2b2i3xoxOv8FComyt47z0QJXSKObHXMi40kYjUmaj64iFmESBggjsPuOlVlKO328eaHrLDytz7xHH721z8310sqiRhKY+/Feuo1a8WZwvJ6p/RpEBVFbIaJqoC2YytrBQHtaHm1k2eihuUQhy41szkHRPmdezFyrNCSSjkAoUelcgu2B62LzDYH4xKrnak2ON70sFZduyj8s/6Fr1YGjG98cANxRCFHY0Drl4SJYmcwUSSOQ6sYQghIZN3Gz2aiKksM6/FWPRvCLVDRHBBFCMHGSgLSPwKMWQoU+bpl5uRJzUw2r+wq/DWcB6KkmWVj05iBy8IaZM7ZjNY3fP6+E9/GquZ5lcbzPefmhWdsZJG5CtezN8HeMNSDx5YuljLZccSQujFK60J3t+n1WlB/7sbNg9M+UYAVbgPeaNdJMepMlJEwAOSCJZkQAkQxIiMRu6rAjZUEh6c5yn1rgy+Hg/A81hlB5psml0XFRLlx7L0ItSRoRfZ99SpioDKozZ54HEbZ9xeq6vm5mqzAwDTaWd1LcSYTtb29rQFMWxc8Med9//QlOqevW8iTE7CVlTAAvY+LWgKidg7H+PgXd3DYz/CWV1+YeV0bjd9+9g/QjTp4x9W3o+MWq1KoULVRjzhU5+lal3a3q3KDLzHWKBOkDqLs5xXzTFS1QK7EqwBuBuO0jZUEN/aGyIYu/+2tCpIYVBZhQfWL9bgoACTotSMkMUVkJCSrHg3h5plUM7R4CxoKIBUd7aloUWuiSwhBct99yJ56EmLP+rhc/pEfnbkelU+UPacAptoG43FVKXaU24nvascuDgLlXbFQgJ0cyRnpvIhwRAowMQ9gO52zC99cTfGKS128sF9NIAdTFTNxxFAWBRhcM2nKUcgKRC2yOBBTTBRBVRUVscoCw3/ePyOS+mekqoqaLruejsBEFUMc9a0NRGtOqsP/rRy5yfoMEMU37YJtjvvAhXo6b7Z3ntYGg3GJV15pghw/ZoKJ5TlAVNctzn/3e1+Li2stdNIIeuz8fl4CEEXiGCRJIE9nO9jrPJtNR0URuHP5Xxb1ak7rIVc9n8qNr3lMFGBTNMnYMrbx5asLj8FXVwFCApgwyh1ryhy0bapzrYOoaTY2iRkiaT8/zyCzMutFxVR43zs6BaKCXcpyUOTPsXC+d+cDUbb/n2fHU1VALJlDIk7R0rPpPOMYm5RW9yGNOSArc+TpqLoC5EjgvbKqa8W01cYKtVjfSeIYUVE1oL6w2sLjN05QHlkQZZmo2SrJkHHJi1DlG6oqiQIMICVFi9n3TWZAlGWidJYhv3EDrVe9CkKViKntrVlZIwxmTE7vhbhnzDaNMaGTuQ/i0gI7hzcWfu6OE+L5XnjTcWu4gz+88VG8/+nfwXuf/K1wrHIhE1X5RIXeWFGzhDky0rYvIIBWHkTZyUa43U9dE9WmdoB7zw/vPzMaeLYgCZ+hUqPj2J7KQM/ZHqQcjDoQVaNlBbPHjDWt0kJchMHsfaLEFBGd3P8KoCb61nmO06KPP3z+o1COvvZl/56BSt1AXlulYJQ0mKjVuBf6M8mvAUQlEQUCi7PAbNNbSsRR1UBVlw0dhI9vdOD61c6J+h1vaLIAScQgTdUmIWEJclVP580356sbA04KhbTmaRM3fMSm7C64Zysds6nJmYUTnonql0Mc9vO5LBQApA5EieDKvXzxitx4IwMnwGVNTVQ9ZTmYlFDaYH3KP6nyIjqbiQptOcoSr75vFX/prbYHYzvlMC71Nq81yYsN2y/wEsT+XsPYE/A9BaeuH48QGRl64y2Keq/FGSbKgygt5362lXBsCLvgxVcWM1GEMbDV1QAmptOPHsCkqjrXuM5Exc0xkEYMiS5B5qTyAJvO1ASI69jPMVGoMVFJrfsBOYOJ8vNfmXsQtTz9598zzURFc8azD84oWm7c1vVlOvLtd+ogilUdJuYwUX6zlqsi2KHU1weulQVRcj5Atl8cgxuJyDGcF1ZTcC0DyysH/bnO8azW+mW6Byec/lZJAkYZEhYH2xkAMFpDjUah2nzyuPXqK3TVrqrqeXpvekXdMw2I9WgEI0TQAwDAvh6AA/hPj/0Wfvxb3jX3c7tHduLtj8uZ3mlA03fkxKWclDbQxswVlod0npwjHGU2Hx4ZFRqzGkWhtQlGl2IqnRdrggJ2gHoQtekWoWw4QYwaNR5FiKQJrE+1WLuyYrdAcqOQkerRKKhBAiDRJAjACat2RH5nLKa6lyf3NZsIy9MT/Pwzv4qT4hSbrXW87fJbZtJ5DK6FSduez6SQOMqOcZQf43Xrrwk7OmXEizbaDOdVY6IWaYUSz/zVmKhkDhMFAH/lm++HAfBXv+V+KGVmmiInEQPh9n62eQspS5DLYqGwvMVTEBCMavR4VjQXYO9YzhAFgBSYKD8/hsXr7JTnSmJB1Ek2gJDrc/VQQJXOE1kGDljn/yXhAYtxoMun8wghiGgEUUtZngztc+iLI3yEdJ73TVrKRNnz4VpU4lkAnYRDObAwrzXJ3UR06TKKmzchT0+D0zdgGTM+1VbG8AjcZGcyUZQScEZd25eyMV8JNybZAhCVJgzrDkRFS5gowIrLy1s3rfP8lMeTcefY0jUzSHffDJWN6woAScwtiErXFh5PchrSzQBgHIgiNTanronyvnaLIrSxelFMlO3Q4MFjSxVQZ9jtdF2T73o6z2cMWmiCKJQOHNHZc/ebw0zmiOA7UTSZqJLwALDmhYlixHoYWoetdROs1eYINRyGQp5GOi8wUTnyws4F/h4aomA0QSkq5/I6iNKTCaA1Wq95LbKnnsTk8cew+de/D6USgd0+q9PEyz3uGSZKOLQebVRM1MixEbFYTKH6RsKATe1NRz0dMXLOuYWY3/IFADgjIAAGdAd/8uzHAFQTgvTNObVA6dphGM0gpA4gqvRMVOwF5wTcgSjKq3QeAGSjZjpPRxxMmZByrLdCSGIGziiMMYi0RFlLzRW+/YwiQQBOuAiTgN8Zl/OYqFrkR4c4KZzNhKsAmcgMKUtDywbtcodJy6CdcExyic/uPQoAeNvlbww7Ok3EjPHleSOua6IWCcvdOqVjXgnL1XwQ1W1F+MHvehU6aYSVTgw2ldJIatWAraiF1OnKFmmiOOVYTVZwlJ3giwdfxad2HkZeyqkO8wygEqy2D2JuApa1UxScNBavRdHmLVBCcZLZiXARiPJATmVNvd2i8ClzFL7tS/X+mEUoa4DAN85enwFRLvWzxNAxHM+dT6SboLOdRogdYFv2+RcT8eUrABDS1YDduZtaOxwfmnNwfbYmCrDPSykkTFk0rm/ppmum59/QNOboSdcEd3Nz7nt8ROsbMFJCjYbQk2bVsjf0TRsgyj2jVAU2Mhw3oki0AJYAaskJuKzmWS9TQI3NSSJWq847i4ly/SWdSej5mKgEyqiwFrRUMXejW4+2sfN7PZ2nXDovwVQ6r9ZhYjoCEyXzAJTqLBhVlv33YGZeGMdm+nl3pRMH0GxPTEEcWu1uXeAfWr8UBbKpzgeGKECzsGa1eauhifKi8vjqNST3vwL5009Bl2WjcfqaN0ku/wJEvazD7z7q6bxT4hpGnhNE3T6YFc7V0xFjBwz8QJi34BJCEEUUh5sfxxN7j9m/OZAjqU/nVUwUNEUhFagbeCXz6TzPRNVEmryZziunytANp+Aa6LhdUai4UWVgGIy0rSnqqTkPomJdY25qTBQLIKr5OMXXrjeYihduPhb+7avtMpk32CBZ+saYGq2UIysEHtn9PCLK8U2X3hRAj6HyJWGiFgrL3YSvIhauX6zFjLD8PBE3mKjUaTPKwADOWwA20w2cFn38+NFcVwAAIABJREFUxyc/iP+w/QHHRFWTc52J8lGxlfa/tdGQjCCSZ/toUUKxEveCONSXUE+HPwc1lQJa+L2+4it3juU1DVpEIwgl8OHP3cQkl8EIcAZE+R5mwVX77HReZJqVcJ2UBw+ilwpERZdsyuzOUzfwyONWlxJS9FPXRbMI3Mhzgag4YpCF9QNqpPPcmGRqQTrPMzmEnFndxtctayRPTqCyZgpIu+udzAFRhKlgs+GjTRUIAB0vAVGMhAbmgGXYAcCQqXReqM47SxPlhOWue8IibWM9EhaDagPVt9q4eRrH6Wg7TVQ9BaxCD8PZdB4nfG7q3DNRNp3nwFYdRHlN1BlMFDca/vKvdmKsSjtefaNpsWefw0Y6r1X13cunClQ0FGBoJTjnKTKZQxuX5vMO/ys9tL/hG2CkRPb0Uyi1mJPOuzdtDu4dEOVKrHmNidpXVqfRkvPTHcYY7B5PguP47XlMVL2hpZhAm6opZLwg3x5zBhjmZTkVE1XTPFQgiqEUCkz6lJlufIYrANpVWrgv9OkQ4UWGbkLy1HXHNMvMhRGh/YFxtgt1VikjlVleyzNRTITfx7SEIAzl1ARA4xgP/E8/gyt//78BABzsPhteO8osiJqIrKrIA1CW7jsjhXbCUaLA3mQfr11/NVq8BU45OOUgTH5NwnLPDC1KA3hgLSNagShzd8dspg/bSHliq1lK+zxNM1EAcKG1AQODk+IU2miYKGt42tjeeSr47QAVE+V1c6USELz6+1nRi7uYqDEAs1AT5c8hpNbOYqKSxFZtFZWvjI+YRRiXOf79Hz2Fj37hVi2d1zy2T3ERp91jC7Q39fOJ5zBRSWCiXpp0Xuwq4B77/JP41x/8KrJCzuiLfCjKXFn82anVOGLV9Y3rTJTbLC1M53Fwo2B4dKYGrqrQO6m8hXzFoe+LV0sDh3FC5UzBgWdrzBImyj6HsyDK23QA9ndX6byzqvPcnOnYyfOk82KWoJ3poNOMjJrruVWP1hyLA+nSWJ41AxyzQ3WDGa6HB3lfPnwMnz/8MwBNiwMqBSThSzVR3gLHH7fXjoKPVXzNNpcuHStaf/4qK598pgenhoTRNDBRLd6CgQl6zKrX5ArSh6xtRv7CDUgtQzpv5S/SefdGeDFhnYm6o121TqkC8q7HYFwiKxRe98A6CIDnd2cdWevpPAODiczCA7lowY04BS07YWfmfX28pogpUVVmGYpSaBC3EBa+rJYxaGIrXrQXgDo6ea2bgBIC6SZ0vzuXbtC2HXtRr7gJi6NrSlqABcFs7ih3a9roheUyiOSZsruoopy9hvGVq0gesP270K+u31F+DG00cpU3jCBdVw4QZpuDevDhq8cAIKEJwL4GJiqmZ2qifOpBTjNRd9GyKIkYUGOiPJs2KL3YehZEbUw1USVx3mAxYgeiSG3SplJDUaBwk6zQApKTFwWiNKwT+sWF6TwPtn067wxTRGpBKCsFOGHgtVSH1UTZc905nAQQNc1EATbFxbyhY2vxMUM6z0xpolJuU0546Zko3j+CAXA0yGcMfX0ot+Ck9Ox7kUQUWjT1kgBQuOmaSjH3c63YGeXy5ZWYQNMratpbyNuoxLpmM+GZKDqbkmzB3kMZzb8vxhgIBttGyYX0xrCoM1H03BYH/rrIcjGbOx0Jj9GdNK9/POWJNPOZOSDKz9Nxbe736TxK5oMoP898bu9R/PH+h8CvPB/SckZrUK0g6OxGtB56ygJnpRMHH6v4qtPAaWsQTGotjZILtvBFHh1W1XmeUTYunVdWIAqobA4CE9XrBZ2fcMa5viAm5QlSlv4FiHq5R5XOs5PHsBzhFG4XU2qMRdPvxRiD3S8/ARiDBy738PpXruPZnQFuTAEp4RB7cHstx0vTeYAFUZqKsFAfOkbMC0e5kgGcGZevplJBUkC4ScbAQDICrgy0E8EYt6ujlGClE1UNTBPPRDlRoUv/1XeXIZ3nJqX6gJ4Qt/hIHdJfdWE5VRKC8NBUeTr8NecD3239Ao6y45q9QbXgZBM3cTOJVsrnapdimnxtTBQ/WxMVOSZKcBJSktFdp/PqoK0VdqUeRM0riZ5uokqSJhNFmAGhBkTXQZSCZCSkmEslIBgJLOZZ0eFVlefljflsTdDDBHuOsxkAmrbAShnsDXzENIJyLMbu8RjHwwIEwGp3jjVIxMCWGDr6qO5VkzFp10AUe4lAFFtZAUlT9HK7GTs8zRcyUT5Vn5KzQVQcMcAxwg1NlLcFWJDOS2OOSCsYNn8hr0fdtXzaW0hGDkTVDhNAClMzTFTq7qGK5j8Lyij7HCoDo+3v18JpIEl1EM5oYFnOTOe5CjlVvghNFI3RzZynndMtxuXy9j+pLFASDsOquab01bBTTBShGnQREzU1z/D7t2GYvcfGbVzlGcJy790XO03caieumKir18L7pgsnWvddt+d9507NsdxpG420khH393bwirLX1WuieG8FrOsqo0du3qpd87Vk5S9A1Ms9xPERgGry2B3vIXMNiNJShwXNx8kffAjkV34R3zTYxpWNNt79LVYk/QePvNB4nwc7njkYiTEK6YXli9J5FKAiMFGZY3q8mJsqMZPOI0JCMRLSh1JLSGZ1MEZ5kWC1M+qkUdix+onYa2Vaxplk1naXIZ3nFkdJeBhYE1ehwqQOuX1MgShFK3HidNBWGyRJkIwKxCzGxdYFTGSGP7rxJwAq7ycAGDssq2B1WvOcxWMaWybqri0OmGVxDGkwI/Xgwum8OAkLYmIkOHvxQyaJGcDsNUx5UpmcLmGiLswwUVlj8dLunswHUfYeeiaKKhNM8paFZxk31unC3+mBHBHWXJEsaFNRD9pKEZVqJuUSsRggBiAad44mOBnmWOnGc48dRwxcni0M91VdsZZVGTfseEheYmE5IQRmZT2IuQ/72UIQ5Y0yE3L2fbCGt7PO3XkAUQuYqMRaBOhzMVEunXc8m87zFcD1ggROOSgs+zkNopLQ724+kPHPIVADDAowmlhNjgtCSNAZnZnO847lpfdaO58mqu16jhZdO76iM5ioWBbIWNwAN6Xb7EY1MJsmzKXX589J09pLQgBJLYCrQBRbuBEFKhDl2bpWwkO6Mb5SVWNOP9/ppUsgnKPcvYO8kGAuPQ7AtqoxFLmoNnlA1Y5LjXw6rwfasUSBHFkdVt17bjVZwVhOZsxz74W4J0CUGo+RP/M04uv3Be+c02KAIibQBGgVBsOyKRo/+fAfAAAemOzhymYbb3hwA5c32vj8kwdQuhpQPne87sp7x2Jc00TNH1CcExhWMVE59SDKDk5aT+dpK/ojboH0xyuVgGK24sUzUaq2q2ulHEwJEM6Dc7IHUbETjNZ3l+3EXhc/KQlSgaIJ8c16VWBR6kwUUcJqohZUlhBCwNfXkY5LtFiKzdRO4B9+4WPoRV18zyu+O7x3MJIwmkAYJ3b3fk41FoOTGIQpJNHdNY1OYqtRoogXakeY+y2CVwtiauYzAGcezwnLY5KAEjqTzpuniZrHRNWrojzriBqIss9I1XNPaBEWRH2O/pDUaeU21xeD09AuQjhzxXM07qatNqJSI50q/Y586oNo5KXCwWk+Y2/gI+G0AlFLxOz1HmP1dF6rkc57aTRRACCiFKkuQYzGYT+v7AKmQZT7rckCo8x61P2S6mCi8CBqQTovTWwFoFqwMahHlc47CSlIz2AIB3j4VEECQwTCZjVRsQftc/yRAKBUMqQItWO6S2HTSArNMZXgxflEqXK26nNRJDwJv6loW083fgYTFckcOU3CnA7M9+tKI+42ZgtAFJt9Zg2197E+5y5L5/n7yt1zTAhBBwKSMCT33x96nU4bwBLGEF26FEBUGjMQQqCNhjLKZjtqwnKgls4b+HTeSkhpKtd8uF6FuBoq9F6+TYgXxT0Booaf+yyMlFh5xzvD3wblECAEIo2QFnoGRPkKjowluLJh26Rs3b+KUuqG8aYHOxsORI3EuNJELdDsRJEBIdUk5YXbleahEpb7dB6EZZ58RVepS0hGQJWGdNS4QjW5thOOSMvGZOQr+3zpcmN3Oc1EUR5+h9dEGSEqRqgGoiDtQF7ERAEAX1lFmiu0aYLNVsWy/O3X/kBDWD4YCxAdIZc5WjVNVJ2J4s5LikXn0/pMR8yt5QAzi3fs1O3MisjqegTlSMzd7bJ8+jAi9jd4QLjIsRywjZgpoZWQP84b6TxNKqbSB1nARAFVmnZZFLm9n6uri4ERZxRxRMGkOFcqD7CAghqghebv9F5BqHkFXV6fD3DiiCFSi12xfRDOoSmbSee1YlYxUWdUFL6YyFgCAlvpddTPK1f1KU2U3yDF5wDicUTn9pDzTBTEouo87oxyzwZRNI5BO51mOs8xGG46manqZMQChenqPP+bigWu+EKLAMz8/FJKDWgKPXU9YnM+JqregBiweqezImFx+E1ZalkVWsy27fFhlEIkS+QsbmwQ/b1kNdYljggINY3xWI969eAqsxolTVw6rzbnLkvnVRY4tc2yLpCxBGxlNfStbL/+G2Y+G1+5asHyZBjGhfTfo60vGVBJK3w6T7mm36zTAWEMJG3heM/ZBdVA82Rkf/fO6dHC83+5xr0Boj7zaYAQ9L51CkQBMJ0WWoVu9P0Rhwfh3ysogsHmg1ct2q4LzP2uPzBR5aTSRC2ozuOJfXi7blHxIKp0uxgqy8o/x1dOSDmjd5HMioaVB1GmYhs8iEKtn50XpdfNFzmJQJhCx4GoeUxUSRQ0sYPdAwBCFWJufaWIlFCENXZr0+FTBT0d43Xrr8Hl9iX8V2/4Ibzt8jc23tcfl6A6wkRmNsU4p4rOl/XT8xggzQnPRNVTYTPn6wSYhZsTBY0ak9eiEAcHobKqcTwugp9Xq7Yr5ZQHj6zG8QnFX3/we/EDD70HMUlBkqxRbeYd0I2s/QYx5xnh52eisrF9b6e73BKhlViW8yxRuQ/iXM07svk7PaFyadOVSosRvueNs62VAAssElWGLgPLQvMIsWmm89LYMlGKR4GZfSliRJw5rCpw2M8rQNJpgsHCVdZF5wBRiWsCDkxpopSBAgXk/HuZMIDCzIAoocSMqzpgU3p1YbkfowW3750uSKDGzhXTPlGR2/AVC1gYoUXFRPnqX2EZEIlpEGWLVJYBZaCyODClr/o8R3UejYMh7cSZy9J8Sd9Udy9zmjTSbIXPGNTuA/ONlBeCqGqsrFMrX9CBiXI61DM0USIwUdU1S2SBjMbIS4WVd34bXvFTP41LP/TDM5/16b7O8DiwyWVNMlJ4wTlvtn4JfSCdUF2lLRDHXNa1nI8+bkmHTz1+c+H5v1zjZQ+itCiRPfM00gcfbBhteuaJd7tIC4NhXoniJtvb4d9rpsqZexD17E71Xr9gbSQWRA3FKICJRZodv/i3HBMyCUyUS5XIejrPUq1GCJfOqzNRNsUmBIUx1qrARyu1u1JTE3sG08zaOGUkAqiqhOWi0kSVjuL1gG0eE2XcSijOYKLgFtKu5rivdw0//Y5/hLdffkvjLVJpDCcCjMSYCMtEeZaiPglR7ZqYsrtLr3kmCstAlCvJL5g3OeWNapx5Ue7ewXM/+Y+x+6v/V+PvEbf2E55Bq6cml/W0e/cr34XvvP4OtEgPJM4a5qKhBNkBE2MMIAQUJ6FxcT2dZ84BooZuH5G2loOodsLBlTiTLfChPYiaWmDK0p7bG161isv5Ef67G+9H+yO/Nfc7Ys4QawFyDhZJsdgyUbV0XpowJFpAnsNP6MXEqbLHuN4hVhPlHKPZVGuZAKIWiMLrEfNa+5O6T5TQkJRBlwvSeU60LmtGuSf5Kf7JJ/9nfOzWp2bez9fWofMc4siyB746zzPW0wUJxMxnorj7TQVZAKKUgMf6FRPl0nlTG5NIy5D6XBbe4gBOT7SoQKQeCU8CEzV21b4km9/OCwCUA1gFjZpMFDyIqu4Di+z3Gj1/Sa2nvlbIRfv9aDJRgi7fiAbH+mDErBHJAjlNMJw4H7YHXwW+Ousc76v3uuOjAII9E0XBkNfMNoEqnaezSYO5LVmCVPlOC9XcFVN7/Q+H9564/GUPosrbO4DWSB54ZePvQdS7Yu0LJoPj8FrxQtVLr1Nzb712oYOYUzx3pwai3MLqmaiP3PwEHsseAbBYWM4iN/CdIHwEP7EYSxWXRS2dR1GUEqYs7QJZ00RJTkC0gcgloBnEFBMVawFTE/7mDkTVtQ7MWPG2F5b7naKgPFC8pSqhOYUpSyvENrbajDMadoKS8qUTgHaaq65azAIMJ25wkhiFLJDWrAjqkyT1abi7BFEK0raC0osBDHG/K3O9vQoShR33opg8bs1ER5/7bPMFJyr3mqP6bzlPw87YdECYBomq4+cOTCsvdFMKMMZWcNar8zwTVZydzjs5tb+VRcuvaxoxRFqcOy1mHGvQmmKi3PqHV1/v4O+JLwAAhp/507nfEXNi03HnYL8ks89+M53HkagS4hxpnxcTHkRdSjTGuUThkCidqpDKHEtjFrBI9UhiGtiGBhMlNRTlYaMz8znH6tS7DTx58gxKVeKZ/vMz7482bFq93LndYBtyD6Kmx7NmVos41TuPuXGRL2Ciylo6L2iipAYMtcLmWnAtUVIGqZan6j0T5VOb5+2d54t5Rq4HJ1nSfN7kvlKZNzaIuVs2Se0+UDdP+F6nyyI2lgWTLp2na8U852GifBpRTyYgAHIWYzBePjdFFy4BAHpiHJgo4cAYqxURVZooSx7oLGtoCMckRqwVmDKNdJ5nxO+c9s+8dy+3eNmDqOKmBUTTLUgG5RApS5CuWnaqGFRuq+XuHQDAYbSKpBgHKpwzildc7uH2wTg87F5/Uvf12RYPA3Rx9RhxzuJe4D12g0kojZI2QRQ0Q1kIwBgYxgITJVRFkcuiABQPqUUAaMcUkVGhogOo0oao7WQJuBOWNzVRdWZJaAHFK+8aqiMQLm11Ur2yZEnLApXMX0jr0R97kajrfxaryoqgziB4c1F6dyDKX0OzBND565AxDaU1SsIRKRFKtOd+7835VLan7T2DVk891CsTFwXRroqSV7+3kPY3eD1cmIhrxQc2jdL8PYvCGIOjY6eB08srlnqRAQEaqeJlEe79VA+/0vfxOrgNurcDAOAL2pWkzIDBAMnZ6TxBI+dYXk/n2dYkiyrI7iak0jhxIGrD5Yky54U2A6LcWDfnALMxr7U/qTNR0orGzQImKnKVbWWtzP6F4S0AwFF2PPN+X6lsyrJxvp6xptOVYm68MD6llXKMTI6z03mBiRIaRjEILRoefVwLCBIt3ZABlSbKg6h5xRnTkbBKWD5krsVNvlgTFQAfiRrgxoPFOojyVYbLQNR/vvWD+OHX/e0gI5DGzUNhzl0OoqrCI8dCO71SRhOcjpY/V2zVbtY6Kg8MrV9jGOGBiQrVeYGJyhrVfn03h6WFtho5AKNMIHd6Somykam5F+IeAFHWkiCdBlHFECtxD3HPPlxF/yS8Vt65A9Hq4TheAdEKelxRvpfXW9DG4MQ9tKUSICDoRk36nrRGC32iiGMmuPMiGsIBI6FQ0gimyBvVeWVmX9cRC6Ct1GXY3akiBzRvNEPuuN2kqu28PYjStcFPNG+ULfuJoy4sr5gof048NA7VIf23PJ0n3YLWXgKiTkf2u+qtZcg8Z3G3cHlw8mLDszgNPdFUGFeqnjOFUuggml0GRrJnngZgK4fqGhQvAid+AqqlJs8DoiA981Yd2wMl6RzeQxqWk2Z13hQDsChORyWyif2uTCyvWOr6Xfc5QZS/9+nU7fKnFJ9UYlTV78/V77S8P9oZ/kGAXYwioxDX3MGZ0WDQC8XPdxODcYnMPZdrbkznA9eGYyqd50GUZ3qXRdPioPq9wjFRegET5am9evslD6J8m6V68M1Kf1Z3gfeFJKRsjme/6fCdEXz4tNZkAYAQdUa0kc7jMDDBcBWwqcE6C74oCOfWYkNa5+x5usLpqAvLB9S1QpksAVFuDhBTLHuhCTQIULsPfszpJfPbd15/B9557ZsBZZ9B4UBU0ERRvrQ6zzOMHrR6EJWzGHsni38HAPAVK0XpqAwdp/H1IIrX9KxryQoiGuHpk2ehRAkjRPBVK0qFU/cMpKVBWdpruXcygfFzFBeNVmn3QtwDIOomQAji6/eFv2mjMRJj9OIeuOs5VAxObEfzooA8PsKgtYaR263IfsVSrbvmvicDN8B0iYjZNgt/9YF34ULL7qRpe7hQWB7SO9L2NvOo3zJREUyeV2abxvXRAmA4a6TzwsSUFyCah9cAoO1AVF1k6rVXDSCgua0UjO3g9cySZ6KMsZOc5qwSJ6tK8B3SeWeAqNIvpEvIo8HYfn8n8k2OZbA4qDNRxoEoc5dMVO6p6iUTni4KaALkRqKUOhjs+Yl1OtRkjHLntj0vIYJYF6iqcPzkmb5IJkrL2d/rgaAoCYwx1X2oV+fVhOXmjMX79uEonN9ELgdR/tnS50yNCXfv4ykQ5S+l2dsHANBuF0bKUHJfj5ZLVetzpPP8YlNnCoz7zpy8dEzUyahA5rQgPQeUxyd2F/7cSfN6TzwTdY4qySSuWRzEzXSeZnwhkPd/91V8SivcGlqGbyTGyOVUwcP994d/15moHAKKAkQ0b5jvjCCm0trEpSgzswBENZgob3GgAygLzLDWtlsD4cv1lbDl/SSOQYWaMXFdFAmLwV06b2IoChqFQoB5Ec6V8uD9BwBCmZAxqP7mXNsXtBBrfK8bz6VnogovLGdL277UNbMAoCcWsGc0ORO40DSF5jG6MsMrr7g+ew68chohL+1cH7MYb7/8Fhzmx3jizlfdZ+18fOtwFJ73tNBwTQuwf5yFjS1hEqPs3vKKOhNEbW1t0a2trX+1tbX1p1tbWx/b2tp69dTrP761tfWw+9/PfP1O9cWH0RrFzRcQX70KGse4M97DZ+58DsNyDAODlaQH1rMPVJQLfHrnEXzii78LANilPai2MxfrV74b666vl29RUSoRBHbf/9C78fff8EMAHIhawER5fxAqFBSnYdHyi7UpigYTJX0KIOINYXkZFsgcxHDLGDlqvEV8rz3H2hiNsa8GKSog4Ccy6tIRdbPNUihILWFgoDkLbIdRHKDS9nRzE62ifGk6TzhPp2RJs+e+Y/e6LmVjiAwpuzoTpYLb8V0yUdLriRYzUTrPISKK0kiUQlXXcQGIyrafCD25AEAeVekTAc98VW0SfJwLRAnvA1ZnonxK0qYAPDthOK2q8+pVUWcs3jsHY0BTULBgtLcoOu7ZUucwdQQA4TQ0Se35MMZgkrnrtW+rYdtbr7PfO5htZNou7K5btXtnHs9XT9V1YDqAqLNFy+eN02HFRLUdE1EOR8hphC8+U91/rU0AUWfdB8A34nVsUFJP5zkQJeZX2/lNjq+S25scNNpSHeXNlF7d5bque/FO99NWCn7c1RlvoJozxguYqFLLmSrRUlR9H/14DBs4Wml0lgVNEjA5a+K6KBJmheWaURTSoOTJGUxUVTVXn9uEVFbkXc4yUf4aLQu/KSpd2lzXLA6WMlFobg48E1Xy5SDKGIOd0S6KpI22yvHQNde+xT0bEeW2MMkd+7uu2yr2z974DIDK+uLm/giZS5umpQ7jt85EES6CyP1eifMwUX8TQLq9vf1OAP8jgF/wL2xtbb0KwH8J4NsAvBPA925tbb3563GidxPi6BA6z4Me6mcf/gX8xuPvxRPHTwIAVuIeWM8CpVah8R+e/AAe/crHAAA76CB11XyqAaLsgD0eFjge5I1u1gBwtXMFMASkPVgIohR12iIhoTlFJnPL+EgdvECUX6w1g3SDGZxbVshoO9F5s8myCGX/noVIXY7eLyi5zFFGnrmqgSif0poqt5XOgTxMwhEHtIaR0gIvYo8VgBVfvnssfCuJsjkZ/fSvPIIPPWx1a6eOiVpNbSqk0HmoZKwLR72Y+q5BlHItDZZMeKYoIF36tBQKJVnORA0/a8Xk3be+zf62WooqaB/ctQ6TvjHBeHRZSOFLkqvFKyw8yl53vwAZzhtM1LQ/z6KwzbUJWryFiVy+q207zYw8Z2pMOEY2qt37SSHDfaT7x2Bra6GCqM78+kgdiBKdlTOP57U5p4MD3BhYnZpnBicL2nLcTZyOigCi4jIDge21VtAYO7Vm5XmpgkHjedJ56RwmSmkNpQ0051YfKWdZ2KDjcz3vPnHbLoKX27YabDqlR6MI1KUdWa0fYalKC3qmnhnpmNu69hKomJTRAhZGqFqVqGddpA4FIp5Br5f61+eSJ46fwm88/t5G2g8A+oKAlepconLAMVHSQHGKUmoInjQY4+nwm82SNjVapdQQNGoAYr/pFQJzAW49lCQwiqHQL04TlTvQSWSJP3z+o/jQY78DAIhWetg5HOM/ffI53D4YzXzukduP4uce+RfoM4qOynFlo9U4Z29V4HVR3U9/CW+arOKF/WcA1EDUXp2JMhi7PoR7J1lgscEkRpN7i4k6z4zyHQB+HwC2t7c/s7W19fbaazcBvHt7e1sBwNbWVgRgqSp1fb0NfhdNXF9sXLzYw8GTXwEAPCm6eNOFqoHtzdxOrFfXN7EZXcZtAA/dLHDzUoz1gR2oR/Eq3vzAVeAxIJE5Ll60O+CH3ELwu3/6PN73sWew+W0F1tsr4XUASPQK8vYQ16700E5nBziNFFAAVCmYmEMbje56BG0A6SaEqFad57u2szQBUKC3HiM6JGGBJGWBiMSQADprETZaPQxWIuzCaqIuXuxhf1yidNWCsVHhfI17+DurES5u9tD3vkiEg3KG3poTNbtqmI3VJFC3ndUItO0eoSiC0qZxHepBVlx1HqXhPTfuDHDrYIT/+NERfuRvvBG52+3dd2kT2AN4C2BcQWuOy5dqVWyuyi1qYeHxlkU8dqyAZFjf6MxtM/JsWUDHDMJItLtpSOetpASrU8dURYGnv/Qo0iuXcfW7vx1Pff7PkJaTcG7RobshWTPuAAAgAElEQVQGxt4LP8n+rT8+xeGXfxFv+rl/tvR8PWNGk9r1fdZN6oqh02uhNXGTWBxBQeLixR74LRIYgHZEll6rw0EBSglWW10Mi+HS9661nClsuxXep7XGjf5trKY9bLSqEuuLF3ugq+4Zo9U5TO4MYBRHJDRYf4Tum9+EtWuXcAyggxIXpo7fM86bZnNz6bkZY0Il3PufeD++yI7wS+/5GfQSex0miHDhQvdcTutnRakNchoDhICLHBfWW0ifKXEadbF7koXzPDzNApOZUH3mM3tlUOBZN+YvXN1AcqGHSe50dU6HtrmSgHc7EErgf/jDf463XnsT3tOyILQAQ58c4xM7f4rrvSv4z77h3fg/H/415Gw8c+zbly9h/NxzYKIIrylqmSPigJr/uxQUDEDaZY3vuaMlFKEozfxnLD6i4Tlscft9UhvbgBpAu2e/L9dO1kA5Wp0kfNd//5FfBgC8/RVvxHe98lsBAMNJibGiWDMG3bR9rnnAGINIAiqidsMap9CnR7iw0Z7rHeY3nYJyxElUPesGUIwDZXWPW5lLuWuG7koL7XTxBsMQAigOiRIXL/bgPmpbA5HF41Q65jchBh989kP4loEF6msX15EdKPzWJ5/Do88c4f/4R3+p8bmPfcXKDAYxcAUGmy2CaLWHVma/r+1S5N1eC92ijyff9168C8D7vseO4+7mKi5e7GH3JINwes601MiFPdeD0xxJFCFmEXIuUKjF68DLMc4DolYA1LeGamtri29vb8vt7W0B4HBra4sA+F8BfGF7e/vJZV92coYA7qWIixd7ODgY4vajjwMA/mQX4B99Krz+hR2X6xURhk6QePlY4u98+ARP3W+R9lG0iu6mrV4Z7Ozj4MCZc7qJJStcJZMowQwLrwMALVdAWn3cOtjHejpbwh6Eu6WAadtJ8YU7B8gLEYTg+dAOEE448rGjfV3/rdt7RzgZjsIgR1mGxpc7e0dQHYaib3ckE0lwcDDEreFhSP9NTgfhfEVBgB6wc3iEVb2JifucIByn/Qx3DuzuVbtJ5mDnGEowMAC394/QPXCPBoswyUXjOtTjuCyxCkAN8/CeW3eqx+or23vYOxqDUYLIVa/sHh9b7ZVqXt/J2AA9oD8aLTzestg/ccyi4ri9czp3wlNZBrUeo5QldvcGKNwieLx3gvJK85jDz/8ZdJ6j/da/jIzbtMjpCzvg7twOHbNCTqvf/g+v/ADY/i9jsP9V7O+eLjWAzDP7jB70T8PnB47KN5pjZ7eP9QP7mwxjyESBg4Mh+uNJYACGx4Ol1+rwdILVToyUJtgV+9jfHywEGsbt3gclcHAwhDEG//yzv4Tbozu41rmCn/rWnwBQjcMTIdEFoAbV73/2hWNAMawPXNrqwmVk1E7Qxzf3YKbO1Zza5/BUJ0t/RylUqE7bP94FLkZ476O/h++fPGivJeG4faePJGJ4/9O/g73xAf7Bm//euYTJ07GzN4QhFKTVRn7Sx8VLMRIjkLMYu4dj3N45RRwx3D4cB4+fSf/sZzaflIGJOhkJMDPEwKVIlJsDDu4cg69p7E8OcGtwB7cGd3BVvA0prD7xj7cfgTEG73ngr6Cl7AbyxuEdHKxPHdt5Co3v7IXzGuUTKE4DG35wMLSidgei9o/7OGDV9xSjCSSNMMnl3N921O8HJnp41MfBwRB5IUM6b/foBJsYorhj042CMOwfjHCw0azE/Mrtp/D6jnXjfmanj5JyRIUBkfTc80CkDERCUJQqeIbtvbAP1u3OvHd41Hfnw3F8OgnHyHIBySKoyUkYJ4dOCwdNcWunHzIW82IwKmB6Ecal/c7Rqf1ezSKMJuXC3zJ0BE/mihdSt6Fvr/aAA/viYFzMfP4os3PDxGVs9569jeQ+imN3XOK0bDu7fRSD3fC52EkvcsOwtz/Aszt9vG59BdixTNSdkxJ7ewPc3B/i2oUOcpaiYBJHx5O7mpf/PMcyUHiemWMAoP4NdHt7O/CqW1tbKYDfdO/5sbs8x69L5K4ybz9ex+9+5vnw99PCDo5X9O4H6zYvzit2SxRJhCFvY/2yBVG+V9Bz/RvYK26CM7+4GGgiAx06+PSnMP7ylwBhB9BYjJHLHL/x2HuxN6lc0AVyGENsVUvkxbwT6wPjQJSvDotZVFkLuHLnQpUoVVWdFxsBTqrXgIrJylxqI5NZSP/VhbvCVXeF9FDIzzMUQlfaLMdEyaIIAtNc5SGNhChaWlEzcQ6frKgo+WGN9v3Ss0c4HuRY7yXoRO1wzqAKWjLoGkVe5CQc/27CC8ttKmz2nI2y6TEd2eqhTJZLheW+ArS19TpwlwIWJ5X+ZCIzPLBT4O986rdx+tE/BgBc+Eplh1DX3AF2x3zwvvfi9E8+ZnV97vd67xb7G1wqwafz3H0j0fx03lmO5eNMopNytHkL2uggXJ8Xvv+bL7kuVInbI2sLsjPebZSsA0DuHbBrpfknowJGc6wPXZ/JK1fAXAXRPE1UNLaLVJZ0Zl6rR1YqK/oFsEHtex/e/TwmY/udJY2Qu2fwj1/4OL5y9DgeP35q/pedEb6snHW7UOMRrvZcuovGMADuHDnH61IGJuosgT9gjUGn274I/5zyZuPdcU2/9vie3RwKynEwsenk+7rXQsr4OK+es2f7N/CrX/136LzT6l/qLbFyWUBFrPHM5KUMbtyFnNZEFVCMIy/l3FRWocqZuScvVWiDFNJ5PtU3VQ13qW2rCJ/rV83f944nKBkHNQAtzw+AuTIQHDAAZGxB+yJxeSOdV29A7GUXxlQ6rpolzaRYXvCSlwrQETJlZRz+OrMksa8t+pz3GitLdHgbiauOS1erNWzetufEg6iOS8O7fnheqpE4Cckv/D+P4uj2fvjc2pFLt6ctHJxmKEqFjcv2WUpLjfFE46CfQUiNa5sdtKM2CJeNef1eiPM8fZ8C8NcAYGtr6x0AvuxfcAzUBwF8cXt7+x/4tN6fl1A7tzBkLUx4C8eTpnfFhdYm7uteBeIEj2y8Aadd12VdGByspQAhWLnoQNRohJEY4+f/7F/il77wr9ElEg9M7gDOIViUFNlTT2L3//5l3P7f/gW0sA/lUIzwyZ2H8Zndz+F//8K/CccuTQFaMhCjwyQ5ERmk1KFsXOcFKKFIoijoKLxLb6lKlFoEJirWErEDUX7xC2XHTtCayRyKERjGQpNUf+5ArWKt9NV5HFkha5ooVxab5SGdl8siTCIkWu7tMnSWCDSvJuZRVv37S88coT8qsd5LQi+9icysCF83haYBRMmzRbrzIgAENV/H5SdzbxA6LnKIJSBK7O8BAOLLlxGt20lGHlcgKpMZHrxtf+v+b/4GAGDw8GfC63UROgCo4RAnv/972P+NX8Pev/tNyKICwj4KVYCAAoYER3t7EhFKbYXHpS7P1TtPa4NJIdFJI7Qck7ZMXO49jHLMnheAmT6UY9cSg+bV5Ho6tN5mKyN7/aOLl8Cdl42cA6LYeABJKPIzKrHyogIsfhFURmEwtKCiJNHMQvXRm59Y+p2L4nRkm2TzbhdqNMKDa/a4vU3L7tw+tNfBaqKaFiLLIo05uJHQhAQDTN92xFs8+DFcr6QscstOSsJxlB2DgGAjXUMnaoMSikFRsQOf2nkYn9t7FDuvXMUrf+5/wcZf+xvhtVzlMBEHlIJ2z1VWyDDu61XAgKtk5XFDnFyPQhU1PWYGrQ0KUWmZqg3cfE2Ur3x7YXgrPJe7xxmEY29pvlyD5MMYAy5N1ZTbgahF4vJgPEyaoE5IDe1Sa17jFaqpNbPXakkUQoHqCNpoFKoMwJom8dLPFspAg0AXBXJVIC3stX7V69fwmvtWwSjB8bCYMbs8mjgQ1XUFIY4Z947lXddRoD8q8fFPV906rh36itgIN/fss3zpugW0aWEwmuig/bt2oY02TwEmMMzO3ii8nOI8IOoDAPKtra1PA/hFAD++tbX1E1tbW98PKzr/bgDvcZV7H9va2nrnsi/7/yrUaAT0T7CfOGaANCf6b7r4JhBCMCkkPrLxNnzkTZfCa7sbFATAynoPYAxqNMKHb3wsvP6Dz/4O/oudD+P1bftgFbnB3r/99fC6zO1kMyxHYVfu2S/ACoRZ6USCHkTJzJYwuzYtpsiRsARpxMMCWWei6ixDrAVi6l9reo9MdHOhM0kUmqQKqYK4N3gnuc9pyjEpZGA1fJVQMcmCxUCuisCSEaeJWuRWO6ElNAFIUdoFfncXo1oVx/YLpzAANlbS0HpgLCYwRMEo3phc8twAhnwNTFQlyp43aXmg5J22R0UeWBc9p9dWubcHwjn4xiYI56CdTuh+Dth7myfVHlEOBo1iBXHcbNqpxxUIGT36+XC962AlVwU4IgAEhVBhN+s1M0KLhtnmMkGz3zl3WlEDwC6KaMqhevq9J0WTWcuJhKSoPA1geyQaxbAydiDqwoUAotQcYTkZDTBkbZRy+YKZlVXbkLqxZRaYKI6stMUZxO3bHz9+EiOxuP3HojgdFVjrJbbCVym8+YKTBly1c05gogoFSRgMyLna76QxQ6wlFI1CStWDE+P0K/4ZnYgKACgHGgVhOC1PsZGugVEGSii6UafRH3RvbJnxvckB4stXQjrZGGM3R1Gzg8E4l6Fh9LSw3IKopji5HnkDROWW1UJVYBHmrMy3WYkbIMrfGwMTCgUsE+VsIybnc8g2UoKaqq2NcVXAOpugUOXMM1AxUc3qvFIqaOYZwcr82P6BBqZzUeSlBPN9U2UWxi5P0nBt5kWpDASLoPIMyiikpYEmgGiV+Mkffhu+9RsuwxjgeNCcF48dE5U5LaPfpPhzfsurLuPH/uYb7bkdVcUH9/nnl5vgQ3X56iYMHBM11ri1b5+p6xe61qiTGBSyXGrV8HKLMzVR29vbGsB/O/XnJ2r/fulaor+E4ZsIH0cr4IxCR/Zh70VdjOUk9G3zgs2b++8E8H4AwO6mQWdIwRmzVP1oiE+6ShcYg0ulfQgfahV4HkA8Uihv3wrHjkcGGYBROWoMzExmaPEWcpUhKuxlY0kCIMdIWBd07X1hihIJ69oKP+HSBm4CLVRh2Shf9VSrEPRUu59kR2oqFZQmAQhkhQpVFRUTVYJEEdqtCFkuA03te5bJ0bjakcoiLAo0joHC+r/ME2pnqkDJCdI8x/CRh7H7y/8K6du+F8AVtBMeFvKNXhJA1IlPPyiGSS6xsQJoY5CXGh0TfQ1MlLsWC0CU8RYQcQRAYVwUIZ03z3Fa7O8junAxNE3lK6uQtR5SmchwubZbHvyp7WPG1tagTk8brBXQTC/o/inoJgUMMBHNdF7kgXOpQpVkxVYKCCVr1XmLr9XY+bq0XToPALIlFXqRlihQtTLxC3nMYpSqxGnet0pKF4UuUcYEaVadwzi3zMaqY6L45gWQKAKJ45Bu8GGUAhkPMUounulknRUq3KtI2kbO2mgU2QgprJt5VihbEYvqnhznJzOGuctCKtvm5f5LXTDuhNeOkWytrQBHVbovLyVACEwUnav9TswpuLHu5D5COsmDKAc4xu4+ccqDB5JkBGM1xPXeQ+HzvbjbcC3fd/KC/clh49ilFjAwYQNhgVlsx6eaTedNxAS6LGC6rtKuVEDTrN3KD3iVzvNMYBo1JQh+XipY1DD6rftSeYC+dzzBmgd+43OCKM8aMQAwMM7/SI3H+Ldf/fd4fvACfvbbfyro48L7Ka+YQFdFXc8Y+Otm/3B2Oq8oFSLEULDzsh+bUStB3s9sU/c5ekTpKgrt/BBZcXdMkJV2vFxYtc/GQT/HpXXXB1EJjEq7Bo1T5x/mQZQ753aS4LWvu4S3vPoCOvvVhih1z1zGDYZ9+97VXopJwpEWGkZTPPGCvR/XLrTR2rHHtzYHAhsrX/8Csj8P8bI12wyW+CzB/Zc6ILFdgH7goffg5779p3Bfz3qk+Ac+7m6gz+0kur8RobvqLPG7PajRKDA1l06qAfL6FafzmTQn9nRoJ4WhGNsFxcVz/RdQKgFlFLgrr+duNzQo3C7RDU5SlI6JYqCeiUo9iLLpPK8ziI2s7eqaTS1HktqKJccWkDQNE3BWyIrlcMDClCVIHKOdcIxzEZgoX+Yqx5PGZzxLxlyPr0U7qYnIIGIKnWUYP/p5AMDlL38SAPDq+yrx/XovQcpTEJAAooyqQJZP61ETNTRCLyaaTNTidB4c8zcui+B0PZ3OU6MR9GSM6HLl98R6PejRKBQhTGSOVm3tHHzagqjWq18DYJaJUjWHfBiDrszAEDeYt0LZikzA7v692WZDN+fa9QDLNVHj3NP6NSZqSTqPlvY8xk4Y7Jmo6x1bHXZSNJmkXBbIY9pIm4xzARiKlbFG3o5A4xiEEPCV1RlNlOz3AWMw5O2lXmRAM53HpcH1rj2n0jUGLqnV7oynWIeTfJb9WhaTvGLvWM8ixnLPgagVC6r6zoE/pA+j+FwgihCC2FS/A6iYKL+ZCZYNDsBe71wNLU1k7Cr7WpV9Ri/qWkbILaoefO3XtJpAtZmCY57VxM0VuYRxBR9FjYn6+HMfBzGAcJrHeZqeQpXWXTxJoPM8bFx8Z4JZJqpq+Dt0AGA1ttf0pLCO9rsnExDf73NyPtbDjwHBYKUYDkSJ8RCPHW+jXw4burGg0SLV+ShtYAxCT9LwHnX+dF5eKkSw8+WkxkRF7RQGWGgVI6SG5HG4Tm1BkCc0rDEX1+zvOTytxm7IgIgEk9QzURZ0ecsI3xz5G1+9ia6aHfcjVumceq0IIuVISwNohqdv9xFxigurLbSdFAD3mOHmyxZE+VYtOY1x/WIXxDFR6+kaVuJKiOcnw/sudfFnq1u4df9lDDsUadvZCnQ6ttGjthPUAzvVBBK5psVs4kSgDkisuAduVI5wWlS76mf7zwcww5zOJZoGUW6nSQqBhMUN92LuBr0Xlpe1dF7LaUU8GPKLfUFY2HkDViSo8xxG68buMoitRQkaJ2ilPp0nwucAQEwmQWCayyJoJiJn5eAX5OmYyAwy5tBZBuJ+Y1xOAGPwmhqI2lhJQQlFK0pxXFRVdB5E+UmaI14qfl4WYaFQ8yc8f+08aJ2ICQrqF5Xm4ls69iG6VANRKy4tNXLVPDJDu6hYD89aehAlZ9J59hi0Y0H9ihwjInED2BSqDJqSslQwTgPnG9YKbXfwPl28bPEeOza206qYqGXpPFbY10YeRLnzuta9AmA2nWc1MRQmy4LweJJLcAL0xgqjblUdyVZWIAeDRo9C6Srzhry9NN0BNNN5sTQB2EnXI60kEfJCBUH2erI295zPinDNUg7uQJTYs5VNyUoHaczQH3sQVYnEz+NYDgCRqbylAIT0CEl9Csqn86pr7/xyIV1bgM1W1Yew5+a8YTlqFLnsZ00mKoyNlmeeR9XvDQ7j1Ry4d2LL50Vk7+s8k8xCFogoD3NPFprdTqXz3LgrScVEebB73W16T/NTDCYCpdCIXQWcHFXPhM5zHH7wA3O9xoLmihOAKRBnMHp0vBMARR1U6jwHKLX2De76l1MC/+Bqrqt03ryNmQ8hrd9XTKriI1MWIJwjdRrMeZ83xlhBO08sU24M4kKhiAhO3bMbmKjTWtrcgSg1XAuSAuWaZFdmm/a43/y6S7jIJUAZ9EOvC98xpDLonHrtGEXCrB5LEwipcXWjDUqJ1UTBtjW7l8TlL1sQ5Re7nMW4/2IXJLYPex1AARWIuv9iF4+svxF/9Ka3AoQg8SDKOZqnpcF93Wu4dlA9HPrQLn5s7JrkvuIBewy3YA3FCKdFP2gv9iYHYXGKnKA7Tu1ADqJPt+gxIS2Iihhi3+Oo5UwoVWEHrWskGWs5IwiuG9eNchGO6/sg6aJAXmOiPDuja0xUKTRy19KBtR31PclqAtMqnZe4SXeSzx88E5lBJRw6zyGPKtCwqUd45dUq97Ph2up04nbQkxllU4sAAujhJEbuTEpfbIzlxLE4dCmIYmnFynhTRTVqiqaFYx/iGojyfar8jm8iM7QK6ylEau01kuv3gSTJDIjyz643iV2RY8Q0DUBYaAllFGJ3TnlNE8Wipm6O8xhgbKkWx6fzOml0LhAVLA50k4nyIOp0itUpVAmRMGvUWlYam0usADXAoFuBBba6agXNNdbK68vGrHVmqsSm8yom6nLnIhhhQS80zUR5Rvokf3Egys8b7TQKc0S5a0EUbbWx2okDiPKLIomTc5ltAjZFX9bc1f3iHUBU3kznXe9eReTSeSq1x7hQa4rei+3cMRJNEHWSn4aNElArugjMs71Ok6KqzitrIOpwYJ//0hUP5GL2/hSqQMIS0Fbq0nnu2sVuU+jmGFXXRDmg5eUQ93XdfSr6geUwqXPyH1cO7nu/+es4/u0P4vAD75s5j+AMzgkIlcGl/fikKuuvpzdNWVhXdEarZuxB4N/cnNSr85aKw4U3D7bHHosJdFGCxAlSN5/P2yhIn6qNEhADdDINqo1looopJqpfjV3PCuvRGgQnUIyGzV3dsRywz/IFJsDXVpG+Zit8x4AUGE4EIk4RRxRlwsC1BfoAcO2CfbZajsUGl/eUuPxlC6L8JJzTBPdd7IBEdhJdS5qOx35SvnqhDUoIDg9dOXbiFqWO9Q9JC43r3atICw3FKNjaGoyrqmJuUCceRJUZiKEYlCP0iz7u710HIwwn+WkAOZFz901a9vuHbrLwk2QsDFKeOBDlaFc36EtZWl2CY0piLdB1k6RfHEytXHg0EWGHGTmHYp3nmBQqAKJ6Oo/GEdqOKh87MOYbqqpJlc6biElI53kQNY+JUlrZljRJDBiDwvWYA4DXyANc26y0KBuurY7vn2d/S7V4Zm6CiWnsmpe++B3PRPy/7L15tGXXXd/5OfN05/vmmqukelWaR0u2ZMuzsPEQO2AEtgOhg4EmdC9CIN0r6SQkKwmr02kIvZrQnQ4kISYhwcE22LIt27LRYFmDbWQNVap5fvXmd4dzzz1j/7H32fe+eq9KUgjpxrCXtKT33rnnnmEP3/39fX/f3wBX1kUcbDNhlROjKZ93lA2VqeJ4MWoYZ6JGiQmjVP2OqF+Xp7jDjNBw0CfGwFarhdVqk1yhiSr7rrNT1DarpX0c3SHKIqHvkYC3rMEnHMulOFVq6uIsIc4TLN1Cd5zXFM7zXRPfevXsvCwMydHoSAfrEkTN+tMiDHtlOC8bkspdtgpDRQlTiM9tBCP9hylZvHEmQY1lw1bg5WptMExJpLu8nRZUrICGUxsbDxaDOKMvw2A7Zbjv9YKo8pkFrqned5mlabZa1AObbhiT58XrZqKKLMMoclUDEEbhvNJZvAzplO9pR2VmFM6TIKo9Hs6zxTzTibuKbZkJpikoWBpjo8rNVFlLL+1JEDUmLFfFr/OUTk9sACJLMsXbsCgla6q7HvkwUsdUZHZcpJgoWf5KtxQQKUFU223imR7rww21USsccT1mUtANE4o8p/uNJ4Gtmx0YmxMlE2VVxLzT7Yzuf3EwzkQN0RwHzxmF/UttWlkYWonPX2M4r+wLrj6WPBPH6I6NJ+9nu5Bo+f4z+cxKLWHsmGq8NSoOuiYy9Mq2ISMheRRgaS5D1yDvlUyUXFekxUFRFGSdDYxaneZNh0fnIKIXJlR9kegQOWLcu7IflCCqDOdpZvwXTNT3QhuvcL1jSoTztEIXGQRjrZyUq55Ns2qTDaUmyRp5wIAoCzPtT+ImBbFjCOZhfQMjK3AiubsoQVQaYuGx0L9MWmQ03QYNp8bacEOF8xw5IZmOi2u49GXs35STpJUWOIYAUWU4z5aAa5gN6SchnuNT6Dp2nlC1RQfuycUhV6JIi94gIVQgSpxD7QhzAw3tCibKwXckUJL6l5IFywcDisRW31Vm57l+CaK2Dp5ykS1kKu14ZtpMskGjIsKWpqFR8aW7tT1ibIqhPwrnycmszEYc/BeIy/tpOBJQb8dEyYnRkixhlEagaSLrrrvZRK6crMvMMhgDUd2OeO5FgTtMCQ0XJkZgy2y2MFst8n5/k9aq7LuKiUr6uJIqj9JILTplDb5hnClrCkNOsnEumCjbsOTi/RqYKO+1MVF52Cc2bBWWKRfyih1Qd2qbMlFBhHMyaWia9UNRNy9KaefiPlf9UamM7byiSqF94bivzkTFmzVRvuXTcOpokgGKpXWHAn7BDLqmbwF+r9bKhXyciSqbNTFBreJQFMJZu1wUDceRZZOureEpAXGMqbJdy3BSCexL1iZMQ3RNZ9qfVsLyzBPX1nLHQVQZzusr0HRTW4RsxtmXUndnShCVjTNRYwkl5ecMyZCFRgwU2+p5opKJcl2KOGYgEwwCp5QnbNVElfNICXYrVkDTqbM+3FAANpegw0oLVjoR4Usvqu/MrkhOgDEmytBAz/Ckv1LS71G1KlueRR4P0R1XJL7I61ECf7vMor6Sidqe3S5bybCNZyCX7L8nmajtPl8+10KO7zKrFd9VQEnXNeoVW9iHyNaJpUl04lAxq4Q2Y0xUqYmSG5wwpEhTzHqd6oFRUkIn7dMdxFQ9Oefa0n1elq0pQVTJdmpmoorJ/3lo37sgSoZEUsul5tvodoKWuluyHsLhKDOpXfeUUWZmyJBOpWSixITsxRDZgnnQCqj1Mlw5MOzpabBs6kkPW3PVjq3h1Gk4DTaGHcU4ubJYp2bbVOyAfip+b8nJy06KkSZKDtAy9DfMYvppSGBVyC0Hq0jVTrNkokaiSJP+IGGQDrB1S4Wo8mggFyQNS3NEaCxNIcvQbVsxUQM5oVuSkcujAaRiMHXjnhI0u4FcfLdhCkrx63BmFF5wrz8IQD3to2kab7pxhrsPTaPL97MJREWemljK/5ZC+tdrc5Dkwrah3DVtm51XGp1KwBkXEZapY1aqyni1bCVLoo+F6RSb0ukwSEPspEAvRLX1rCnqmBmVKrptj8w5x9ioXIGoERPlqay5SIX1fEsKc8ey88pEhTgTFgeKidrGmqFs2wvLr56dl/VDEstRLF5Za883PcP5PLMAACAASURBVLXQjRtuDrMhudTM5WFInAhdSFVOwl1PU54123lF5aUOzfVelYmKxsJ5VloQmAJEWWkhQjCaRhiNwnlVu0Ldrv3JmKjqiN3W/QDDD6gH4n43+mMgqmSRXsXmYGQ6aajPKiZK9jMVzksG+KZH1Q6QZSbJvSEUulrUAKoy87Abd9kYdtE1nX01AdLHCxOXm6mSgVfhvCiFQsPQDAV6LvUXVAhxaORgxVtYlKIoRuE8yZzHfQm6HRtd08ey86QW0fPoDSQTJT3HAiug4dYZpBEbsj9kMpHZTnNWNiKGZ8+o740vj0J06lrGNFGakSoQZQ4Tmm6dul29QhMlwnmlPlS8h7IwdOnXJUPs2Vg471qGmfJvgTkK5xXxEN22cR1z0zHjrQSVmgyz1nrSe80PRGa3/P56YLPei9WmRGWHJxZVq07oiGvOk0R9xpTjpWR/zXod3bJ4Ye52vnO9x/qwQ5zkaoOrQFS2GUSp7FYrVpmpfx7a9yyI2rK4mTF5Ym3R0KhQhmNyz+EpCgmiEk18vnQ094Y5vu5ixxmhBVpbLH71XoYrd2NGpUJRa1BP+7jaaFFtODWabp2Cgkt9MbhtaYKp2zZVK2CQhUCBFYzCeYKJ0lU4z5GL+nrcIS9yAssnNy2cPMFzhCi43LkVwyEFGqlm0B0kDBJhr1Bm2eWDgfIzcQybQRopkbhmWYqJGkh7BcVghSGg4WgevaSvBM1+cPVwXrnrjw/sVL/T53aRaAaBnCQ//uA8P/H+G9TfS9dygCJ21eJZLtzeGDPzeloJDioSpIXXyM4bgagYzzbQpaniuOi5DE8ZYyCqZCayzobMzCt36y5pQ5jVleDJagnxbzrmcF5uAKyJCTLLoZb2VXgzTAfKfqAM4Q6TTE3mpjfa3ZfhvDI54mr6sXGR9GtiogYhqeUSJzlplismyjM92l6LvMhVtluap6RFRl6ykGFffZ+P+O/Q1hW7pkT5GyMmoWSiNC9Qm56rtXFhuZUWBNYIRJWu+50wVsLywPJpunU25Jh6rU3dg2tijjFR1qQAyY3KCEQpHZ+zmb24WlNZZJqpxmgJosxgNH5B9Gff8oQxb66Ta5A7MUbmbSplU2pBu0mPTtylZleV8Hzc+qAM61uBtG0YB1Fom+aYS/3L4rkigInu9rYwUWmRkRe5COeVfVOe03MtHMMeMVHyPdu+q55vCQIqtmCixPUKwJvLsJKV5ax2ItVPjGqNvN/fEtIrx3VqCiYqqAWCARpkuKbHlD/JarROkgmNVamJKvWhaZaPhOWlvEFuquI8wdAMQLt2OE8+n3KT2E9Dxf67tvT02+bz5fxXPkNlDSI3+WUCU6PiKPsNGDF5RWrTdOsM5DPLej21cbElE1WyvyUbfPbmt/LoLZNsROLc1RJEySQCNx9iGhqTDVl7T7J5mjlkvfcXTNSf+VbS0GYlEDsdPSOLrS2pl4MxPcibbp6FQqdILCIZatBl3NyNc/xMRysgsjWihhgEjW6GKweGEVTI6m3cPKaSjvQMbbdJS4o8L3RFeQw3L5koh4pdIScHI8XxPdDKcJ6N71rKIbrUT5XV2APLJzNtrDzFsQwqVqAmnXw4FCJ1TaM3SBhkEZ7pqiy7PBqoOL9juERjInHNdlQ9uVJYbstJtVysXcOjl/TUZ7xKyURdPZxnzM6o3yWVBhtmBS/avsbSOBMF+pbsvBGIen07nnJSqcnyIdsZ46l79ORCUgzxHFOwkkWxWfQchjJ9e2SXVjJRWacrvMGkR9TAcBjWN4MoswRRY2L7XJ5Tdz2GXo1a2qdqleHavgIAVUeGG5NMhC80Da8uzlcavVqGhRFURBjpKov3eDjP0i1MzbgqiMqThCKOyaQoOIozwnQgFnHDZkKGkFYiqZWRC6RWsjBhqBYEVzKsQ0tTC+m1mCjD9xkMM/L86skEI2PLEYhqug2spCC3TTSg248VExVYPk2nQV7kKizyWpqyOHAtYbAqQbQ1Id5vrWSieoKdMQ0No7QneBUQNa5nLBfdMoxk+yMQVRSFYKQlq+HmhmBZ7Ag93SxbKJnqblyCqAoTnpiTlseYqDJUZ1dkckSpiRomGLpGxR7NMavR+kiHZWpobn+LKFrp98wRE5VKJsq1DRzD2eRtpzkuvu+MgahROK8hQVQZLpaEOHaasdIZqnHp7hN1Eq9ko0YWB4KJqvoWeqNOZZDhmS5T/oTUiK2Iea0o0BxHsfLhMFVgVi9B1Fimm21Y2JZ+zZBzGc6rWj4aGmHUVey/9xqYKFN+b12G85xK+UwEsGzIjMWSCeolfVEbLzdouQ0FovJeVyTY6JYC2yUgLImDVs2FxKaX9IBChfP6tnjn007BvtkahvTHKzd1ppP+BRP1vdDyfp+hZuJ7jqKEi9RmcW3z4lB2eN81cSyDH3vPISx8wkxO3IqJKnBlQcahrasyMfVehpckFAjNTFITE9PMQHS4/fW93DJxo9pFXehLEFXIsKJtKapds2Jcx6SwbcVEVX0LK0/IDZOKI66lpJwDyyc1LOw8wbVNAssX7FBRkA+HyjOoO4gZpJFkokphaqRYHdcQ4bxych8P55WZM47toVkWyDBCYAaEyUBpooLKtcJ50tfE9kGG64a5Rsf0seLBtouKqW82auuW6eLl+5KhrMHrDOeV4KBiBxj69rvG8npcCRwzTbyXsi+Mh/TyMET3/U1hYkNl520QJoMxJsohqrVpvfd9NN/1IACWCueNQFTW74lz6jp9v46bJ7Rz8S47w64Kn9WcAA1hcZB2NjCCChV35KcDYpdZWiVcGYosWz9K0TUN1zbQNA3P8kZFsq98NhLQlM7Z4TAllBozTdOYkOzG0kDcT9l/UNmdIybKluG8oa0pbdsIgG7VRJlyQ7NdMkDZBkNhbJlZBlZa4JseU/4EdlqQmjoV36ITjrJVfdNXG5yVaO2q572yjbN3MGIfrUmheasHspRGf0g/SvAdE90pM7qu3Wc3MVFxCaKks7tjC7+lwUCESYtcJQM4qQxVaYK9HW9lqGUpXCHJE2p2Fc/08E2P1cHovpXeToKoss+EUYrnmFSsQJSQyjPCNNzMRHn9LeO/BMcinCcz/uT79GxTgKgynDcYoHsuFVcwP0ma0Ut6aJIBa0g7ig1pdpyUICrLWRljotx9+8UzW9gMoopxJspMqHgWWq2GHxX4ms2UL1jExcHyaC50RvrQQTQGooLNc0Gcxdi6hWeb13QsL0Gm59p4pqtK9QhNlLHpmPFWPlcrEO+63i+LD4v5Y1n23ZIBLUFMPwkxChfQmApaShSe9Xp04x41u6LmrpK5KyUszapDkThkZGCkVHwRyelLJurdN7X42b98i7pG13AwNQPDTjbpsr7X2/csiEr7fSLDJvAsVe6gSLYBUXIBcSzRgd9y6xzXTU0RZRFxlihtgDfMceRiGNkaS56Y1BrdDDdNyGwHTdcZVkWnnk9m+dnbfoKfu+OnsAyLpismgLKumCM305lmUrFLGjTGtU0K28JKcwmibKwiJTdtLMMisHyliQmsgKFmYZJTdXQCK1DFY0sqGqAzGJAXOZ51JRM1AiQFBcOhDJtIiwMYZeLYMrtGk0LzihVQUJAOh2AYBHLRuFY4zzc9dv/tv0fl9jtZ3XMjHUn/JisrWz7Tj+VEa3rUfEtNCqXeoOaMdtavp5VMVGD5eGNO6eOt1Jt4vljQc10sguXkMh4myAfhplAeiIlXc1yyTkcwUbLfDAyXKM6Y+PAP4M8LUa9iojaBqFBlQ3Zkv5mQNhrdpKdAaWD52LahmCijVqMiF9R1qfGxDGt03VdkFqpnEiX4rqkmU9/0r8pEZX3Jwsl+NIhSwmSgtFQliFqWIaJyEVXWGmNMlC0B1tDSR8eVAPTK7DxNw5Yg6mpeZCAAlmMbpJaGnRZYhsWE28ZKC4Ym1HyRNddP+li6hW1YavG8HC5e9bxXtnGLA0DpospwXn2MiVrtDIX/WakrvMp7KNsmJkouqGUBYtvUld9SyUiW+j5rmBJJvUo23Fxj0DIsPNPjopQTlOG9ttdiJVpTod4yPF4yHGm/zKZM8V2xUSsoCNMBYTJAJuUJ8Ob2t2RllfOHY9iqD2SS6fUcE8ewN2XnGa5H4MmalVFKJ+5SsQIM3VCFiDuZAAyxXMydImOlE6nQeslEJVdlokC3hAQir4l3Uo1gyhPnXwyXFNDVHXcTE1WCWbUxGct0s3RLZvK9OhPlWAaB5TMcyIiHbSuLg+18ohSIqoh3XZFMVKMxra4ZRDgPYL1bFqjuo+c2GjBVaTGQXlFpt0M37qmEg/F7KeeLVtWhiMU70+yIqm+R5KkCYlYypOKNPN40TaNiV9CsmH6U/rkp/fI9C6KyMGSoOwSupWzvSW1VA6hsVy4gADXJ+HTiDmZDLGJBmGHLATC0dS4XHYauSaOX4WUxcWl2GYjj/V6XQ63rFVVamvqVzZFMVKqbionCinFtg9yzcYcinFfzLew8FVXDQVHaIBbRoSwCG+iZ2m32kz5Zv48hB3pPgiPPcDdposrBWi6Aw4EYRONMVCk+tHUL3ffQpTizLp9RFkfoloVrG+iatn04b2yyd/fuZe5nfpbVWKMjHeLT1eUtnymp4T3VnTQqjhJLlru8pieeQ+d1hGDEs5EiaMvHc65itjksyzD42LqNZqS4trEtiMrCUPnNjDezUSddW9uiiepeEU42W4IF2SQsD/tqkl6zxX1WOwN5v10FcDzTw7UMkkiEMoxajaBkHCQT5Bi22ghsl/YNYrEKxiZD3/RE8edtNFRK5C3vOZQeZOVCXrpkL8vvVyav5aIThgoEmcmQwtDJjNHirTsi7HMlE6W7Lr4Upw+uAaKiYYZnG8SGhjTupmVUhLDfyKgFNv0opZ8MlO5uJpAgqr90tdNuaeNaSkAZbloTEkRJRuDsYo80y2nX3JFW7irvoWwjJspQ2aiJzNKzTF36LYWqHwSWR5HnaNGQoS3mmyS0t7y/KX9CZZEpEOU2SfKEjtyMlIygZwdojqvMNkWBalP1r37Sp58OqEgDTtML0Lw+3XCzFiYaY6JKt/Uys1CE82ySPCEvcslEeQqY9qOUzrCn5uNpCXb7RQmi5PylFax2ImGKbJo4u0SW9LiVCmxmoiw3RdM0spoEJWE2YqLCZXWsNsZEhWNMlO1Y6L6vsnXjLBZA1TG31Vmq51H6RNkGgRUQR+XG1cGV2YbbMa0l86n79qbft1tCZ3q5LzYACkT1hmS5LG+Uiutqu00VzhtsrJEVmQrzwjiIGoXzSkZTcwZUPfGuFFDfph9XrIBcH8pr+POhi/qeBFFFlkE0INJtaoGtMuK2ZaKGqQIMZavbYkLcGHbRHYehZ1Lr51hy4hw6OouDZTpVk2o/I8giQl0yMXJxNzc2syslE1U2T9btGqJvYqIc2yCteLhJgVPoVH0bO09IZQbFlSAqLMsfxrFaFLr9NYo4xqxW8RyDbgmiLG8LE6VrmrJHCAcCkIwzUUmeoKFh6ia652PI+m11GTbKkxjNEiU7fNe8ChNVApeRTmO1O1QgKllZ3fKZv3zDe3jP3nfw4zd9lEbVYZhkRHGmmKi2ZInKFN7X2sprCUxP7Bq30R8Ush6W7ro4hqhMvpmJkmnDWUYxHG7KzCubNTlN1usS9TYIBmLi7Rvulp26btkY1Zqqn5fHMUWSKHbrkiaekbXalffbU+L4wPKp+BZZR/zNrNUJpNaiNFRs2DUFprdjQJI0pxvG1P0xEGV5ssL8Vkq+FL2XmpDuULCcpSC97tQwdVOBqFK/4kuGVjBR0o4hGQrBuaZt+i6jXr+Cieqj+74KnW1no1G2QZziuhp9uxD1vYoCTSZM9PVUimMLunFPjZdpX4TgXh8TJZgMXZdVA+bmxAK+YwcgNFGOZXDigriPVs3d0n+u1jYzUZudsi1Tx/B88sFA6WCqdlUAiALFNGSxu6VEzow/steoOiWIKjVsm5lDz3QwfJ+03ydJM5I0x5fhPBBapTAJacg9qdeeQrcHdK7IAh0P55WZwWX2q2MbyqYjikSZJN311Hve6IdEWaQAX9WuEFg+kb6BpkGkZxSAr2V0w4S0L/qJWa9jVKub6pmOP/eBo2NKhJ1IGYIfpkx4LTQ0yUSNhfMkqBNMlHwPli40sL0eUTokTAfU7Rq+Y5BmuQJbV7YSFHu2IRICSmbLGVkcbOe1VTJRmb8ZGNcbk3imOxrvlREDWhqx5onw/Wt7TZLSpkCuT7UxEFX6R5WbrlbNoZA1XkdMVDImTt/ajytWQK6loGV/bnRR35MgqqSgI8NmpuUrTZSeO1y+AkQNolQBhrK1peCy9FPpV21q/YxCLkJGUGEpXGY10DBy0CnoFiJe3LOr5GgY65tBVGD5HKjvUz+7mhgM/VRTE5NmiXBeIjPdnFDE7a08VWnb4yCqYvn0pd9UHkXqPOGGNAGtVKl4lvKm8k1PiTvzwYBBnOI5Bg1XnLPXF5OyYKLExJEWKZYumDrD8zDyDIOMhhRdlwWLQehDriUsH/foWutEbFglE7U1nGebNu/b/6DIrhrbXZWJAdMV8Y42XieIGmeifMcUHktXCJXzYQSGIRZF3UEz082aKDnZlBlSxjZMlC1r6RVLy1RklfmuGWzZqQOY7Tbp6orQspUi6iAgSTNOyZ2gvizeaTfubgqP1gMbXTKIRq2Grun4lkcm3YTrTl2FkbbbOS6uhRQFzLRH93CtDL28v1mftBb25PMUn9E1nQm3xZIM55XlVOoNscsXmiiZaRQPwC2tKkYTrtlskXW7aiHLQxHe9NwRI3C1NhimWF7EwNXR84J8ECpQHBk5ni8SOOI8piU3NoHlU7UqLISvj4kKxjZfrfe9n73/6JcxG035HDSmWx6Z7FvtmjPqP91r99my2kCqjYXz5GJrmwa661GkKZc7Ilw17U8qbU4ix20Rb/XUmg1GRq/lRrE05FyV70uF8wwH3fdJeyOdk+daCnj2kj5hEiqBc3VmF2jQTTfrylQ4z7QVE8UwUsx1aVUS9gXY1H2PQN7Dcih+N15lYsafIjN6eK7GsIhJLA0PcQ0liAKwd+wkWVra5L9Wsr09X0ezZFKDBB1OL8HUTdpei8VwmXRd9FuzVh9johKSZPQejGqFvN9T3lJT/sQYi7Y90B+OM1FmoIT5mu2MmW1usxGV7zL2RuDMqFQxqlWm/EmWBitkebZJWF7OdUlkErhCQF6V4zDqiPe0OZwn+qVRlZqoyng4b8BE3RUmvpZGapsky1ePIGhW/BdM1J/llsoJJdJtZtq+0kQ13CqLY+G8JM2J03wLEzWjdqZiUu0GBkYO8aWLAHjVBhtxl7XKKATY1x3hCZMhChmvbp2Qf/DgB9T/O7KIZzfV1USmOX0822AoWQG7H6PlGSY5ESWIGnnS2JpHn9LEsKcy2gbrEkRVK1Q8i1CyR57hqnTstNOhGyYErkVdArO+nLTGmaiUGFvWaCtZrIZZUJODpUhSNJk67rsW/SjdEkYoRcrjTNRad0jkSqfnpWsvXkos2R2y3hviOyYNr4Kpm6NyOa+xKYsDqYmCrfR51uspYGRpNlwlnJdt4xFVtrIgcbRwkcogB13flokCIS4v0pSs21WaI90PuLw2INQdEsslvbyIZ7p04u5YeNSjFtgEpUGi1BMpvxZEfxlporaCqIVVca6Z1ugz1ypCnJW6E+mxc0mGESbGjB0nvDaDdEBv2Ff+S426eB7jmigtilTW3ngxaXt2DoqCeOESRSbsG3TfHy1mV9GcJGlOmhUY3kAVW8063ZGrtKmhewM0R9zXuBnldDDJymB15PfzKq2UAZRNt2ys9sSmY2bHnfhro7H3akxUuTh1TV8xpYoBkeE8gNX1MRB1BYsgbEE238tMMGKiSmBSatjKuS7KImGLoRsYvi/Cr7KExzgTtRatkxYZQS/BqNWYqovM24HWIR8b/+Pu+qUmijhSY09ZL3TFRkp3PQJP/G01lKn1Y2zJTDAFGnjVIcM0JrUMHFIoCorBQDG4zg4R5hoP6aWrq2ieR6zZYMiSPFK7ZvdFH5nyJ+gmPQZL4tma7dYIvI8xUbapY1SqFGnK0rpYFyb9CZoSxKxdRVgdjWmiKpaPL0P9uuvivAaLg4E9+pu7bx+apglgWWSsRKtUPAtD11jrDZWMJYtN1VdbbcGU9taWtjzbrN8Tm8eytqllqHBerZHRqrkiHKxpxHWfZGV5y1xfmpZixn9uxOXfmyCqV7qVO5KJEj9PVuoizi4zvUaZedamz0/LyaaMM6/7AixFZ4SZW1Wmqa9XR5No33BZXBsQJRlrVpWi11WLbNl2VXfwYzf8MJ+4+UdxVy8T6RYbuisWoEJH9/q4tkEkQZTVi9SuNJLap8aYtiqPTXqyfEm6vqb0CkO5yzAqVQLPItelDYHlolcqaJZFvLJCpx8z2fRU5mDUlbtB18W2dAwdEr2vspeUR4mZi8FXFGjRUAGOwDXJ8mJLGGGcOSnbaneI0WqjOS7D82e5VhvtrsTAbFQdNE2jZlfZiF+nJqq8FssfE3KOJqas1yNZvKyMLk0cNK3AcYot4ZjtjDbLVtbSy5aWqQ/AbDbxXHN7ECXFyPHFCyQrYnIzm00urwpBddacIF5apGYGdOOeyIrSLSzDoubbBLLyeumxFGwCUfWRJmqbcN7CqvjddGv0bq7NREnfnqYAbIsDsdjsrO5Qx5SMx8m1sypLsOW3hOP7xgb9YYKRZ5AmSkA/bi/gzIpSLPGliyO2zw8UQ3E1JkqBYTscgahuZ2ReaWrkVleBqPZYbblpf0qlt79aK/2CgivmjSvbTGvUL9p1F73y2jRRw/PnAFi0m2quUlocS1ebmfWNRTRERmQJkHdNH2CXfgMkNmtXhFNm/BETVYKX3fK9neqIMRhlQxVi030fioL+umQbpbAchG5Iywvc7hBrYnIUKnS7m97PKJxnq8VZj4fKE6kuN4VdWcxdZOeJ51p6H13JRAFYFRHqyywDM40xiwwtz5Q+sQRR8flRSC9dW0WrNylSm8IQ1xX6UiTdFX2iFJd3FgX4stoTmzRR42C2HFdrKxfUZ0vW/GogqmSiymzq6ZVRyTBDF7XptpMY9KMEDejpozHp7BWRjVFixBK6ptGui7VIlQBLbcWaTk0Ig9XhxtqWZ5t1exiV6iZ9cBE7FIWGXxXXWcon8qYopXTlhmAzE/UXIOrPbEslXZ47LhXPUr4m102LznbkrOhAJVKu+psnw6pVwTc9FsIl8iJnVcahS0fcXdPXA3Bil8PSG+fp3PNOnm7cyNL6gGGccckVA3Fw7JUt13b3zO3cFOzFWFtiwWnTCVMM3cBKK2huXwwiT0wwRi8kl6GIQW6Q58UmJioZmvSkoDdbX1e7xKQrJh+jUhFZQkZpUCnS0M1WS1Hb001PhQhzyQhZU9Nomka9mYOWMyl3q7pMU6+ZORWrgpMU6FkuisbCqN7eFTvgMB3gGq4S2SdpRm+Q0Ky5uLt3E1+6dE3vnHJiWlof0I9SxUzV7SqduPv6TBLLcJ7pjVKXxzQI0amTALiy7IGBZOHsdEs4ZjujzbKVTFR9I8YLU8xmi6pnb1uY090vvis6eYL4krDAsGdnWViVobPZHZBl7NrQ6SV9unF/pEEKbALJ4pSZbdUxEFV36iNN1DaL92XFRI2F86yRm/KVrdwY1Frina9los/skoV8Aa5vihTzFxdfYS1aw9IFg2G1J0hWV1heGygmtvQfGy+7Ys+JhT2+eFEBP933x7KktmeLFlYkqPUGSreRdjojV2lTY4MFNHsriCpZmvO9i9uee7yVvlpXMthXtvFnukkT9SrhvOH5c+jVGqHpqYUoTjMMXcPQdTUOO51lWm4D27DI5cZx78w8b24/CGisbGy2Umh7TVVstmQgqnaFKW+C052zZHlGZ9hVILwEuKfPiJqAOyaCscSFZVUE15qYYFd1BxSgV9c2haxH2XkOhkzPt+JIbWDKRTzsiTlZH8vOKxfs8YV+Qs6taeUiwywm912KsE9dT+U1l+E80YeGUheVRwPywYC8WofUItWGFEVB19EoAL0jnt/uqgBfvcsCGJmt9hU+UTKcZ42Y6Y01sdme9CdUAfWrMlFyw+bahgRRcm6Wc4Bnm9v6RJXZketjm8bSykH13a7ou7smK/QGCYs9eWxqKaJgR2MHPU/H3pCO/dZmJqq8p7LdfWiGInZIDTG2So9Coy3WhGRpc0hPSVPMWM1f3+vtVUHU/Py8Pj8//xvz8/PfmJ+f/9r8/Px1V/z9J+bn55+dn59/an5+/n1/epf62tvK088AkLfFQtaL+1i6yS37xM8vnhIA4vSC6GR7pjfXvtI0jWl/iqXBMmE6YCMQj6kstnvdnCjOmJoa4TvfiPeu99I3PRbXBgyTjDOe2EmHL7+07fUNJaN1yWnTkROOnlTRzJR+2qfvSSPObkihqs9b9KJEAR7bsAkHOV2zZKLW1cQ47IoQilGpMtPy0Qxx3aVBpdlsQb+HkWdMN30FzPRl8Tl7WlDztabMhHPkYiNLilT1lIod4EvBdOntsx1TkGQJa9H6JgfycoJp1RxRb7Ao1O57u9aUIOr0gphUS1BVc2rkRb7tYn+1FiYhjmFj6iaeu5U+H5w8AYC7X3RzLZcp7GaGHgTorkuyKCZNJbLeRhNltdoUhs7cYoJWFFjNJlXfohcmWyhw74D4rsHxY8QLEkTNzKlJqHqL8GLZeT6koGBtOHqeIpwnQIF5BROla6L0h37NcF6IrmmqAjyMMklXt/FNKuseVlp1DF0j1FZxDVexlQAH6nvRNZ2XFl9hLdoQtes0DWtigiKOuXj2Moenpe6vInRcG+MgSjFRlzYB1XFGYLt28qKsIeZewURJEKU5DheHp9Edcc6WN7rm+aZ4By8sv7ztucfbd46LhWPHRHDN42alzsw0dGHsaFki8/Aa4bwsDEmXl3F27ULXXyBhfQAAIABJREFUNAWikjTHNGWVA8lEJWFPsRDlu9UrFdo18WxXOpsXcl3T2VXdQd2uKrYJYF99D4M04vnll4iyoWKnSob12LEFNA1uPtBWi+RiuKTqt1kTk1TsgKo2gV5ZY7U3YjzHs/NKvVgl6Sn9Tzn3DHqSBfc8BVp6UoYxDqIm7TmKXKPvCObMbrYhzzkYSODmjjFRhqE2suWmMQ3qgolCJE5ERSzm2zXRrw+3D8rjV9AsURdx3CdqExMlw7P9jWWlBSzDeavd7b3AxsN5TbvOzHJC0qwq8OK7Jr1tdJNlAtR4XcrSyuH6xn50TeeFlSMA7JwS51qQuq5xJmquMstGxaAa5hhZoYTlRZYJ7eEVIOqvve8w+yem6cQdsjxjVYbnPcm0pyubQVS5BnlBpubr7/V27a2UaH8JcI8ePfrG+fn5e4F/BnwQYH5+fgb4H4C7ABd4fH5+/pGjR4/+f8bjJd0ul778VbqWR2d+gpdXXxGxYqvC3pkagWvy0ulViqJQL3nvTHXLeaaDSU51znB09RidYLPxY1AdaSkKCqbkAnR5LWQYZ1wOptBs+6ogqmQ7LrkTBGWhxmEFfFjoL9KTCwBj4tpEF6GgpmR9AtNnox/TM2S19fV1ptyWqG3VKUFUhRktQLMl4yZ3HVazxQCoZiHTLQ/XFEWQ3dXL6J6nGA2vKtmCQuqoLDFBVEmEg3AsrrM8vvTGWesN1UB+/OI3CdMB983do+5/VU7uzaqL05DpyGfPKjBxZWtUbPQiZ+XMBaaGfWaHNoOTJ5hbSlhajFk78l1MyZZt19I8Y5AOONe9SH76DPN+i8GxV2ivX2bn4DL9o0cZRGKCL4uYljvDldUUKlCv62iahj03R3TmDEWaqnBeufvtxX36SZ8oG4rvrHlU16RzfrNFVbfJ8oLBMN0UQjYbTcx2m8HJE9gzs6BpRJUG55cuYuga03fexunfMZg4sw4HxOe8MSbKl5qokhEsKfW6LQBK4bpgGMTdHpdWhFA4ywuKouDSSp/JhotpSCfjJKY10JheSRjoxxkkQp9EUZCur9N99hnMdhu73aZe1RmYHfZU9m0qMeKaLrurOzm6Ivr5bDAt9IIyo7Ke9rlj9wR8U7AdNbuqQjeiP9XR/YDhpQubmCjDytDskOX4Mic3RIHfgoKiyCmA5xdPotfW6BfreIELdMi6XXRZLHaiMUM3XUZvCBDWHtNEzQUztN0mL60eJc1TDM1Qof8ozoTovyiIsgFf+OOXMCt9DlxXcGrjDHlRULDVDiLWM/TqKrWKw4n1UwAUvsews86xtRNbji8ATonNxGCiSiXrsJJ1eGWtQWhexqynvLJ2HGyxKRpPy1du00FAqy41U52tC/mP3/hR4nzE5EVxyoQlQOvDJ74GQJBNcOz8OoWsurByaZnrDh6m5tuEiejrK9Eah8rSI1ILNmPvoRsvc2z9JDfuEexIqYnzLQ/dccgcn2oacmi3GG81KXCP+iUAHgnLB1kfjJHlDECeWuTdFkZdhF3rk7PEnGS/KcbiSqIxi5Ak+IdvJHzheeLLl5UX3QouhWRue0nIII1YappULq6TbqxTqzfYVZnD6jyP0ZpUWccgmShpNeE40JM+VdHGKq2ZSQzd2FYTVRQFeb9PtLrG8PRJDtsGw5PHaV5eIEwKlsbWn3bN5dKKWEdKjRQI37zJScEAvnywyh3FrLLVEElLezm+fopO3GXnpJh7lyQwLVJL3UNg+WStOvrSMtV+poTl5Ti7EkRZpsGE3+R09wzrw47aWFWmd9ADkuXNetZSY1dpxCycHbK+0SdIhYeXijYUYu6JsiGrvQ26UUySZnIsyzFNAfLnazXDsLjtnvtwXe/aB/4pttcCou4HvgBw9OjRp+bn5+8a+9sbgCckaBrOz88fB24BnvmvfqWvsX39859id5Lw/G02R70vcvQ78kJn7kDXNQ7vbfHskUXOXO5y+lIX09BVAcXxVsbeH7vwFN0xEKV7Hpph8M7dD/Dls19nb20X7bpL1bc4cmaNYZrTaAR49kHCF18gWV1R9dGKPKf3refYeOJxABa9Sdpy15GHATRhIVxkQzpx5p0RiIo1sUOZazeo2VUmvBadfkzfHGmiDN0QItOumKCNao1Zx0cPNtAKndmKYJjKkiO1pM90U0yKTatKpXMWe89+FRM3vBBS0GKZRVdpyM/10DWdHUUNWEaT2RzTMnyxsBrSmBzypTNf5YXll3EMm3fufoCXT6/yyLPneemM2BW2aw5uW4Co6OzpLe8gWVlh7ctfov+db/MLS4uoSP05OPcwHET8G335/+LqPNaoVYEfBGCNc5/9x8wCHwP4D2z6vDUzg1GpcH6px8pqhlWBIBDvxJ7dQXTyJMnSogptfXP9RR59/KtbMgUfrKcckmSO2WxSScTi0A2TLTo878D1dJ9+iuj4MdbsKr/8L74JCDbDrgR4111PcfQIQdim74tQQB7H+N95nH2hoPFL4XLJUjWcOqudiD988jS3aBaD80v8y3/5zS3P5eBcjbUvP8LG439ELBnBhwD4I87xR1uOn/jRv8pjC0+T7H8cNNhZmd16zuYBTkudzZETET/3pce5c73Lu4BW1md+ymEZMZ6aTp0z3fPkRY6uSbA6O0t06iSJZL6+vPQ0j337SdzbCo4B/+y5LV8JATiHYD2GXY0JYJG001ELw0xzF7CM7oZoublJo6dpGjdP3MDXzj/Brz78KKdfcaRmMsdoL2BMXECvrKMZGewCC/iNl5/c5iI2N+cwDIBf/fZjAPyQ1mWim/J/fus3lHv/eLv7hT5vAr4Yv0iyX4DQf/7tJ0BKzv75t7/B7tUhH0IUoZ2VoZysN1oEW1UHje1BVNNtEMUpn/vGaZ58YYFLKyGa18W9GS4MxLt/+GsdPt//Fjd2urwfaCRdrrteACXPFGH5vMhV/bay1M2eYB/H4uc42TsO3EuSpzy//CINp85sMM1ad8iq7tGI17n5dhH+Lf3m9EUBcsxmE0cKy6NC3NM4E3VhqUe2No1RX6FqV6hOzLEC7DVCMuD4csxN8tjq3XcTvvA8j37yc5zuFrwNePZijNaW5UuSPoM04tKkxb6LMYPjx6neeRc31A7gD7/DUAIixxKZhGv5BfrWCdzbFvn7z36BAxcj3gdoYcSMX9ZMFM9+rTNkePEiq3/4GfrffV5p+x6S13bulz+j7ulie7S+tCSLuNyJaNZ1vnruMZ5Z+DbGrSusAkRw9O0H+eBdP7vpvd48cQPH1k/y3eWXuH7qZkA68JtAam/S703uug6OLtPoZio6oTLzrgBRALOBWDfOdM+xGq2hodGY2bMtiJr2JzEKjflzp3n3uVe4/Av/Di2/ttzi2nzuq7dHXniW9//M//QnPMt/eXstIKoGbIz9nM3Pz5tHjx5Nt/lbF6hzjdZs+pimca1D/kTtLR/+MF/srxEdnON9e9rYls6hieu4deYGNE3jfW/ez7NHFvm3X3yFM5e7zO9uMjuz9ZJv5xCfPvF5jq2fBFOj/s4HSI6donH7bUxOVvmJiR/i/Te9ndmqmMTuvWmWR54Wi8b99+1gzn0Lx198gc6nf4/5X/x5Nr77Amf+zW/TOy4ATvPO29HzBmGUMTlZJQml03S2SmznwgG436UqWalYN9FMk6mpGv/gnT+PbVj8x4fPkWs6erVG0eswOVllb2sHVnQUgKm9MzQ9D+07Hay0ydy02P1lu+dYBWp5yKHrJjENnV1FgJFDsGuOyUk5sXkRdMGmxuRklYW5OSKgkfaYnKyyQ5e7mJbN5GSVwwfEpPpC71k+88xTgqUL2jx08wf4+rdX+NSjxwFBN99z4wzvffMBXFPjnOMQvfwS7YaLblkUec6FT3+WM7/9SYo0xfB9FmtzLBUuA93h7htn2DFd40znIt9aeJE7525hT2MkbE7zlKfPf4eF3hIaGk2vTmD72IbFztosbV88h/XukC9+8wzX72xwx6FR5lLzrjvJXZt/+8WjFImYZBIzYnKySnxwP50nHsPprapSC093XiKvt7hz7mYabh3PdDANE9+4AKe/CkBrzw6m16TWxLbUMy7bS9N7MXkKgJ7f4o03z9KuubzpVvE+sne+lRNHj/D2Z7o8cm+Ngy8vcea3f5F0bR1DMzlz+D7umxX3NdcTi5pvVvl7v/k0/Shl3nCpFkMevHcPgWthGBq6rmGmCQe++kmWvnQczTSp3XQjzkSbry5+G9t2efv++0RtwBJYH9jNb4SP88orJ9FMnazT4oH779t0P0VRED+5W/0c2B533TLHzrUhPPoMH7y1SdvXWQbqUy2man1Odc7i1DQa0n+sd/MNXDxxnGMP/y51YFnrc3jyRl46OsA1Pb7vnv3omgZo6JrGYJjx6a+dYMdkhbfftZtb/T0s/Kf/BTMOcRHM083X3URw4Qj9ZEBOTnuiiqGPgIz3wh7gCU4U36Baews75rqsOC8wkFNcRW8R6HV8vcK+2Sa+a6NrOrqmqWvZrmljv68/+2XMlfP84PXvpnDGgHRRUP/8M1SeX6QwDW69/0HWzmxwfrHHh996HZ/++glaVZd337sHY2oDvvafud3ZyZtufAue5bIiM3Cnds9gt+o0ay7r/XhLP1tcDfknn3yac5d7uLbBLddN0G7s5Ih2ivVCgPG/9IY7MHUD57ILn36C+3aYvPmd8wr4V50Kk68sctfLIeg6szcfxGlXuW3XYR657HCKFxk6PS52LjNII9554H4WNmL+0W99k/fqHpPFCjsbNlatSlFUcAyb+rlVNMNg1xvvxPQ9GhWHYRFi6AZ7ZqdU/3vm0y+QrU1h7T/GXTtuoRXOsgIE/VU6wNmNjNNLfQLP4vfOuzyATuuV5wgl433THddz6G74wxOnMf2CVEtYnHKBPtrFM0x+39t46/IhFoDTxgZ3NyzObVzEPfwsyxUBGPTE5abpefYYwGOPcVt1H7fc/REmZcZqo+rQPvsiZ//Br1OkKc70FMEtN3F0Nefk0oC33LGbiabQp37h7JM8t7vgpydE+ZXdczX444tcHFzmXx7/jyyFq7imQ7bRZjqY5N13HOLOuZvVd5Xt7d49fPrE5/n86Uf4u2+9CXfuLBvmGWpGk8HQZWaqqvrCTbe8gRNffop6L2NqSnoiLgqgU51qb+kz9+q38Acnv8CZ8DQb8QZNr86Ow9dxHtA21jYdP1xZ4Ue+0qW1GJKjEU/vZOfhfRi+z4nuRV5ePk6hQZGZGIWDbTjCg1DXNo0TDQ3xz/ZjSjVd5+4Pf2TLNf+3bK8FRHUQm/iy6RJAbfe3KrB+rZOtrf3pis1sq8aP/62/y9LSZlZgeVnQ3bvbPm+8cZpvvFiKJf0txwK0i2mm/AkWw2UaTp2pH/oxNZDL4008lmQB3UM76zzytPjs4V0NtJmduNddz8qT3+Cpj/2YEvVW33Av7Q98EHtmlspvPs3l9QGLix2iDQ8vt3ny7HPEWUzkW0Qrq6xfFgt1olucubDOwbkqFj4FcPKc9HWq1RkuL7G01KVltrFl2uz6oOD08nE0vSBZq6nrDuUOfMYYsiazs5rr0hCyWlHHdZN1ilzj8kLK0lKXy4mFB9idVZaWulRD8TxORx2mlrrYWoExfYbj+cvU7SofO/wRDrcO8sWnz/GpR48z0/L5ifffwL5ZMXD73Yg+UHvzA6x/+Uuc+MzDVG69jYV//VuELzyPUa8z8eEfpHbPvTz16Em+8pwQid7z4J0EO+poK6/wjT8+Q33PXg4f+D4A8iLn1//4N3nZGXC4dQc/cugvb9LrbGpRwmPHH2Njrs39D96qfh3mOb/8fz/JiYsdbr91N0d4npNL51lqdElqglW8+NIRnjn+TQ4Db9z3Zt589weVaLdsxWTKsd8WICrUHMqtw7mL60xURgvokTNr/PMjJj8vf77h0A7e8f2H1d+Xlrrot74B79DX2X/kZX7yU8vAMqnj0HjP9/NLRwJ2zczwLvne8kgA7xeP9hgOMz727oPMfnGS6ORxPvKWfWiyYGiR51z4tV8lPHGcyp13MfWxv6JCBMee/lUWwiXe98AHVb9P8pT//blf52z3PHdN3wYXb+CxI6tE97os2aMx9AdPnOLhxy7TOjjPoHGUH773Hu6cPsTwfMCZR3+XatRh7fKqfNY6HmIDceLiBXZXxXdZd94Ln/4s9UtdUkvnR97/izQn5viH33qWc4td3v6BB1Th06Io+I3PvEh6UeONh6/nzZO7KLKMBU0jXFolkVXqC7fNRw5+iN968XfIew2eP7KgQh9/9McX+c8PrxIc2Avt0/T3fZ4+YGgG98/ew7v3vE1ZkfxJ2sLEMTqvnOdN3q3YkyPgvvrFh1l+8iXsuTlmP/HTzO/cxZmzRzl94QI7kluJz2vsOjTFW6dvIm/FHOc/0+xq9NYTeiQMVgXQW4sK9KUuzYrN6YUulxc7EuBBnGT8/d96hoXVkHfcsZMPvWW/CvMcX7f4lW/9C0zd5P337AUg6zU58WmYzntirEqdz3XrNvc+2SEzNOyPP0Qnt2Gpi55CfPoGnIPf5u888k/VvTXjvfzD//BNsjxnbv9O+O55Fo6dwd0tgE2r8Gksnsc5cD1r/RT6XaYmTM6aXdpWTc3dq52Ibx1dZP/sFD9z7y+IEljHxKa0f0awaLFp8w/+1Yht3bH/DRw6+RT1ZSGteOD+QzydCU3qheVlulGf4VQV9DVWv/sSlaUuxmXB/i/aKT/++39TeK5VQOtOEp8/wO7qLn7qwbtJlpc4xWPsDD2ceDRvzscL3H/iq2i+x+xP/jTBbXew3ov5nf/nKaw9Bh996D5l0rr83XW6Sy9w4sIl6k4Vz9DBjPnd4/+OqOjznr3v4ObKG/il3/w2+26d476JQxCzZc3ScPjggffw+8c/x9/4wi+h7YQiNZnuv5nLxGRJqj6TBKIfvyu4ZTTXnxPr4VCzt5y7mjdxDZdvXXyR9eEGe2u7WOunGI0G3RMnWVxYRzMM0o0Nzv2v/4TWYsiRvQ5ftt/B3NwB/tZH7+Azx77EI+e/RT41QbtzF59469vYPf1fD/hst4b/12zXAmmvBUQ9Abwf+I9SE/Xdsb89Dfyj+fl5F3CAw8AL/+WX+t+mffzBeaabPmcXezxw245tj9E0jfvm7uH3j3+O6xv7N6V9btdu2NcS3h+exb5ZkSY6+9c+weJ/+B2i06eo3v0Gmg++B3fvyHCzGticXezRGyQUuUFtuJ8NXYgD7UaT7NziqMClZm4S6r10epWj59Y5tLuBs9Skf+EceTRgJphmMMzJXRvNNDnTEZPLcL1KN4yp+jZ/dHrA9cCOMc+R9qqstST1XUmWsJ6sUgw9lkOZDlyY5IaL05Pi4qHIbLmki+u6NLiIvfsIpA4//8afoe21uLTS51NfP0GjYvM3H7pN0dXjrfV972Xj64+y+MnfZunfC/apcftttD7+48r76IY9TQWiGlJ7tbe+Cw2NV9ZPqnN98fSjvLz6Cje2D/GTN/8ohn511tN3LXzHZPmKLKYvfPMsJy52eMPhKT7+jn384uN/qAz17DkRhjh59Bl0KVh+83UPbAFQAJpp0njnu+g8/hj2jjmqkdB9dMaEo0ma86+/cIQMg+Lj/z3G7/0WtTe+aeu5dJ3ZT/w0j//bf0p2aQHtun285Qf+Oma1hvlrj6lUeBBFr6vZLMtL03z03Qd52+07uPRcm+jEMZKlJWUE2vnGE4QvPI9/403MfuKn0YzRs2p7bc71LtKJeyrk8unjn+Ns9zz3zNzJxw9/hIe7Z4FV1ntD9si91MJqyB88eZpm1eFXfvgnObdyXmUPldqZZHlZhYB031fJEuvRhsqO+lZxgXDaYtflhMl3fz/NCfHcZ1o+py51WN6IVCj6Gy8u8MyRRa7fWeftd4jxrBmGcJTudtV9WRMT3GXP8crpHl/5zjqn9nfYOSnCtp985BUC1+R/ftvHeK7zDc51LzAbTPPWnfdtqTbwJ2mjDM8eSBCVLC2x8vufwqg32PFzv4DVFKC/TKAoXc/bUuukWzZGo0EyJurN+j00x0GXxretmsuJix02erHS6XzmiVMCQN25k4++6+Cm67qusY8fveEhVVpFXGsFs1ohvnxZ/S5PEu599Bx6AX9wf40fu/U29beqb5GvTzM9vJ2hc5KiKPjAvrfyuUfXGCYZP/Ohm9lzMmT5u08Jh34JovYtF+gFeIdHG4d84jiannJT/Xb1u88+cZqiEPVN1TuRZbnKcNRfeueNuCvC3f7eG2c4tPttLP+nBt1nn8aanMKamCSQZaZ6Mpznuj7unr1Ep0/Re/47rP7BZwHYdd2tXAxCJr02C8emOPmKeLbNWZmg055A9wMimbUNoqTNvccfJUej+YmfpXLTYYqi4N984QiDYcYPvPU6BaBgVMrmcrhI3anSqjnY+77LoOjxvn0P8p597+C5oyKRpRZsLvlyZXvHrrdgaAYn1k8RhzbPPRHwfCyqYIwnQZRFsq3VUaJJ5xtPAGDv3LnlvIZucLB5gOeXhV603JRWbr+DjUe/SnjkZbyD81z89f+D5PICG2+6iS/uucx0x+OVoxv85mNf51vpV8iHLofi7+enP3wXtvWnF436b91eC4j6feBd8/PzTyL46r86Pz//N4DjR48e/ez8/PyvAY8hMv3+9tGjR69dovz/B821TT5w/75XPe6+uTdwvnuJt+2671WPdSyDv/nQbTiWoQCXNTHJjr/+P171MzVZB2lpXTyyyewQGxyhYgVMXLef7tmv0JdCZ81xOHlJLMJ5XvC7Xz2OBvzQ26/H+KIQfqXr68xWp7k4LBi6JnmR850lgXnzfp2XTq/h2gZ/+MI6Pwfs9WUpgV6PiWdeYWhqnGglHAa+dOZRoixC7+5nUXqobPRjIrPCXHeVIs9xwpgIOJYt0kv6/KsX/h1QMDx+C5W31imKgn//lWNkecFH3zW/LYACMBsNZj/xU6w+/DnyYUzzHe/iwIfey/LKKMtnfveITarLxcUzPXbXdnK6c5YoHbIarfH504/QcOr8lRt+6JoAqmwTDZeF1VCUB9E0umHMHz55hlpg87F3zxPYFhUrYEmCKLPVBsfBPb/E/gSMRlNkO16lTf7QjzD5gw+hGQZVX7znca+orzx3nsW1Ae+8ayfzDxykeMvdVwXsZq3GvT/1d3jk7Ne4f+4eTGlWWgts1sYysVbWMpaeu5UdkwEP3CrAh7N7D91vPsXw3Bns6WnyaMDyp/4Tmm0z/aN/dROAgpFr/0q0St2pcqZzjq+ff5Jpf4qH5j+EpmnKaqL0IyqKgk8+8gppVvDD77ieVs0jG86ocxqehx4EpMtL5OFu+buAhtQAluLyKB3ymRMPU7uzyfUbB2i/573qHGXG28JKyHTTJ81yPvP4KUxD4yfef4MSyAMYtSpppyPK6NQb6La43jfuvoUvP/ospy91ecPhjN/4zIskac5PfeBG5iZqzE08eNX3+Sdtqn5edySkX/q936VIUyY/8pACUDAymT0hsw7bY+PHak8QnTpJkWVohiEMYoORnqU8drUT0aw6nLrU4QvfPMtkw+UHHjiw7bW9YeaOLb9zZ2fpnRh9z8bXv4a51uXbBz3OzjrKDkNcr3DdHpzbxz/5xA8D8KWnz3J+8Tj33zLLnfOTdNbFWEnXRqWe9h2XipCDImV/fbjBJf0FithhKrtBPoMNHvvji+yYDHjTTaM+VdY2LduOXRP89Svub/IjDzH5kYfUz6VT/VK4zCCNaDoN2h/6fi78yv/GxV/7VQBqb7qPt73nv+Ptku3895ePcVIqJ0vfOk3TcPfsIXz5JbLBAMPzWPnsp/9f9t47TpKrPvf+VlfnNNOTZ/OudrelVc4RgQgiCSGywcbX2L5O1y/3dYSL42teg69fggFjbOACujZXAoMASSChnFdhozZoezbP7OyEnunpnCq9f5yq6jDdkzZr6/l89NFOd3X16apT5zzn+T2/38FfyfNc7DLeGFtGN/DC7nFePTjNRatjvOmKZdSjnkRtjF1AorwNOZYkrA7y9jW3AfD0ThFmvbbOctAKkiRx28pbuG3lLeiGwf+z5xVGJvP87l2X2oQcRCKM2BZnBEPXKR88SGHHdvzrNxC8aFPLc1/Ws8kmUVb2buTa68k8+QTZ554h8/STlA8eIHL9jSh33gqvfpcNG2DkaImt5RfA5eL64Lv59XdcZyujrxfMS6ISiYQO/F7Ty/vq3v8W8K2T3K6zAgF3gN+4+FfmP9DEBcvntIPNQjQkVjbWpsgd7hif2PRROnwdRDpy5J54nMKrO8V7/T3sThUplBW2DSUZmcxz0yUDrB6IMGWmDqvpND29G5ip6CRDCj89IDxdG6Ib2FMN88MnD1CpamgeP3R2oRzcj16tMn3/T5CKZbZd1cHBwgGuzY/xyNEn6fR1EDGuZGi6wPBEjie2HeMmb4TllSmxTUk2h+qROVwe43MvfYlMNccK/Sr2Z7uZmCmSylXYfSjFpjUxrtrY0/oimAhfeTXhK6+2/7ZCThaCfjcresMUKwoed+29eGw9R7MjJGYO8MsjT6AbOr8Sf19D1e650NsRYHgiT7ao0BHy8sgrI1QUjfffus7eobw30MPR3AiariG7ZEY39bF8uzmgvvFNs9paD0mSwCQovZ1iYjs+JchhVdH4xYtHCfrcvNck9fMpnn63j/esa5zk+zoDjCYLTKVL9HQG+M+nDmAAH7qttuq1QieV4WEi11xH+qkn0bJZut7zXjvxoR5WBfLpUoo10ZX8cOhnGBh8ZONddgV7a6K2fs/WRJI9h1NcsraLq+O9s84JIvW8tH+Iwm5B7uWODjrNVam1RcxTx54jp+S55Yq3smrd7Q2ft2ovjU0XuXw9PL9rjGS6zFuuWkFPR2OGjhyJUj1+HD2fx1+X+bmiN4xblti+P0kqW+b4VIG3XL2CKze2bvPJhHdAmPArw0cJX35x/kZmAAAgAElEQVQFleOj5Lduwb92HZHrrm84NtasRNWTqJ5eygcPoKZSuGMxtHzOPjfAYI+4TvuGZ1g9EOG7v3gNw4DfeMeFDVlf8yGwbJD80H6U6WnkSITUg/fj8vsZu3EDbm2qwZzvckmsW9bBnsMpcsUqbtnFg5uPEvC5+fBt4vpbCw6r5EDl2Ag9ByYZ73LjXdZFL/DzQ4+io6Ecu4gJj6jn9MMnRJ/+tbdtbCDKLn8AyecXpWBk2S5yOxeWhQeRJZm9qSEUXSHkDRLadDF9H/s1spufJ3LdjXTe9uaG59q6noCt7IFYnBRf20tl+Cierm7STzyG3tHF5tilRPYn6Yr6ueex/fi8Mp9454Wznu/VUVHU96WxrSwPL+PR0Ucxqj7CqetwSS6S6RJ7DqW4YHmUlX2zTd/t4JIk/uCuSzg6keOt162yQ6IWwldeTeaZp8g89QSpXz4EkkTvBz/cdvy5YfAaUuUZHj76BGs7xFgSWL8Bd1cXuVeEjyUQv5D+//IJIpKCV/ayZfpleq8KkVEV3tzzTj5w2fUtz32uYyFKlINTBCsrcO8RMaD4vTLXDAj5Wg9WkNxuDFXFO7iMzgs3wovD7Dmc4r6nD+F1u3j/rWLlZg0cpYMHcPl8yDpkgy4eH3mGkCfIJy79CD9Pj/PYlmPILolPvOtCuoamSf3iQVIP/Zz0U0/i6R9Av/lipqd38S87v4NqaPxK/H1Ue3oZOrqLf/rPnaTzVTpWLoO9h1GSSdRsBl9HjLAnRKaa4w3Lb6Q7ezX7OcCWxCQvvzaJS5L46Fs3zksOFoK//o1rZr22sfMCHjn6JHfvvYeKVuW6gau4tKf1aqoVrBDJVLqE7JJ4fOsxoiEvt9atGPuCPRzOHmW6nEI3dB64oMwnXnPjUww6bn3jgr9roCtIJOhh6JggC8/tGiNfUrjjptXzVr+eC5vWdLF9/xR7jqTo6Qyw+1CKi1bHuGRtTSHzrRTKT3n4KLpSZeaRh3H5/cTednvLc1pVx/dM70PRVY5kh7mq7zLiXTUycsHyDgI+N9uHpnjfG9Zxz+P7ccsSv/q29vc7evMbKA0lqAwfxb9+A96+PgaVEC7JxWupITvrNeQJ8pZVt85uV3ctA1RRdR544Qget4t33bh61rG+FSspJcR6z9NTI0get4s7b17Lfc8cIp2fJr6ykw/f1lqdOdnwr6/VBAOYeeRhALre9e5Z18xSD6zaQlZfBfD0mqHR6SlKhw5gVKsE4xfa71+9sZf/eGSI53aNo2oGx5IF3njFMi5aszhfl9+s2aVMjJPd/DxaPkf3Xe/nD29+F6q5qKjH+uWCRB0czTI8mSNfUrjrDWvtBYnHzAy2NtyeflCEzl66NERp5gB+t4/NY6/QH+jjyNQyRiMFdhyYYv+xDFdu6GlQpC1YtfQiV13dMrusGR6Xm+XhQYZzwh6woUOMo523vYXO297S8jPL6rbwsRRCAN9qc3Fy9CiZp58ETaPv/R/A85LKi3smGE0WKFZUPv72OD2ds9PwB0P9XNF7CTuSu/najm9hGAb+8atJmyL8Y1uOYQBvamM7mQv9XUH6u4Itn8XYO95F5tmnmfw//wFA9513EVi/oe25JEni3etu5/Y1b7atC5LLxeDv/gHZFzfj8vnofs97cXm9hPHysfgH+N7eeyhT4W2r3sRd629bdPvPFTgk6gziYnNA2z4kQkX1GyG7fD786zdQ2vcanW99G+uWCZXruw/to1LV+MAb19nhsdBll4Msk3vlZTtFXbv2cq7sjXDX+nfT4YvywTeGWN0fYdMaURCuErtBkKgHRKpt70c+ylWDMlumd5GuZHjTipu5tGcTepdBf1eQiVSRng4/F8U3kN37POXho2i5HP51F/CnV/8eRbXI6uhKEQ7bfJQHXxA+gduvXTlvUcKFon4FamFj7AJuGLiGlye2sa5jDR+Lf2BR57SKTE7OlNh1aJpyVePOm9fiq4vZ9wXFhDVZnGLLxA4qXgnjd36VFb5B3B0L98tIksSGFZ1sG0oyniry0IvDuGUXb7l65aLa3IyLTbK0+1CKZFqEXj982/qGwVMOh3F3dVMZPkr6scfQslli73iXXZW6GRd0rmVZaIAtEzvYPb0Pr+zl/esba+m6ZRdXrO9m854JvvyfO5nJVbjjpjV2qYtWiFx7Hckf3INeLBB7qyBwYU+ITV1xdk+/xvf23kNJLfO+9e+206/r0RcLIklwfLrAUztGSWUr3H7tygZ1wELwok2kH38UqJEOC3fctEYUL8xXufPmNS371qmAOxLF099P+dBBlGSS3Iub8fQPELr8ylnH9ncFRXjMrKjfHa39Rk+PCO2UDx8iv30rSBIdb64RgKDfw1Ube3lp7wQ/e+4wsYiPD72pdR22uRDZID4z/eD9VEaGkaNRYm97Oy6XG3cLH+D6FWKceum1CbbvTxIJenjbNbX+7e6M4QoEKO57jfLwUfJbXsGzehXDyyvoyV0czY5gYHDX+nfy/Z0ZEsNpjo7nkF0S728ThrQQvWU26W6H1dGVNom6sLs9ebBQXwYnVhca869aA0DqkYfQ0ml8a9YSu/FGrkztY/OecWZyFS5aHeONTWG8erxn3dvZM70PtyTz/vgdvDDmZSifZmy6wDM7jxOL+Lh+0/wK22Lg7euj8623U9i5g+jNt9D1zncv6HPN3s/ABetb1ve7duBKZJdM1Bthfef81plzGQ6JOoPoivoZ7A4yZm5Xcfn6xoG++93vIdvdQ/TGm7nEJXPJ2i52HxbS7juur6WQy6EQoUsupbBzB9VjI/hWruTOd/x+wyTq9cjcfGlN7vctX0HgwouoHjtG7Pa3E77sci4zDP7iuj8WO9CbdbJcLon/9r5LODKW4/pNfZDNkPuRl6kf/yfoOr7ly+kNdgMiJBQJevn47XG+8dPdXL+pnw+d4hW+7JL5+KYP88GN78Hr8i7IB1WP9WYI9uGXh5nKlAkHPLzpymbfgrgWjw4/xcH0EZaHB7n00jctSV3buKKDbUNJvv6TXUxny7ztmpV2kdKloj8WoDvqZ+uQSMG+8eJ+VrcoIOtbtYrCju1M/+w+5EiErne8a9YxFlySi3eseQvf2fN9FK3Kxy78YEuD9VUb+9i8Z4IDxzJ0R/28u4Ui1HBer5feD32Y4r59hK+seXCuG7iS3dOvsXc6Qaevg1uXzzbXg1CRVvVHOHAsw5GxLEGfm3fe0Po7Axvjtc/1zPaTvPmq2Sba04HABRvIvvAcY9/6Boaq0n3He1qGhD1uF1dt7OX5XWJ/wvraYuHLryAZCDD10/tA0whdcWVDth/AW65ewZZ9kyzrCfHx2+PzblPTCp1XXUnwok2icLAk0febv43LN5uwWlg3GEWS4KW9woz+62+P25sNg0i2iN78BtKPPcLw3/0NAL13vp+4sYXXUkMM50ZZ17GGS3s28fHbU3z1x6+SLyl8/PaNbRdjyz75R5T2D7X187TC6uhKnh3dTNgTYkW4PcGxEA54iAY9ZIuK7YkCsb1T9Kabyb7wPC6/XyRouFy8/bqVTM4UWTUQ4c6b187pAxoI9fN3N/0P/LIfr+xBuegYiZE0//P726goGne9Ye0pIfl9H/kofOSjJ/28Fq7qu+yUnftsgkOizjA2relibLrIhas67dR/C8GLNtkDgwv4449cwehUga6Iz07vthC5/gYKO3cgud30fvTXFjTBr/zTT9mGahBKybLwwKzjVvSG7VRwurrovvMupn70Q9w9PfS874Ozjr/mwj6+/MlbiAQ8JyWMtxAE3EurWLt6IMI1F/axZZ/IgPmNd15o7+tl4ZLuC1kRXsaB9GFckouPxt+/5N+1YaUgIqPJAgGfzB03zU06FgJJkrj2oj4efmmYlX1hPtBmxR67/R2UDx5Ay+Xo/dCvzBv6uLLvUn5N/zCrIstZ3qKgJsBlF3Rx3UV9BP0e3n7dygYFrx063vBGOt7QGAa9tOdiVoSXEfaE+NDG9+KV24c3f/vdF/H3/76VclXj9++6qC0Jrd/T0N2xOL/iqYR//XqyLzxH+dAhvMtXELn+xrbH3rBpwCZR9ZAjEbre+W6m7vsR7liMvo99fNYx65d38G9/+qaGbLDFQpIk+n79Nxj/X9+i4w23ErnmujmPD/jcfOCNF7Bj/xTLekLcePHs8aTztjeTfuwRQKjoocsu59pxjddSQ/QFeuzn65J13fz5x65iKl3ihhbnsRC+7HLCl13e9v1WWNexGgmJi7svbKi2PxdW9IVJDKcbTNqSJDHwm/+VyA03IYfDePsEkV3VH+Evfn22/aAd6guKvuGyZfx881FmchXWDka57crFh/IcnD5Izft4nWokk7lT/oW9vZFTXjfiZOHwWJav/2QXv3vnxWxYsfRUasMwKO7ZjX/tOnvD2VMFQ9PIPPcMwYsutgeNk43TeQ8n0yW+9qNXuenSAd55fWtSM1VK8b0993DTsmu5adncE8lc0A2D/3zyANlClTdctowLV7epYbWE85abtpNpeVy1ijIxgW/liYUQF4JTeQ9Hk3lm8hUuWdt+ux+AzHPPMvPIQ6z89F+23Cj6TEArFpn60Q8xVIXON78N/5o17Y/Vdb547w42ruzkrjesa3hPVxQyTz1B6LIr7LIVJxun6h6mHv4FhqLQ9a47kGRZbEFUmGAg1LdgUnOiOJA+zGCov2Ffz7kwnioylSnN2+dOBnYfmub53eN89K0b7CzupeJcmg/PVvT2RtquRBwS5eCshHMPz3049/Dch3MPz3049/DEMReJOj2U34EDBw4cOHDg4HUGh0Q5cODAgQMHDhwsAQ6JcuDAgQMHDhw4WAJOuyfKgQMHDhw4cODg9QBHiXLgwIEDBw4cOFgCHBLlwIEDBw4cOHCwBDgkyoEDBw4cOHDgYAlwSJQDBw4cOHDgwMES4JAoBw4cOHDgwIGDJcAhUQ4cOHDgwIEDB0uAQ6IcOHDgwIEDBw6WAIdEOXDgwIEDBw4cLAEOiXLgwIEDBw4cOFgC3Ge6AQ4cOHh9Ix6P3wB8HuhGLNxGgD8FAsCnE4nEB0/S9xwBPphIJLbMccy1wG8lEonfi8fj15zM73fgwMH5B4dEOXDg4JQhHo/7gAeB2xOJxDbztV8DHgLWngECczGwAsAkWw6BcuDAwZLhkCgHDhycSgSBTiBc99r3gSzwlng8/qVEInFJPB7/HlAELgX6gfuBaeA9wADw24lE4gnzuN2JROILAM1/m6+5gC8DNwARQAJ+GxgG/g7oiMfj3wXuBv7Z/P4O4OvAFYCBIHmfSSQSajweLwP/ANwODAL/mEgkvnFSr5IDBw7OSTieKAcOHJwyJBKJGeDPgYfj8fiheDz+78AngMeAatPhVwFvBm4F/gTIJxKJm4CvAJ9exNdeDywDbkwkEpsQZOnTiURiBPhr4NlEIvGJps98FUHaLgWuAS5HhBwBfMCU2ZYPAl+Ox+P+RbTHgQMHr1M4JMqBAwenFIlE4ksIdemTwBjwKWA70NF06AOJREJJJBLjQAF42Hz9INC1iO/bDPwl8LvxePwLCOITnvtTvBOhShmJRKIC/Kv5moWfmf/fhiBVoYW2x4EDB69fOCTKgQMHpwzxePzmeDz+Z4lEIpdIJB5MJBJ/jvAlGYCn6fBK099Ki1MaiPCcBW+L73w38HPzz58hCJHUfFwTXOa56/+ub18JIJFIWMfMdz4HDhycB3BIlAMHDk4lksBfxuPxW+peG0SoUN1LPN81APF4fBnwxhbHvA2han0D2ALcBcjmeyqzyRvAL4E/jMfjkmmG/x3g0SW0z4EDB+cRHBLlwIGDU4ZEIjGEIDGfMz1Re4EfInxRiSWc8mvAYDweTwDfBZ5occy/Am+Kx+O7EOG3g8Ba03D+IrAuHo/f1/SZTwJ9wC7zvwTw90tonwMHDs4jSIZhzH+UAwcOHDhw4MCBgwY4SpQDBw4cOHDgwMES4JAoBw4cOHDgwIGDJcAhUQ4cOHDgwIEDB0vAvBXLTTPmvyCKz1UQlYMP1L3/p8BHAR34XCKR+MkpaqsDBw4cOHDgwMFZg4Vs+3IX4E8kEjeaG4l+EXgvQDwe70RktaxHFJ/bAcxJopLJ3Cl3ssdiQWZmiqf6axycQjj38NyHcw/PfTj38NyHcw9PHL29kbZ14RYSzrsFs3JwIpF4EbNGi4kCcBRBoEIINeqMw+2W5z/IwVkN5x6e+3Du4bkP5x6e+3Du4anFQpSoKJCp+1uLx+PuRCKhmn+PAHsRxew+P9/JYrHgabmpvb2RU/4dDk4tnHt47sO5h+c+nHt47sO5h6cOCyFRWcRO6BZcdQTqnYjqw2vNv38Zj8efTyQSL7c72emQFXt7IySTuVP+PecipkszdPk7kaSze9cK5x6e+3Du4bkP5x6e+3Du4YljLhK6kHDe88C7AExP1K6692YQe0pVEolEGUgDnUtuqYNThqpW5Svb/o2/3vx5njv+YsN76aef4shf/wV6uXSGWufAgQMHDhyce1gIifoJUI7H4y8AXwb+KB6P/3E8Hr8zkUg8C7wCvBiPxzcDQzj7TZ2V2DKxg6H0QQBS5XTDe4Xdr1I9Pkp5ePhMNM3BPHjg+cP8ydefp1hW5z/YweseU6VpfnrgF2QqjrrgwMGZxrzhvEQioQO/1/Tyvrr3/wb4m5PcLgcnGelKzdZW1aoN72lpQaqU8XHYGD+t7XIwP37y7GEAtu9PcvOlg2e4NQ7ONJ4dfZHHhp/m0eGn+Pub/4JOX8eZbpIDB+ctnGKb5wly1YL972YSpaZnxOsTY6e1TYtFfvtW0k8/eaabcdrhMv1rO/ZPneGWODgbMFOnJO+a2nsGW3L244tbv8739txzppvh4HUMh0SdJ8gpefvfVV2x/23oOmpGqFTViYnT3q7F4PjXv8bkv9991rfzZCMS9ADw6qFpylUnpHe+oz4cX2laEDmoIVmc5lDmKK9MbMcwTnl5QgfnKRwSdZ4gX62RqPqBV8tmQRflvarjZ7cSZSH91BNnugmnDbphkCsK0quoOsMT+Xk+4eD1jlQ5Zf+7olbOYEvObryWGrL/XVBPLCt8y/h2Hj7yBFVNmf9gB+cVHBJ1niCnFPDLPqAxnKema6taJZnE0LTT3raFQFdqg1f2uWcw1PNDkSmWVfS6VXSu6CgP5zMUXSVTzeGTvYCjRM2FfTP77X8ni9NLPo9u6Hx37z08cOhhvrztX9D0s3OMdHBm4JCo8wT5ap4OXxRZkptI1EztIE1DmUqegdbNDy2btf+tl0qodX+/npEtiHvl84oCtdmisxI+nzFTFs/rstAAABXt1CtRWqnE6Nf+idKhg6f8u04WdENnaMbe4pVkael+wslibUwczo02kLMzAV2pkvzhvYz+81cw9LNik5DzGg6JOg+gGzoFpUjYE8YrextWrxaJ8gyIQVmZOjvNy5Zvy4JeLLQ58uxGVavyzzu+zebjryzoeEt5WtETEn8XXr/Kw2Rxii9u/Tr3OnuYt4XlhxoM9QNQOQ3hpdyLmyns3MHI5z57yr/rZCFXLVBSywTcfgCSxaWPa4cyovTL9QNXA/Dy+LYTb6CJbKHKF+/dzmtHZ+Y/2MTEd7/DzCMPU9ixHS3nlLk403BI1HmAglLEwCDiDeGTvQ3Gciuc51u+AgC9cHaSEy0rSJTkFlU5tOK5uaHm1omdvJYa4uljzy/oeMsPtcwkUdnXaThP1VX+adu/cihzlGdHNy/4M6nywief1wOmTT+URaKqp0GJMoyzW+0wDGOWIlNQxDi2tmM1AMnS0sN5R7JHAbht5S30BXrYmdxNST05hYmf2j7KniMz3P3QPhR1Yde5tD9h/1svOQWSzzQcEnUeIGeaysPeMF6Xp2U4z7tsOQBaaeHkRFeU0+ahUk0S5ekXipl+jpKo546/BMCx/BhFZf4B0CJNy3vD5t+vz3BerponUxUh2vq6R4auUzp0qGV21dd3/C/+6oXPn1dFJ2tKlBXOO/WkWp2pEVXtLJu0DU3j+D9/hSOf+VSDTzJvkqhV4eXIktxAojKVLF/Z9m8LLg9xODOMV/ayLDTAjYPXougqz42+dMJt13WDZ189DsBkusQvX56/2LGh6w1WBn0R47WDUwOHRJ0HyJvlDSJmOK+Vsdy3XJCohSpRuqJw+H/8GckfnJ4aLJYnyjsoik2eiyRqvDDBkewwEhIGBgczh+f9jOWJWtYTRKJ9OO+XLw/zt999GUU9N02vxbqVfX3/TP7gHkY+93fkt21tOP5w5qhdgf9I9vyptJ8ui8VET6AbtySfFk+UmqoRkMrRI6f8+xaDqft+RGHnDpSpJFqhlrlqkaiIN0JPoKshnPfy+DaG0gf511e/x/6ZuX1euqEzVphgRXgQ2SVzy/Ib8Ms+nhx5FkU/seSWfcMzTGcrXB3vpSPk5SfPHGLLvsk5P6Pl81C3cD3bSO35CIdEnQeoKVEh2xNlrez1YhFkGXesC1h4mExNTaOl0xT3nZ5if5YnyjsgSNS5GM4bzY8DcEnPhQDsTx+a9zNWOK8z5CMU8LQM56WyZX7wxAGGJ/Ik0+WT2OKFIVvNoZ9gyKeo1O6nFW42dJ3042IXqcqxkYbjHx1+2v73sdzoCX13O2SeeZrpB+8/q/paSRP3N+gJ4JN9p0eJStVKKpQPz99nTyeyL9ZCv1qhdp/yZnHhsCdIb6CbglqkYPaxV+sUqOfn8SbmqnkMDFsdDXoC3LTsOjLVHPvqSigsBceSoo3XX9TP//2hy/F6Zb75wF6GRtJtP6NlGt9zlKgzD4dEnQewqpVHPCKcZ2CgGmI1o1cquHw+XIGg+HuBD6Ul8VcnJk5LuQHLE1VTos5O79ZcsPws1/RfiUtycTgzv4JiGcsjIS/RkNcmVfV4cPNR+9+ne3+9o9kR/uqFz/PNXXefUEHDQp0SpeqqSIZ4daf9WnMfS5VqE/tIvpFEffHe7fz5N15YUHikHbR8non//V2mf3ofR/7y0xT27F7yuU4mSqogUX7ZZy6ITr0SpczU1aUaGZnjyNMLvVxuIBX1Y4LliQp5Q/QGegCx52Cumudw5iirIsIDmqvOHQrOmu9HvRH7tQs61wIwUTyxTOZMXty7zrCP1QMR/tv7LsEwDP75vl2k863vq2r+Xk+/8MQ5nqgzD4dEnQeww3mmsRxqIROjUsHl8yMHTRK1UCXK8kloGtXJU19BXMtmQZLw9onB42xSBxaK6VLNFBzxhMlU5i/TkC0qSEA44CYa9JAvKWhNJtrEcM2zUiifPs+Ubujck7gPVVfZNfUazx1/ccnnavaHVTWF4t499t9aU3ZmSavQ4Y3S4Y0ykjtuv65qOnuOzDCVKfPzOnK5WOS2bQHAFQigFQqMfvXLKNNnPnO1rJbxuDzILhmfe2lK1Nh0gRf3ji+I9Bqahjozg2/1GpCkxpIoZxjN4079mGCF88KeML1BQaKSxSl2T+/DwODq/ssJuP02SWoH6xnt8Ebt1/pMUjbZJuPPMAxmyul5vXoZMzTfERZj8iVru/nwm9eTLyl89xf7Wn5GTTcq8nrRIVFnGg6JWiIMwzgrBtVmFIcSIm5eB2v1GnAH8DaRKL1SQfJ5cZkkasHhvLrVafX48TmOPDlQsxnkSARXWBisz0VP1JRJorr9XUS94YateNqhWFbw+9zILheRoLh3+To1StcNkulS3fGnT4k6mD7CSG6UTV1x3C43z5+A2bZoVpR2u0T2paIrDQpIc12wslrG7/azMrKcdCVjh6wLdb+/WFaXrI7lX3kZgNV/+1n6PvqroGnkXn55SedaLNRMhsl7vj+rrAeI322l7ftcS1OivvfQPr55/152Hpg/Y62azoCm4entRQ6HW7bpTEExSZRVnqVeiaqRKBHOA5gsTZFIiRpPm7riRLzheUlU1uxXEV9Nieoxz9eubMJTx57nL1/4HJ95/rMcTB9pe26LREVDXvu1t169gg0rOth1aJpUdnZo3lKibFvDEsN5hqaR376Nwq5Xl/R5BzU4JGoJMAyDie98m8Of+lOKidYrhjOB3LatHPvHzzN57/cbXi+bA63PDAFALatHr5Rx+fy4vF4kt3vB5ESpy9ipjp16EqVls8iRKHLAInsnFs4rHz3C1M9+clr31Joupwh7QvjdPsLeMFWtOq+SUFV0fB7xmEZNElWfoZfKlVE1A9klNikuVk4fibImqk3dcfqDvUwUk0v2Rll+lU5zxV/VqqipFJLHg+T12uFcEM+fVQNoRVhMJsdNv1mhVEcwDYOKsnijvZrJUNz3Gv51F+Dp7iFyzXUgy+ReOfGMrIVg5rFHSD/+KKNf+dKs90paGb9b7Dzgk70ourqoCtozuQr7j4lrec/jQ/MmIlTNunGeWBdyR+csTw4I9W/3oekFp+ifLCiTwoTtXyPCaw1KlGlhCHlq4bzJ4jSJmQNEvGEGQ/1EvREKSnHO65etWkpUjUR5ZQ8xXyeTbQp4HqtTRscL7VX6TL5KwCfj88j2a5IkcdkFgqQdOj5bqbauv21rWCKJGv3aP3H8619l9KtfRq+c/q2DSocOoldfH+VaHBK1BKSffJzsZlHnpzlr6Ewi9YsHASi+1mj2tvbX8rt9eGWxmW1Vr2LoOka1issnBmVXMLhwJapO1q+MnhpjrwXDMNDLZeRg0FbMTlSJGv7s35J64GcN2UbTpZlTZtTVDZ1UOU13QBj4LY9Frjq3GlVRNbzmIBsJiXuXrcvQm5wRKtSaQXG+0xnOqymcfgaCfVR1hZny0pQKKzuv0y8MvFVdQU2lcMe6cHd02CUuQHimNEMj4PbT4ROky1L1mn9/qbJ4EpXftgUMg8i11wEgh8OELr6EyvDRJW1+XVG0WWROV6pM3vt/KB+ZnaFpVMR1rQwfnaV2l9UyATkAgM9tqsr6wvvsloQgHt1RH8l0mRf3zv17KlNCrXJ3ifugl8sNk265qvLZu1SLsAYAACAASURBVLfwpR/u5Pndp3fvTete+NeuAxrHhIJSwCt78coeuvyduCQXu6f3kq3miMfWI0kSEW8EA4O80n4ssUJy9Z4ogL5gD+lKpuV4kVVq6lZhrnMXKnSEfLNev2CZeAYOjc0mUXaCTf/CwnnVyUmO3ffThlI0hmFQGkpYf5z2AsvlI0cY+dxnST/x2Gn93lMFh0QtAYWdO2r/fnUnM48/esq3S8mXFP72Oy+zbaj191SOjVAxB2Q5Em14z1Ki/LIPn8sK5ykY5kqgnkQt1LCtzswgud24/P5TvnGxUa2CYSD5fEguF65A4ISyUuoL8+llMWFlKjk++9IX+PH++0+4va2QrmTQDI0evyBRYa9ZgXyecEJV0fC6TRIVECQqV5pNotYOiHt+OsN5VsHBgNtPf7AXgIni3Cna7WBl51lZUJVKES2Xxd3VhRztQMvl7PtmZaj5ZaHoAS3DeSDCoYtF7pWXQZIIX3Od/Vpgw0YAqhOL7+uf+eaLfOobLzS8NvPLh0k/9gjj3/7mrOOVumy47PPP2f9WdRVFV+uUKPH/xRD/7UNJJOAP3ncpLkni8a3H5lRjVbMithyJ4O7oFK/VhfSe2TnGyKS49iNNm2NXk5MUdu9acNsWC2VyAiQJ/6o1QGN5lrxSJOIRz5jskon5Om3SvzF2AVAjRnOF9Gxjua+ZRIn+3iqkV78wyqutx1NV08kXFTrqQnkW1gxGkCQ4NDp7QaJmMiBJePr6gLmN5VqxwOg/fZGjd/87uS21LES9ULDHfqiFRReKUqVxP8/FojIqkhOqE+NLPsfZhHlJVDwed8Xj8X+Nx+Ob4/H4U/F4fH3T+++Mx+Mvmv/9Szwel05dc08OFFVnayKJri++IxiGQWV4GHd3N6HLLkdJTpK85/tM3ffjOT+390jqhDaP3T+SZngyz9ZE60mqfLRmoq1PSQYoqxUkJDwuT0M4z1pRSiaJkoMhtGJxQSEudcZUCbp7GurInApY7WxQzApLJ1HVsdpEaG2bsHt6L4qucCizdDPyXLBM5YtVoqqKjs8rHlO/122/ZsEmUYOCRJ0xJSokBvXxJZMoU4kySVR1WvQpT6wLd7QDNM2eJMt13xs2J0ortGiF88Im4VysEqVms5T2DxFYvwFPLGa/LkfE/VrsNhuZQpWZXIVssTEhIPeSacKX5VmfUevUp3qlyl4MWZ6oRW5CrOsGh8ayLO8NsXYwypUbexieyLcMG1nQzEWGyx/A3SlIVH1Ib3y6RhImZhqfyeQP72X0q19ecuh9NJnnC/du57N3v9JycVCdGMfT3YMcFX2/2VgeMvsG1J67kCfIZT0XAxC1CfhcJCqLS3LZ/cxCX53PatZn6gzlhWrrcSpXVDComcrr4fe6Wd4T5sh4DlVrDJFqmTRytAM5JNozlycq+cMf2AQp91KtFITlZ5U7xLOmJBf+zI5OFfijrz3HQy8ufZy0lC/tdbL/6UKUqLsAfyKRuBH4NPBF6414PB4B/j/gjkQicQNwBOg5Be08qXhs6whf/8ku7n188RtJapk0Wi6Lb9Vqgpsutl+fyxd0LJnnC/fu4KfPzl9csR3GUuJhsSbNZtQTGb1YaJDcK1oFv9uHJEkNxvIaORGDsisYBE1rWKW0gqGqaNks7lgMdyyGXizais6pgG6GN6x2ysHgCSlRpQO1+i5aTjzIu6eEt22imERdZBE9NZMm+YN75kw0mDK3J7GUqIinUUFpeV5NR9MNW4myNiEu1/meJtON4TxrsikOJdCV9oRK1w1++uwhJlJLv44WmfG7/QyY25CMF5ZIotQiXpeHoFuEqqxwsburyx7sLXN5qe57bRJlXkfr9/d2ir5SrCyOVCoT42AY+NdvaHjdUne17OJI1J7DtefSKk9ROT5qjxeSxzO7DVNTeJevwB2LUR6uTVY2eZQtEmUpUQvztIynilQVndUDoq9ctUGoKcOT7fugTaJ8PuSoeR/qSNRUxmyTz814U19SJiZA15c8WX7zgb3sPTLD4bEc//FoouE9Q9fRcjncsdiszOKKVkXRlQbi894L3sE717yVv77hz4iY5GlBSlQlR8QTwiU1TpVdJimbKTfVbTJ0ckqe/qBYVBTaKFFWSL5VOA9g7WCEqqoz0TTeq9kc7mgUye1G8nrbKlFqLkvuxRfw9A8QWreWwp7d9gLAUjqD8YsAoRjOh5lchR8/fZD7nj5IVdV5btfCsjtbts0kUWdTksKJwL2AY24BHgZIJBIvxuPxa+reuwnYBXwxHo+vA76dSCTmjGvFYkHc7tmrr5ON3t5I2/eyJTHQPrb1GP/9Y1cv6rypo2IC7r5oI4PveRc+tczx+x9ETU3T0xNGkmYLcS8PiU4zlirO2a65MGM+dJPpcstzZEriAYlcGCe3L0GEMsFewWcVo0rQE6C3N0J3VnzWH5LpRNyHUGeY3t4IqViUItAZcOHrbt/OSjIJhkFooA/Z56O4excRqUKwt3dJv60drN9ZKIiJKBSL0tsbYbwjSmVkhJ6uIFKLlfx8mBmpkVmfXqWjy0/C3JldN3QUX5HBzuULPt/o808y8+gvmXn0l1zz7X/D1zt7HVEaFxPVBYMr6O2NsELtg9dA9ypt+4SlqkRCPnp7I/SbA6rsddufSeUqBHxuLt5o7aVm4J0cYegfP0/s6ivZ9Nd/2fLcuw5Mcf/zR6hoBn/4oSt4aPMRCiWFD755Q8vjQUxcmVd3oVWqdF9/LcYhofKs6Osh5u9AelkipaQafs9C+3tZLxPxhenqEMd7y3l0oHPlIEomQwYIS1U6eyOM62JC645GWTNo/m5Xhd7eCIZLvLe8L8LhsRxur2dRz1zyNXGNYysHGz7nX9nPccCrtX7+2mH/aI2wy2ZbkvvqlNtCruF8ar6AXioRGuwHSWLmlS10uFW8sRiFGTFhxyIRensjxMbF5wJhd8M5FFXn8PEMvbEAsYjffn33sPj8xRf00tsbYe0qQb7Kqt72Nx0xSVTXQBcVWSMJ+NXaNUgXqkSCXtYui/LqgSki0QB+nxvDMDhgLuwibp3oEsa9ZLrE6oEIfq+bF/dM8PYb13LNReJ+q8WiILsdEfpX93MQcCmiXUlzvOiOdNjt7O29mGsvuLjh/CuUPtgHukc8g4qmkK8WiQUEWTQMg6ySY3l0YNb1GdQFiXL5Gq9drpJHN3RWdg6QLE1RNSotr+3RKUH4lvVHWr6/elkHz746hiZJ9vuGYTBUreCLhOjtjXA4FESqtu6Px55+FENVWXHnuzFUlcJ378Z1JEHvm29DNVXbvmsuJ/fyi0gz0+L353LMbN1G7Oqr8EQaz/m9XyZ4ZnvN+zqRKlLWYdXA4u/reFYskIx8blHP0tmKhZCoKFBPGbV4PO5OJBIqQnW6DbgCyAPPxuPxzYlEom0p15mZEzMELwS9vRGSyfari2JdWG37njFW9IUXfO7pXUKxULsHmCmoBN9xJ8FDR8lv28r4gRHcnbFZn9mZEJLq8HiOyclsS6I1H46Y8fFcscqRkRQhf+MKNndcfId79VrYl2DywAghMzRSrJaJ+MQ1qRaFPDyVzjBdEuco6y6SyRyK6ZdKjkzi02evkC2UDh4DQAuEMPxCOZg8eMz+vpOB+ntYGhMrp4oh2ql5xOptYngSObzwe2chd/SY/e/sxBTjh4eoaFWxr6CusOfYIQJKdI4zNCI9UlMhDz/wMN3vee+sY4anRfzfXfGTTObQS2KyH5uZbttX7YJ7hk4ymaNs9tvUTNH+THKmSFfER2o6T8DnJpMrM3VEDHYzW7e3PffQETHRHB7NcOx4mn/5kShs+cZLB9r+zvHvfIvsCyKhYt2XvspMQZy7mNVwlSp0+joYzybt77TuoaFp85LdXKVAzNdp98/C8UkCQNkbRHWL6zA9Mo6ybC3j02IQ1qsuylkDCYnpXIZkMkfSDC9FAmJom0jm5hwLmpEaFvey7Ak2fK6qifbnJ9vfr2aoms7WfTW/yZFjM0S8LtLjNcWyOpNuGBMs5UmPdJp9ewvHt+8ldOllHJ8R98xQxHOgVoQSMDE9Q69k3ouyyhd/sIPDY1kkCT7z8atto/Iu00/ZE/aSTOZwmeHF0Yn218hSojIlDV0Sz116dAJPModhGEymigz2hOiOiPf27J9kVX8ErVCw1enpY5NUehoXJYaqMvbtb6IX8qz4kz+f9b1VRaNc1QgHPHz4tvX87Xdf5ls/3cWKLj+yy4ViEjRV9jCVKuLy+6lksiSTOYazQllx694575VREvd0bGaKZDLHj4bu57njL/H/3vwZwp4QJbVMVVMIukKzzlMpiGs3bX6nhTEzG89PgKA7QLrU+toeHRWE1o3R8n2fLPrD4ZEZVnWbSpsivKGqJIvP+Pwo+cKszxuaxujPH0Ly+XFddg0hM9kjuWsf0qXXkB4WdoZKuAs5GqUwOsbI1t0M/93fANB1x3vouesD9vlS2TLP7ThO0OemomhcsraLnQenefylo9xx05q217cdimNiLFTS6SXPh6cbc5G9hYTzskD9GVwmgQKYBl5JJBLjiUQiDzyDIFRnNdL5GonacWBxmQmWR8G3arX9mnfZMqB9ltoBkwAVKyrP7Dy+4EJ3FgzDYGy6Rj5bhfTUVApXIIB3UAxW9XWcyloFvyn9t/JEWV4jK84+X+ablW7u7ujEbfpGmn1YJxPWYGx7t6wyB0sM6amZjO1F0XJ5O0yyJroKgLF8e8Njrlid5VNQpmvKgrUXYTOmyykkJGI+4SuxQgr5OcJ5VkbXrHCe+bqm6xTKKpGgILxBn1sYq+vS1utLUdTDqi01Nl1g18G69mvt09RLh2r7jOnFAiXTx2SFl/xuX8O+dyCuzYH/6/ftzNFW0A2dklom5Ana/dMwiwp6Yt24Lc+LKf+X6sJaLslFyBOseaLM8F1vhyD3iy35YBWRdccaF0PuJXii9h5JkS8pdgp7xhx3NMsALcsYqtoQklEtL1hPD/7VawBRjgNqnii7TlQLY/m9T+zn8FiWFb1hDIOGWlBHxwWxWtkv+l7M9OPM5NqHA7VSLZQudzR6onJFhaqq0xP1M2BO9FZIr95eoOVnX7OJ/7ib/JaXKb62d1ZdO+vcAJGgh5V9YW66ZIDjUwX2j4g+YF0za6eF+szi+kKbc6E+nGcYBjuSu1F0xfYv5ut2emiGFXa2+qLdbjM0GPFGCHtCdluaYRfabGEsB+gySWkqW7s3RsVMBPLWxsFW4bz8zh2oqRTRm25CDgQIrl4FLpfdj6zxytPVhae3D2V6itQDtYQaJdk4Jz6z8zi6YfCRt6znX/74Vn7rjk0Ac25P0w6GqtrPmKGq52S9v2YshEQ9D7wLIB6P34AI31nYClwSj8d74vG4G7gBOD2bqZ0AMnUl9VsVNGsHQ1UpJfbh6e21TZYA3mWCuLTyRWUK1Yb9zO5+OME379/L9x5aeH2pbFFpmAxa+VjUmRTurm7cXUJmtkiNYqaDN5OoagsS5bLJydxGUCuWLXd02HvuVSfG7dXhyUazJ+pEyhwYhoGWzeAz75mWz9nZXus6BDEea1Pb5ZV9k/z3rz7H3U33Tq1LEW7n/5guTdPl70R2mZl25sDc7MfQdI0fDd3PSG7UNpBbk7Df/H+lKkhSwQxLWybqkN9Nsaw2GGyLu1sX07OIeK6o8NSOGvkvzUE66quG6+UyJa2M16yeDaJvVZrS7cuHDmJUq0zd96OWkyXUyhsEPUG7BAd58Rvkjg7ksElgzM/Xe7EAMVlZ2XnmNemxPVGLJFHp1iRK8vmRPB47W20h2LxH9KO3X7cSECntUCsKaRdMrOszlq/O092Df80aoLZfXf2WL9DaWD48nsPrcfHnH7sSSYIhs5q9YRgMT+YZ7A7Z/cnjlokEPXOOgfWeKLflTTP7geWH6u7wM9hlkihzsVe/sGh13+tLw7Ta8cDKQI0ExG9c1S/6QN4McVup/a6AIDOuYMgeD+oLbc6FiDeMhESmkiVZmmamkm74vFUANtTiPFbfs8YOC1Zxzqg3TMgTpKiU7Nppx3LH7bHFCtWHAq0V/66oOH89wbXqKkler/3bDVUVClUdMk8+DkDnbW8BQPb58C5bTmVkGEPXxQJbknB3xvAOLgNdJ799q120VG2qBTZt9o/4qhget0w44CHkd9uvLwZKKgV1AsLrwRe1EBL1E6Acj8dfAL4M/FE8Hv/jeDx+p+l/+h/AL4GXgPsSicTZscnUHBBxfNF551qFNaN06CB6qUTwkksbJEhrQq4en61EjUyKQbevM9Dw+rOvji04O9DKgLEMoc1mQ61UQi+VcMe68JgkyjIPWjWifO5mEqVgNGXn2eRknsw3q+O7ozUSNfPQzznymU/Zq53FQDd0/v21H3Jv4iet3y+bZM9vttMcROYzwLc8V7GIoaq4u7vFlh65nH2NeoI9RL0RjmSHG5RC3TD48dMH+cZPRdfetr9xpaZMT4sByOVqqGdkoaopZKo5uk1TOYi065A7SK5ppbo/fYgnjz3HP7zyFaqWEmUW27SUKItE5axMNLMIZ9Av5Ha1LhuqtL91ZH2yrsr53iM1taodidKr1YZVr14umwUva/3a6/LY+95ZqCfWM4890vLcVnmDkDuA1wwpUxW/zeXz4QqamUjmJFmfnQeiXERBFUUTC2UF2SURC/vM37PI7LyZGZDlWWVCJElCjkTsRIT5UFU0tg8l6YsFuGKD8MhZ6oOVWeq1Jq36Glimguzu6sLdGcPd00Pp4AEMXZ/1u1sZy6ezZbqjfsIBD6v6Ihway1JVNKYzZcpVjRW9jVlmXRE/M7lKW2Vct7Pz/Lh8PlH41CRFUxnRH7o7/HR3iDalcuJ4JdWeRBm63tCXlIkJ9HKJ6Z8/YC/s6pUogICZmVo2+76lQssmiRLJJiUMXa8jUY2/tRlul5tuf4zxwiRDMwfs1y0FyqrxFGxBoiz1dbYSZW2xFSHkCWEgCsPOlNN8/pV/4gtbvi4+Zz5nQV9rR03MUqJytfPXStLUSBQ01ooydJ3S/iF8K1fZ8xKAf9VqjGqV6vgYaiqFHO1AcrvpvuM9uLtEpmHsbW9HDkfQmtR06xkKeGsh+a6on9Qc/aYd7MxTKxLQYrw81zAviUokEnoikfi9RCJxUyKRuDGRSOxLJBJfSiQS95vv35tIJK42//ufp77JJwZN18kVqgx2h/B6XMy02eixFYpmzZPQJZc1vO4x93NrVbSsbHbA9StqfqFlPeLhtgaE+WBJupvWiNVxsxJlqU6eri6b1Fgr6voaUVBbvVb16uyst9DCwmRWx5c7OvB01Vbshqoy/r++tegNiR889Agvjm3h2dHNLSteW8UHXX7RTmsltpSKt9Yqyx3tQI5E0XLZWphE9rGhcx2Zaq5hc9Gd+6f4+eaj9Hb6kV0SiqrZBFgrldCLBTw9vWKSbaFEpczMPCvN2kLYG5oVzqvPDCyZv88qtmmVOLDCeXnTI1VTosT/K7kaiVLbZJMl22R5tiMdzYOdXqk0bEECzNqXERrT9fPmfnTNKFhhQU8Aj6VEmZmFksdj90tLwSk1kyhT1SuoRQpllZDfTdC8FvPVicq/upPkf95rTwbqTAp3RyeSa/bQKIcjCw7nzeQrVFWdDSs67AwsKyPLVqIGhQ2gvs9oubz9XQCB9RvQ83mq4+OU1blLHJSrKoWySrepYsRXdaJqBgePZzmWFN+5orcxNBWL+Kiq+qz6WnZ7SmWQZSS36HuuQAC9LO6XpUT0dPjt32iFLOvvezOJ0stlUffNfI6rkxNknnmG6Z/82Pbc2RtvmyTKb07gpapoZ6twnri2RQp11crnw0Con5ySZ9tkTbG1C7da5N4TmPU52SXjdXkoq43PUdYO54VtBaugFPjxARHOLpvKlUWiAm1IlNcjFJ/6cJ5eNRe9HotEWZvG14WD02kMVcXT3+ht9JmqZmnfaygzKXux7enpZeWn/4L+3/hNOm65Fbmzc5YS1aqtXREflaq2aKXXUlp9K4V1otWi81zDeVdsM1sQ9Tk6w15iYR/pRShRhb17kNxugvELG153eb24/H57lVpNTpJ/VRTkrJr+FEuOBlhlGtnL1YV1QGvgWNkbxueRGUk2TbwztarCktcLLpf9YFmrV2vVaq30W3mi7IdynjBZvRLl8tcGGFcwSPX4aIN3Zj4YhsHjw0/bf7dKN7ZXwybZs9LCjTlS+NtBqwtFypEIWj5PWTGvkdtHPCbKoA3N1H7DniOCpP72HZu49sI+VM2wQyBqXfjFHY22VCqmSuL+9DSRqIA7YN8fC8W6QXmkIAzwlhLlliVkl2QrUVZowyrCGfSb+87layRKL7QIpZREeDhcF0q49XIxobcbFK3yApZqWVOiaiSq5rer3RdrYeG/YD3V48dbhnyt3xxy14XzFEWkcbtctTCzVSdKawxr1fxlBQolhVDAY6/w51OiUj9/gJlfPowyOSFCHZnMrFCeBTkSwahWF7RNRk1J8RIJepCokShLUfOaE109QdUKFokSBMAq8lk6MFRXZFRc89r1No335oRrhYIuWi1+x5bEJKNT4rzLm5SoWFRcw3aKvFYu2c8diHpRlvKRyojPdEf9BHwyXreLtPkblemaR7LZE2WVJ7G2a1EmJmwFuzIyDDReP6hN4NbC0zqHK2gpUTW10laivPOTqEGzNEeilRJlhvOC7tZhwYDbP0uJsotzesO2EpYspdhukjSPy6pfNjeJAkFUUrmyTfCNpnCeXSuq7hm3ij57mjKlgxvioi0/vBc0jdDlNeuyp6uLjltuRZJl3J2d6KVSQ8maUkXF63bhlmt0octSHrMLnz+h5hn1m57i5o3Fz0WcdyTKynjqDPuIRXxki8qcZloLhmGgTIzj6R+wFZF6yJGoveqf/N93c/xrX0HNpG1fSzTo4a/+yzV84Q9uwm8N8AtUomzp1+9hZX+YsamiHeqBWujOHetCkiQx0JkPQa1AnxgsPbL4blVX7XCebSxfoNdIywpjtivUOEh1vvmt4tyL2EagolVQjdpvsTbprUdzUVDLWLmUcJ618hFKVAR0nWpR3De/7GejTaJqg2piJI3X7WLtYJR+y/sx0+j98HR3I0eiYluMpnZNW0qUv5FE+WUfqqGh1KlP9dtEHC0IImcZyyVJwueR7Ykk11RY0lKiFOv+yXJLP4plKr98vZDx1wxEWGYag9uF86zBzmtWSlbKBeG1qydRJkFX6nxRytQUrkDA3kKluHfPrHMX68ImdjhPUe3JQmra17FWJ0pMoNZklavmKZZVgn43Xo8LlyTNWSfK0DR70q4eHxWKkKa1J1GWwX0BIT1LSYkGvbhlF6GAxw7n6YUCLr+/lpRRr0Tl81BHHAPrTRK1f2hWOM9rTsiWemkReyu0dsm6LmIRHy/sHueAuV9esxJVMzC39rdo5bIdRodGJcoq7BoOeJAkiWjIaxNFNTUtQjaSNKsPWmTYt2IFkttNdWKcyojISqwcayZRjUqUVSPN6gu2J8oKbZVL9jYu84XzoEaioOaJtJQoO8zcxlvldwdmkSjbjF6nRB2uK+Cr6Aq6oVOsaLhlFx53+ym4K+qnqtRUQmvRaNkZmj1qUCuc2UyifCtX0nHrGzFUFTkcIfbWt7X8TsvrW69GlSqqPWfZbTP7zWJ9UdaCwbdS+ASbNxY/F3HekqiOsJfOSKMEPRf0YhG9VMLT07qWqByNouVz6OUSxaF9YBhUx8bqfC0yawejdEX9tQFhgUqUNWn6vTKr+yLohmHL81AjLZ5uMSm6An57oKvUbT4MwgcAwnBuhfOaPVHzVRhWMxncHR22L2z5H/8ZA7/1X+1V81xFJ5vRPAhNtyRRzeE8MbA2GyqrijbvhqoNSpRZHsEK0fjdPnoCXcR8nQylD4rCecUqo8kCFyzvwC276I+JwXoiJa6vpUS56ysnN0nU6Yr4O+bvbHjdmgzr1ahiHYmaropVZf0GpT6vTEUR/SZftDxRjRONNcF4enobVqn2eU1D8Mq+CF/4g5v41K9eZa+I25Eoi3xaoetKUZw3WO+JagovGYaBMj2Fp6eH4KZLACjsnm2ZrK34A7YSJamaHbaQJMnMvmoTzjMVh1Qpi24YhPxiUg/45DmVqOr4mE3EK6OjdabyrpbHu8MLz9BrJgEdYW9Ddp4rGKrrL3UkqpBHDoXsZ8s7OAiShJJM1pHH2c8y1O5rt6kuyS4Xb7pyOZWqxs6D0/g8sk2wLHRFZhuY66GXyw1KlBwIYCgKhqraqqXVdzrDPrKFKrphoBULyMEQcjiM3hzOswhQKIynr4/KsRF7F4HKsWMYul4XzhN9oDZmWp4os2aaSTZtdbpapaAUkJAa+mY71JOoq/uEOmMXblWshIfW57GUqHpfUF4pIEsyftlvk6gj2eGGz1W0KqWKStA3d9kPSyW0CK69mLSUKDtbsp5EiTHD29s363w9H/wIocsup/djv9oQQaiHTaLSjSSqWTGzQsYziyRRFuGzwnmOEnUOwipv0Bn22ebThfii6rNmWkGOREDTyG3dCuZmj9WJcarmzuZWSAZqBr3yHAO8rig1Ncky9vncrBoQE//RidpAboVMrNWHyx9AN1OTy2qTEmWuXhVdQbdSZu1K4O1LHGjFAqX9+0V2WyZjVy8GCG26mOiNN9skbikkqsfcRmG63IJElZvCjh7LWF5TGQzD4O//fStf+sHOOb/PDkXWZX3pFomSRVX3eGw9BaXI8fw4Q2ZKdXylGFwsJcrypVklBDxd5vYkzF5dWavT5pWxneFTR6IKdeE8a2PZ+r7j99aUqHyTEuUxjzPKJSSPR2wYWyw2bD4KtYko4JPpivrxeWR7kGwXzrMGO485OCtWSKYhnGdubm2G89RsFqNSwd3Ti3dwEE9PL4VdO2eFw6xSCaE6JcqlavaKG0TftBIeymoFl+TCY5KIkBluyZhZpVYoL+h3z+mJKh85Yv+7tAvL1wAAIABJREFUeny09oy3IVHW1i8LydBr9vR0hLwUK6rw0xULyKFgXX+py3rMF5BDNbVIcrlw+f0YlXJdGFNc8/pnGWqqgDXBAbzpimV0mqUMIkEPrqaaPNa2I5m6Ta3vfXw///D9beJZL5XtRRbUKT6lEqWKikQt4aEj5EXTDfIlBaOqIHk9yKHwbE+UbQoPCu+OptkZW0a1ijI5OdtYbqv3TZ4oc+FnJ5soCjmlQNAdsLNG50J/qEY2Lu+9GFmS7WQPi9yH5gjnaU1Kcl4pEPYIEmx5sg5nBImynv+KVmlJTJphqT3Wwt82lptKfE2JqhGeduE8EJGG5Z/8I6LX3dD2O90dpjpaT6Kq2izCZ4WMpxcbzstkwOWy22ctkM9lnHckyipv0Bny0mmSqIX4omyi0kaJsmrZZDc/b79WHR+3PVHeuirttkF4DiXq2D9+ngN/+HsYmmYPHAGvzGrTWzVcT6Kmp0CW7RW0y+9Hr4gVUqXJWO6WRDtUTa0zljdme2gtSNT4d77NyP/8e/LbtorstujsYpRWloc6vfBSBxaBWBkWnpzp0uy6Ru2N5bX7NjyRZ2Qyz9BIes794+xwXkdt/ynDHJAtomltUDqUPmiHvlaaPjZLibLCebW2BVoqCyCMpTDbo2F9XzslSjHE7/DWK1EeuZadV2z0RNl9rFzCFQzWlLYmZbFVnwz451Gi7HCemURhEpZWnijLWF6eNAf07h4kSSJyww0YlQr57bX0dqhTojw1JcqlaPZ9BnCFQmjFgtiBXhNeLEutsa6jpRxY1yvgc8+pRFWO1irXV0ZHqY6L+mCegf6Wx1sLBy0zf32cdp6eYqkq1J1gSITDZdkmqIauoxXyuJoKyLr8fvRyZfaCqC40D61JVCTo5a/+y7VctbGX996ydlY7LQJe/8xsG0oyNJKmUlHRq9UG+4KlYGilEqWKht/ntolZ1CRk2XwVo1rF5fUJ32Eh37DptzW+uIJBYqYFAMC7fAUgQnq5UhWXJNmE2N+08LQ9UeaYZamWerVKoVog5J27vIEFn+xldWQlq6Mrifk7iXjD9qKnOEd2HtT6fsMiSCnYz/kKc0yzyO/KiMiWq6gLI1FW37H6UnOJg5YkKplsmAsWi5oSJcZhVdNRVN2esyx0WSpZbpHhvEwGORK1F+5LsWScbTjvSJStREV8dhrpQsocWCEzd1slSkygpX2v2ZksysT4rFo/AH6T1bcb4A1dt2vDaMWCPbH5fW6W9YRwyy7b4wBi9eHp6rIzilyBgNgDT1FmZefJLhmX5EI16j1RJjlxu5F8vpZKVGGnMMpnnn5SnKdjdnVyl9eLHI22zFJsh5KpvCwPD4rK0y2VqPmN5dv3iwnbAPYfay8R2+G8aIc9GGmVxpCnTaJmDtgFL61BPOj3EA547Ow2SyWTfL66/dUaSVSuTXjBSpMua/VKlBmKc3lQTRLlczcqUVVVRzdX/FAL51n+CqlcxhUI2J61+t3tobaBsbfuvNZk1Wqj1/rfZO0er5rh4gYSZSojloJWmTT9GebCI3rDzQBkN7/QcG47bOIO2iEql6o17CsnB4Og60KRUcu2GgO1+1ZUKg2/y6qw3C7EWx4eBpcL74qV4lk1i+V6B5a1PN5aPVshk7nQjuBWs+JeWCE7d2enverXza1MmqvwSz4fekVUz/a43PY+bjUlyvREZcpIYNsULMQiPv7w/Zdy86WDs9pp+eis+lqKqttkLJcRCpKrXokK1rxHzSGpTrNwZLpQQVeqSB6P6IOG0TCm6HUkKnjRJnp/5WPIHR3E3iJ8OtWxMXJFhXDQYxNlX5MFojk7zw7xVysU1OKC/FAWPnnl7/DJK34HEGpRLTuvhEty2WNnM2rheNEWTdfMorHiu7sDMXuvTLck25t0F5QyVVWfn0SZfcfqS0bVGq+tcJ5F6pvngu4lbYcFNRJllTkotinF0Bn2IVELIS8EhmGgZtLCCnICGdZnG85DEmV6okI+e7CZypT53w/v48f/P3tvHmzZdpeHfWvttYdzzp2H7n7d/WbQFZKeHggZpDCWDQJscHBCUoSkXEnZBBJThcF2IpvYhSuEMoWVlCsVCidVqQx2hQpFME4RoCgTMBGoQAgJMOhKeu/pqd/Q0+07nGFPa8gfa9jT2ueec/p2v+4n/f56r+85++xh7bW+9f2+3/f7rf6qMkf1z9FE2YifehrB2rpmolpeP0Dd88S/YFmxK6A9m+qaKBZQvPDcDl6/O8WrN8eQRQFxetoAd3bnKNO04xMFACFlRhNlAEBNOBrUTOvqEV/Xu0QrDGYeEAVo1qG8d9TYec4Lu4tbi9awGW/MF5ZbkzmPT9QnPlMtbJ99rZ8p4KenGmBEkTuOLHJEQeQWp+1kC5cGe/js8SvIii4btLMe43iiPVJkbWJjm3oMtMt2p+UUo3DYaWLqTeeVMzDKsBaOHIiKoiYTBWg380lagAXU/ZsFDyRPEQyHLi3UTqdYUFG/poU0UUEAZlK2IrPsXb/FQXHPaIxMK6ToyhWEV664DYKNytRwoNN0hCEQqpHOc15R0xm45JUVAqoNgh3r9rpsRWzdB6se4uwMwfo6kqefgeIck0/9IQhjve94dNn06fOYQ7bDmUUaNiE2739hKtXs9bCtbfDTE8dCAeiAKBonkFmGQhaV8B5w6cx6Om9rPW5UUZ0XtqLTMlF3TlLnhTg9nbrfd+eSWG+iWUdwvGmY/dNxrpmoOK4ZpVbMuWWibCHL9rd8CM9/5J8guqaZGpnnGM9Kl8oDtL4rCqkrxpFpChDSSfHn2RRSyXPdyuuRsNixe2vhCIUoUIgSMz7DiA1725K0DTcrQXvFXB3s6EKVvcGu2zSdGRatzyPKht0cOYPRjtnmUBvAGhAl0hTi9NSbyls0gi2bzjMWOT1VhCyguLQzxI3bE1eYNctK/MrHXnUbz3aoPIMqCg2iKAVhDKr8Eoh67OJ0UiAKKQZxgCd2h4hCil//+A385iffwC//blVFIZXCn33+nvMDOk8TxWrmfNHVawivXEF59w4KUx1Ur8JwTFRPdV76mapjuZhNkRUcYa3E9Ovfq3eU/98fv1mV2O9VL46b6LKsw0QBegfrQBQhIKyarOrtE+aFbS/TDra7BwjhXuzy7h0ncvdeq3WrZgl2k22c5KcQsnlfZKZ1GZZpc9S9YaLyQuC1O1M8d3UDlBDXGsIXYjJ2Ezsx2gJZFBi0dptX164gE5nTKNWZxK31GEUpkebNCkeX7vFootai7qRe7WQrJnRWzjBiA8RBBKH0BBazprAc0Lomu9DYST5kAQIpQKQAHdTSeS0QZXV6oYeJmledF6yvI7BjK69ar9hoWxyUZjfLNitBfTBag8ybJn3Vjl8fa2BaetbTeXWvKC45QlK7J2YBTEWTiXr/O/XO/+Of9nepl2kKOhhg8Lxe6FSeI7x02esRBWghL4kilLcWAFHTEhGj7nmFlomyPlDmetjWFiAlxHjsnlNdEwXoTZEqCpRl0QCPTlgudIXxvbMc+y3h+HmRRAECShyIqnvQTc25tqvzAJPOK5opqQ3DRJ2OU+0DFYZaGA9g/PHfd5+r7AmaaTJat8/IOdZa/UGTiFXC8pnul+fmBMNEZZk+5/PcyvvC2WWUE0zLWW8qDwAGQbP1y9Rj8mmrfS8N9904Pcv19S+ezjOFGlYTVSu4YJtbrpAle0k3UbfWEauEbW9kdZ02W5J4RPDvfmYbWSHw8hv6s7/6ezfw87/5En7jD17rfBYA+ElV1APo+dfqch/n+KIDUSeTHFsjLSAeJSH+xl95AQGtdhpWiPp7f3oLP/1zn8Tv/Ilplnj3rnbtHflp4gYTdfWa9oCREsGZ1gfVd/3naaJmNRAlZ1OkuWi4xb7w3C7WhyH+4PC2V6tVL/fNWtV5gJ58uSih8kxPRLWdlnb+nXWYJFHzHoqffMqVrLfDisv50V2kL7+EV37sw7jxUz/ZETfbqJerb8YbUFCdflMyzxu6DDth2knFLgCXtgd45ol1vPTGaSPdaUMpBTmdOnBBa8epM3VAdb+sXqnOBu3U0sAVSxY7sGB3cYCm+Gc89U7qvtYRszI17U8iCFgWrJnOAywTVTa8nqKQIjGptAaIalXo+VLM85gopRT4ybE2oTQLqu3jZdknoKaJMudQHGsQVU/90jjWqeaaIeusnDU0TkPT/NouFkCdiZqilByMns9EPXd1AzsbMT7x2bteGxOZzhAMhhi9tzLPtS7iviCEILx0GcXtW+c6NY/TosGk2GdYWmBSY6IArWvpZ6Is2M8rHy0AlFAEJACXHEdnGRSA/a3zK9La1zRKmEvn1bshZGO92JM6E2XmlmIyhVJNNsUK2CeGwSJRhM1v/GbQtTUc/9qvOJAoW0yUOxdznaUpimmDjEEUVBYHaepSeUC1scqzxY02fWH1TONighlPvUab7nxaTLKdt+q//a6dd+Dq6Areu/9uN6dMcv/1dc5lMJ+JAvS7xc/OtFP5Z3R3gsE7Dha5VG8QxkDX1lyKsC+dBwDveVbP9X/yil7jbDbgY3/a3WTIokBm/APtPEnj6EuaqMcthJQ4mxWuIgXQgOQn/9MP4IPv1lS97Qd1aJor2tQQP7oLZgSyvggaTNRVl1smRtRbZxP6qvNknoOfHDtndECnL9KiSZuzgOLS1gDjWemtxqin87JWWTSgQZRmogrHxrjvDgZaw1AzW1NKaQZnaws73/lduP63/8ve3brVzKSfOcSb//RnACGQ37jhtFTtsBPQkCWOgh+3XLxl3iyzdtV5pQVR+kUfxSH+vW/Weqaf/Zd/0nF2V0UBxbkDwu7aS97Q2AB10bcBCy0mCjAgqii0jxGlCDY2QMKwoQmb8RQKypteSFpATSqJGU8xZEPEQQRFBADVEpbrcTBJS9fl3kbEKGIDYILhoDedZ4XldSbKMp0zj05PTqe6mGB7W7OWlAIGPIZ1EGU1UTadZ5v51jYYTlBaq9Cb8bRRAZXA+GJFdU2UfmZ8OoFQwqWygJpzt8wb10UJwYtftoc057hxuzWmTJk+HQwckAHQ+G9fRJcuQeV50yBzPEZRY6eUUkbTU7s35hlyo08LHIgywPv4GHJi9VJdJkpfYDOdB1SpeVsAsbckiAJ0/za7EblZe2fSiU3n1dL9Brjk5m91IGBdyycGfNEoQjAYYOfbvgMyTTH++O8BaArLG9dpNYpGZxhHTfajzkTJdOYAXf27uWG9FzHa9IVtSnxrdgdSyV6jTaBrUeJrNzMMh/ixr/1RfPCJ97v3fZobPeE5FgfDRIv2O5qo2pzNNjfNHPsFzA4/DRCCxDCrqwbb2HRMlAWtbWE5oB3xA0rwqc8d4fU7E7xxV1//jdsTvN4yhL7zc/8cN//n/wlAjYkKoy9poh63OJuWUAquKs/G/tYAT17SL48Vyr30uh5Er7w5dr2e2jvEegQblSN5dPVaNfHYxabBJnSZqPSlz+Hlv/XD+Pzf/3tQZYnhV+hO2XI2RZYLp6OqjhFASIX8TjfN6EBUlnWq8wA98XKTzqvrTgBUYuRa6xdVFFBlifj6k9j77n/XVbX5Yu0rvwoIAtz9F/8X+NERNr/xm0HiBMe//mvez9t03oAlWDcTX5uJUlnWmMgrUaKeXCx7OEgYDp7axvd80/O4d5bjJ/63jzvzP6Ay+bMLmL12wnlHPNruS1YXYTtrjHEOleduUiOEgO3sNly55zVDbafzMp5BQelSfwtOqGhVdur/tovmRq0LfMgCxEYfU2eiFhGWA8AwDrxMlO26zra3tWdTHINYrViNEar3ZQSA8vgEJE5a1V1mbJrduFIKs1baZCBsiqZenaf/XpprYUH1PrSrAuvMnW2Me7vV5qYSJuuF2Do42wbefWF9suqg6dY/+1/xhZ/4cceuaTG7bDBRtjjAjkFaT+dBl5RbsOurztM/WjSYKKDaEN01Tc73t5ZL5wFaXD5NOZRSuH1cvff5xNyjBhOVmL8ZEFUDOs4xP21qGNfe99UAKj2lnM20nqnlVWTfcW7mzKQDogLkpYDgAjLLGkyWLULITTpvK+pWDy8SO4kG0a+NdTP5PqNNoGKSreN+ZWXSZ85pQFRhNo6tdGU7KCFYGzBnqmvnuzYTBQBf+K9/HNlLn0N8/UnXT3DVCDY2IGdTyLJqfG+fbT0GMcMLz+3ixu0JfvKffQKANngFgD96qZoDFec4/ddVVworfSFR5IDh4xxfVCDKdlGvM1E2rAnd3VOdj7dtEt64O0VmOsrXF/J21HePbHu7NvHlCBlt+LMMWtV5YjzGG//9P4HMc23oub+PrW/9EACAT6bIS+GZUMyEZTxrrIcN0Ern8W46T+9eS6iyaLyQQLXTrIvLrSh0Hoh01765hbX3fiUgJehwiL3v+feRPPssyjt3vO0yKuPEgZeJUkp50nk9TJR50b/jA0/j277mSUwzjpffrPRJ0i1ghokyjFbIVUMgDVT3q7Dp0Bob5Ko6JzqdR+IakNnbg5xM3LVa4z6fJqoSlhsH6LpfUh1EedJ5DkTV2Y4aE6Wr8xYXlgPWEsADok6aAnGaJBWIqi3qHWH5yXGnAMGmAy3TWcgSXImGoWGs9HnV03kVE6XHYkiqSZ0SijiIUCgLeKvrumQsKeoNl4EuiHri+38A+9/7fdj6C34nZxvO4uF2pbMqbt6ETFO3e68q82rjwtxr1zh3aEFUJeTte89sOo2VwsNEheCydONh2XQeoN8bqRSyQjSYqML4cjU1Ufq8+bSr64kYBQHAzbN179ely2C7u5h9+s+0gL6lZ3LXaTWKBmDHnvEJAOlYVzHWmSjimCh9XlstY9tFw4KoGxMNovqMNgHNngMVE1VZmfjnSTunpKaK9DwmCtC6qElbE1Wbb4JBE7CtffX7zz3meWHfWTE+q3nK+VOP3/9d78L73rEPqRS+9l2X8Ze/Tuux6u1g0s99tvEd61ZOo2il1l2PWsxPyr7NwtobbK91wdBeDUR9/uYYSumdgFQKr72uK8bmgShCKZLnvwzB+rprvQIApMgRDZuTRbtcd/aZT0NMxtj5S9+F0XtfBNvcdK7IWoi61hnE9hi2T1qdGnfi3zRDHuQIadgwnmNGWK6KolFGXj+OqLEX7aao58XWX/gWTP7wD7Dz7X8RwXCI6ImrSD/9ZyjefBOJaYRpo+4+XYk6q99WRaFFqvUya+dOrF9Am4qo75aeMsxi3QPM+iUFLp1n/FaEaoBMoNmoOWQj0JpuzqbzTsY5ZJ41gELdcDS+em1uCwrHRBmgNqv5JVnNTcBko9rKPndrsbAxqp5fGNbTeXM0UR5hOaAnSp/dR3ls2gpZEBUnIGem/1stnWdL7nNZQEmJ8vTMibZtWFbDgijnxVN3PpfmvMIaUBpV6TzElajaRhLEKMuuhsyCinbD5U4D22SA7W/5UOfa22HT1WWtQs+m9sTZGcKdnaqn4bCZagXg+s7Z33Ul5acngNlo9WmiwlI1hOWA9orKeI47p7YZ8GrpPEBX951MClzZGeLmvZnTJvmq83wgihCCOAogczMnWaaXEIze/R6c/uvfQvb5VyBns04qD9BzKAlDLTYe+pkoAEid4L2WzjOArTCi7e3YXz18XuwY8PV506plcw6jNXQNhg0T5dFE1cPOKU7CcI4mCtC6qNfvTiGkrBoQ1za+a+97P2afOcSl7/0+hHv73vu6bFR+aKeY5XrcDiI/4BvEDD/077wApRQIITgzgO+kZmA9+aRmqa79yN9G8tzzjikjUQTFOZQQK1syPArxRcVE1Vu+tMMyUUdnGV5+Q0+KX/UOnSKzIKousPTFU3/3v8K1H/ph/VlrDFnmnR2/Lde1KN9W+yTPPY/B819mXgb9IpaGRWhXR9gJxZUL10WWLp2nheXtVFVIGZSSWhPSZqKG3XTeMkwUAAzf+RV49qc+gu3v+EsAgNhU6BRvvtH5bMpTBCRASMNGDzQbrklynYliDKDUtX2ZOSaqWmC2Wm6/QC2dZxZku6NjHBi0hOX2nhWy7KS96v5iKs8bujJrOGp1UZPSVgt1J1b7G1V1T+WQbMFJFDcFzHZ3ftvDRIUBrdJ5yaBqUNrWRHlsNwA9IRZcdkTY9XQeoMcXNRuAejrPLhKlKPUmQMpGwQVQE0nnFjhW7Js7jtRgQtVAlGVuuAGEIW2CiZjF4Mqk82pM1N7mAISgkaYCahVinj6Y88IWcNiUrRLC3V9rbWFB/aimV3OsivU8MwCgKik/cX5R9Urf+jlGXDXuN1BV2t45SREy6p3bzgv73rxiqqyev2asOgzQbDqW63OxbVfam7skCiDyrgB6+E4tT8g+91kt6O9Z7OspnrYOx+pCXWZg0C02KfMUBARbK4KojWgdjAQozHt0da3rrVX/LACcFfq+zUvdA7UCCGGZqPNBlAXi05R3HMsBIHnmGTz14R9D8syzCNbWerWqy0S988IijZIBOK3w2iBEQElj3s1eeQWgFMODdzZSjbSVUXhc44sKRJ3WWr60Y30QIgop7p6mTg/1wXfrSp3xifF2SfqZqHY4/5Ky6IAoQE8Q1uKguKn7Rtmu7kC10HMzQXc1Ufr/5WzmGrS677p0Xoac553Ks5AyMKMf7mWifOm89cWYKEAzMq7/11Vth+AHUZX7dKWJqoGorLsb1ucd1arzmuk8oKoUqjMr0lY/mTSXTTd4mShzz0pZdASuw1g3uD0ZpxqI1hYZu8ha1/ZJYZgoj9A1CiIQkI4wdRgOHSBhURPQtNN56zVNVBQGYMYegkQRSBAgWFtvOBoDmokKKEFAuyAKqNrC2LDpvHDbMlExAi5ApGowUfXeeaLmDF+PSljeBI51AW8k9LiRNTDkqvMMm8haLT2SIAb3VDOGjGJnPemk89q91xYNtrUNEAJumn6L8di1LLHWFhbU15kGe04qb6YRaZKAxDHKe/eQv3YDwcZG5z2z9ywsm/cbsJqoEndPUuxtJp22LovEaKDP8yUDop68tA4W0Ordq2vabLo/9Yuj44i5zU19g+aMSu/d05V1Qz9bQ+PYvdddYbmpTLXse31jFVbGuRvR2kItX7y/T2ijx+W1tf5qTev9dprr+dFtgvqYKGZBlL6+RUDUWs3mQBaFLup4wKyN67xwetrrE9UXlBBsrUUNECVTzTzW1yigpm19zG0Ozr0zBwcHFMDPAHgRQA7grx8eHn7O85lfBvBLh4eHP/sgTvQiomKiumCIEILdjQR3TzSlvbMR4wnT2d5Ha58X9gWnZd5hMgBTrmt288WtW0AQNG0K6mCG9VPbKuvu6pxPVKqZqPWoOSkzGoIJPfG3NVH2d22fMqCyN1iUiWpH3SuG7e5h65u+2f0t5WmtkazVRNXSea41TauKMArdZDtz6bwaE2Vb+tSaS7ergmgtnRd0NFFmUkaBUQsEE0KwvRZjfNqtXrICf+srNo+JooQiYbFL59lJeD0cYVwY7U/YZKJsNZ69rs2GsJwiNN5SLlW5ve1K8i2oLUrZYaGAmiFkKYAai8KNVQGrgShA37d6lVzd4oDXnOEb1+xY0iYTVdeehIaJErX3xm4qXHPlNhMVxJDgAFSDiQK0LurPXj1GUQq3oam8ipa0BGAMbGvLPd+6saoFjr6ycOsTBTOeA/O7hBDE15/U5d9KYfju93R+027eQq46wnJbJJJmJd71zGqtPiwTZf1+ruwMsDZgkKfdajAaxwAh+r0MPUxUGLj30ieAzl+7of+/Zy6hUQykZ+5YjWObOa+YzMDQSufZBbnMsRWvpoeysZNs4056hBEbzk3nUUKxGW3g1DBRZ8UYURB1npE7f8du6/uzaDoP0NW4SVGARlFvhfhFhWsnc3aKmdDM+qIgCtBz7+dvjiGV0pKYNHUSk3r4TJMfx1iEifpuAMnh4eEHAXwYwEc8n/kJAKu9wQ8xrNjNp4kCgKcvr2OWc5xNCzx3ddOxPSLzL+TzwtH1vPQuWEnEnMVBcesmwr39BlInlIIOBpBm5514aHNAV661d9N2oRJpilwUHZZFM1F6ca6Ld4EqbVLvt1al8xZnohrHNAtpefsWbv/v/4vrUQZUTBSgdTGU0BYT1U3nAaY8tpPOq+7RIGZIoqDFRDVLyB3Q4Kq3Oo+j9DKJ66MIhdW31MaFdY63JqgOJPSUSidB4vWZsYCEhU0m6spO8ziNdB6jCE0LEAcQd3ag8ryRni256AANoBKatx2H+fE97ZGWVOwJoBf1OpixgKoQRaPRcz3awvJZLYXpjmN+vs5EkSgCggDKgKi2JsqN8YB33jcrLr9TY6Nsg266QiUT29kFPz7WIumasaozKDTjcZB0mSiSZ9rgtgZMBl/+Dsdm2e729Wim87rCcn1giXc+Pd+eoS8sE/WaKUu/vDPE2qBieuuFE7YhMrFeR56qYVgmql4YYFKU+aufB4De3m4kjkGMtq29cbS/VdrNUFxnovR9CLjCdrJaKs+GFZdfXbtyLmDZjDdwmp9BKonbs7u4NPCbMQPVJsOmndtMmy9sOm88KyGL3DFuDzKqHqCnjW4Zi8bWWuwaUQOAmKXe98wVEnwRpPO+HsCvAsDh4eHHADTk/wcHB98DQAL4lQs/uwuO2ycp1gaht1wTAL7hxapn1vNXN9zAsRM+WQpEmYVGlt4FaxDrct3ybAw5mbiWEo1jDIeApc2jNm0eaMF1nnb9VsyA5aZJbOJL53HLRDV3Tc5bqC4snywnLG8HIQSDg3e6/7dpPSEFClliYETFlFCMwqErFQaqSp32vSdRWBOW+8twt9fjlibKCFKtsJxSqIAiFKphGglUi7IEb/SuszGIGJjgnXNjW1sgcYLslVdMA2gzYTL/5DdgSZXOM1qw9Wjkfp+yJojaGEUtl+i6+SJBRKS5P5aJ0osVPz7G+OO/jxs//Y8gi6IjKgdq/d3Klibq5Ljhn2Svd8BpI21CCUVIQxS1dF6HibLC8nY6r84WkJcdAAAgAElEQVREGRBVZ6IIIQiGIygDXDvCcjvGqehcW71oxEaliVoeRIW7u4CU4CfHDiwCtXSeh4myPnG0yDuVaYN3vKP6nAdEkVo6ry0sd/eBSrzzqdUYmLozeEAJ9jYTrA0YCO9qcAB9z0iPYWQcBWDKpJRr4IuaPno2DWhZzXbQKNK/q1RvOq+cGq1WTV5hQRQTCtv3zUTp71+dk8qzsRmtQyiBG+PXUcrS9cfzBSUUURC5tHO7+tAXFkSdzXRT5/o9fVBRMVFnTj+5yLnaqBfeKNPv0gei3i5M1CIc3QaAuv2zODg4YIeHh/zg4OA9AL4PwPcA+AeL/OD29hDMAyouOvb3mwu+kApHpymeu7bZ+ZuNvb01/B//6rN47fYEX/2uJ3D9qjHM5HrQb+5t9X63HWUCvAIgkiXWR3Hnextrpmx5ovUmm88+1fnM65sbKF/TgOPS3lrj75f31hEqDiIlBlvrjb/JrQQvAaBmEtwcjhp/X//C0GmihhvNvxXBE3gVACtm7t+PTPXJpacvI9peDUht/J2/iZu/9ut47ed/AeHkGPv76zjLNWjYHFXXtjXYwNHsGEop3FE3sRdpsLfRuvevDwbITk+xv7+OQmiNz/WrW42d4/72EG8e3cXW9hAhC3Bk7selpy8j2tLHOoxCMMGxt73ROL4YmJ1ywLE27D6/rY0Et0zqbLTZvP/HX/PVuPvbH8VwchcI9I2+dnnXS/OvJ0PcnN3G3t4aSqrP7+krl3FPaSYrirtj+akr6zh89RjDhOHqE80FIzYgavfyFkb768iuX8EpgJHM8OrP/g/6b889i9nV57rXZMDGcK26XpHnkNMpBs9Xnx9vbeAMwEixzjGSMIYgAgnR1717bR8btc9El7fxBoBBoPR339Sfu7q35441MsBssJk0jn9jYw3p2SmAEbbWm+N2y7KLAccTlzcbTXgv7em/RUnovjOx53d1D+sLvtM2ptefwPj3gDWZQcoKpNNsiv39dSgzBq8/Uc01pa284znCtea5b3/t+/AGIYBSeOLFr8CwfU+v7OB1aOZvZ6M51taMuHpzneGFg8srpXqupZWtxZXdIa5c3sTu1tCxmntXdxDv1p7DaAg61Zq/61c3sb9bpaq31hPMzHuxtbuJ3frz29lGajZnO09d9c6lt9dHSAEwJXDlUvNa981zZPb4+9uNv3+WBWBC4fru5YXnaV+8M38Wv/wK8MK1d5x7nMtbu8Bd4LVCpymf339y7neGYYKp2fxde2ITwTl9Dp+9rsdXLhTAOcLNjZWubZnvqJ0hXiYEdDaB3NAM9+XLi/tuXTM9K1UQYGekIUbSmiMBYLa1hmMAG8MAm/fxvN7qWAREnQGoXyE9PDy0b91fBXANwG8AeAZAcXBw8PnDw8Nf7TvYcatK5kHE/v467twZN/7t7mkKLhS21+LO3+rxH/z5L8MnPnsX28MAR0cTxFEAMbM+Pmrud+thjfciWQJKdr5HocHBm5/WzVj5+nbnMzJKQIocVEmUedn4e5EVrhKLB91rIowhNTYJRASNv/NcITDpvFyg8TczP2F299j9++xIa2JOMoAseP3dSBC88D7g538Bxy+9ivjOGHdTPRETXp3fgA4xK9/A773+SXzko/8j/lr6AtYAzMrmeQoaQBQF7twZ43ScY5gw3L3brEIbGdHr5145wt7WAOk9vRc4SRVIqY8lWADGObKpaBzfTnSgAkR1nztRyi0ymSSNv4fv+Urgtz+KG7/+Wxg/rfvCnRylIKTb8ZwhglQSN27ewb3JKQgI0jOJ6dg4M6Ps/PbeRoxDaL1E+2+ReYAnE47ZnTEKI2i/+0rVz0oUJSjQ+S43u87bdybYN8L8wvghqbUN9/lc6YU64bRzDAaGWZ5hYu71WSqR1z6TZRrkTe6d4c6dMe4a0Xs5VbgD/TlpmMXTrHntKh5AzW4CaogibT4vVZrFKOAYn81QZtXulhtm6M7R1H1nYsb0Wa6QLTmmy4GeDu+8dAP5G5VfVHr3Hu7cGeOeSRtms7z6PZNWpkUGtdWdn5JnnkVx6xYm4Rqmrb/lqTFH5Qpl2pxLspn+25NXhp3xv2gwJRExioJLPHtFP2cKhdAwSseTEoGsflOyENRsLGeTDHfqLaKUdMUN40xA1s6VrFULccoG3rmUm56IoeJIZ0XjM7lp6pyejjEEMCkVcKd+XgGYEGB8/hx/XjwTPYe/+VU/gOeHz557nEhohuUTN7SR6Dq25n4nIhHOMAELCO7dm/Z+zgYx9/b1W2N8WZYh2Nld+tp86+F5QQcDZKdjTDd1dfIy3w8Njn/19RNcJfpd4EF3rjKvOY5vn6C4tPrzehgxD4QuAqI+CuC7APyfBwcHHwDgepIcHh7+F/a/Dw4OfhzAzXkA6q0M6xNznhndVzyzg6+oCTQHUQB1aoWSi6fzCGMAY4gkn6s/KZ12pEtBWzFtLAuPJoohMakinzcIHQwMdU47mihW00S1c+yEMd2EeFwDLOMx6GDQqa5YNsL9SwAhKG9pTZRNddXTjetGgP3JN/8UADCe3MMaupWRNIp0DzYhMMtKr/vvVs0Uc29rADGdaM1F7Toko2CZ6giVrUaKBNxLZQ/iwIm421q50XveCxJFmHzqk8iv7yKi/WJQW4p9nJ1iXE4xDLUuLDCvJg26Pd+ump1/3a3cRgRhzqkSlgNA/vlX3GfiIgXxpPNs2rKoaaLaRptAld5JlOcYQYRJOfVWdtX/31ocTJ2wvBrDNtXMg+Y9o8MRiJBgwqOJYvZ5dfVezpct5xDTae3dWF0TBWjdm9VBkSjqpvNq6eU4pIBSYGXh/c0n/rO/AZnlXr8cJywvVaPNDgAQ0yJnsHjNSyfWhxH+2x/6Oswyjh3DRsZhUNPXdd+9QHJAqW46L2RQreIGG/XUbl86z34nlLwjLHdFAS2bCBuSBWBcNDzHVglKKL58+/mFPrsZa2B4eKxrreal8wD9fkjiXxN8YfW7905TKCMsfxhBE/2OFGU3PX5e1O1lZGrmI68m6u1RnbfI3flFANnBwcHvAPjvAPzIwcHBjx4cHPzlB3tqFxu2xPnSko6+ScSA0i9uPjfiBJH0C8vtwsydkWW3WsWCo0QUHQFnHAUNd+p2kDh2fYl8PlFOWO55KYP19SaImkxW1kPVg4Yhwr19Z+ng9EK189syotA/fPNP9Gdmxl6iY3GgQY8sckwz3hCVu2OtxWCSI/vFn0P68kuQs1mnZY2eeLul4w5UBcIrLB9EGiADnkUmjhFeugx+dBeFKBD3VOsAlf7iOD/BtJi6Kj4iTf+4oNvL7oqpGt0cekCU1aOETU3U5JN/6D4zFKn3mpywnNdAlDXarC16djMRS4+uKoiQi6LSEbbAL1nAbNOypJw1QZQtekgK2WhADFRjPGCiYYwKVCCKHx/h5b/1wzj5V79egahVNVEAyqMjp/2Kr1+HmE4MqOeghDTAdxRq0E2gvG05wp1dxFevdv4dqFkccNnxiSLG3Z2x+6vYGiYh9rYGziIhjswmgVJPabp5/hANI1hA65Ysg9WeW+pFBn09Cu27FCre0US5ebTwz8eSUQSi+y4/yLAgSkGBEor9we7cz0dBDFCOMFzseYWMYmMY4syY27aB6YMKOhhAZikKLr1zxbzYqrXFknOsRMgXiybq8PBQAvjB1j9/2vO5H7+gc7rQSHPTE8q1RVgOCCVRAGqrTZYQlgMAohhRnvYwUaaXlu2XNfKAKDN5RrLs+LEkNRDlM66jUQxMJwCSjk9Ug4nygai1dZR37kBJCRACOZ0g3O0KXleJ8PIVzP7kjyCmU2c6Vxd1P71+HQBwL9XpliLtesLUzzuf5RBSeYsF1gYhrmW3Eb/8Mdz41Mf0b5mWAzYEo4hF18SQEIKIRsgod6X/9UhiVtkJeMYFW99A8doNiDxDNMcaw4pgj9JjTPkM+0Nd3UOVFQx327A8fVn7+Fzd69omOFFv1GSi6lVkI5Gh9AnLncVBxX45o80GE6WPnQgfiApRyrKqaG0zUc5s04AoniIKogazxIyjetl6bWy/ubhoWisA1RhqVzMCVal8cOsNKM6RvfKyntyDYKVFKdwznkd3boOfnekmxju7wMsvQ4zHmOUcw4Q12MeAEiSq6mu4TDSq89qA3ABZ33XfT0RhoDcJHvbdspwjD0uaRAFys7los9zW5iBY3+hltZ07u+SdijDXxN0a8LbeK8Eo2KxbJPIgY7NmH3NleKnDkLbDnlsULQ56t9cTHN/W0oeHxkQNBpBvpCgK0WhftEjsGzbz9nEKkVJ3vM5vOFuKtzmIepyDC4kP/9Pfdb2sAODS9nIT2CBmCGzabAmfKABQYYRIns1louR0AooeJiqpdmUd994oQCLnpPPiGLClwh0mKgQza7OvZDZYXwek1EaeLIDi/EKYKACIrmgQVdx8E/mGcZiug6iNJljjWdc1GajKp2fGvXjkSeclUeDYIhu2gawNwQiYBELSBbohiZAFwp/Oi2rpDk/FjG1ITWcZ4mF/ybUtp359+iakki6dCQeiukzUzkaCf/QDH2i0FXHnrLhW25m0EI1jkDiGqvUtHIocMx8T5arzPOm8GhNlncQj2V0I7LMUaQoSBCCsZebadiwvZw17A33JGuCXrdfGuunHhfS2fQGAIOreL7sY01PNqpVHR9rwcTBYSYhNkwTB1haKm29CTCYIL11274eYTnR6uZXmIoRgjdrUxnLzCGEMilJtttmyOIBJqQZMeb65esRhoAXcnvnBPsMh9YOoWR8TZdJ5fak8oHrPE9JluSILqvqYqIAi8lTaPsioG3N+z5efn5yxILjt/zYvdjZi3Hut23z4QQZNBoBSUEWOuMc8tC+iMMDuRoyb92aQaVAdrxV27cmnKSZp6TyxHrd4W4OoaVo2ANTaIFy6LUJSWyyXsTgAABXGRhM1B0TNphpEjTxmjGYXGHl2ZUnEKibKR5XGMYhxlZ6fzusOXOuYLMZnbhFc1WizHfE17V6ev/4aipGmwuuT3m6yjbVw5DyTVJ9juTnv2di0DfEwUUnEnNB699/+Kxi98CKia82UCTfPJhTdxZSREIRO/em8mNVAVHdRtPqPYJojutw/5mw678bZ6/o67IRl0nnKA6IADaR8waRASRiEVLBV9Ovvez+mf/pvsPZV78Ppb/4GhiLzjkmn0+MeJqq28EnzuYh7QJRZ5GWWIvCAFBIEuj9aZi0OUuwOmosqNSCuw0S5dJ6HiWI2nddd2G1aKBhrdpPfO4JS/rTaohFdvoL0UBPy8bXrDXA4y7nX0HcNZrwsyUQBgIgYQi46TJQyTFQQXDSI0p5jKuy+987iwgOitMWB1US17BhMn8B5IMoCLx9As5o92iOv4IxgKLpGrA8yRuEQP/je/xj7g71z9VBAtckI48WZw+31uNJfPiQQZc1gGffboZwXl7aH2uB2YtYZj6mt3Xz+0v/7Gbz62jb+m+//wH2c8VsXb2sQZduqfOOLT+BDf04zHMu2RUjq2pclQZQMIzAoV3ZeD8dOzabaEt8jKLU98CKPPiBkFAPbJ803QK1AU6j56TzPTtP27uLjsWv2e1FMVPzk0wCA/AtfQP78l+t/q4E8Qgie3ngS/+ZIL1ChERm3heX2vCdjzURtePRBGgDrexReutxpfgxU4mX7O/VgJAKCMy8TldSE5f50nr5fg0zM3RlvxZsgILgx0SDKtYcRBkSRbjpvXjDJwUmAgkvnkn3lr32/PpZSOP3obxsQ1b0mm7bMG0zUCRAEziwRqIEozzpgr1VmGcIexoUmCVSeQ0iBTGQdIXBgNFlFK13kCi3mMFGU+Zgow5wZOxF+cgISBGDXn+x8dtFogqhrUEL/Lp+lKErpdaMeEguilgdvMgoQcd7R+1gQRS8cROnxLVkXkNi5ZeCZ1+KQIXSth1qbt719gBBEV/r70RHHcnWvx4J8WubGsLR5L3hAQADEnoKHBxkv7L1r4c8yYvysllh5dzaSTieCBx2WOdKa3uUtia7saBB1du+scbx6kJr+7c2jB1+1/6Dibd07zzZPTCKGq3sjr4bkvEjiwLEZy4IoYRb6WHUXQrswk3TmDC7bYZmoIRVe8Dci/Ttb15rD48YdBvW2L/OYqHHNaPNimKjo2lUgCJDf+EJNWN6cGJ7b1EDr6uhKBaJabI+dyG06b91TqVZP5/U9O8t2WDFzPQIVggQCoUe0q5mosvfY1vV3kMu5ICqgATbjDUilF6S1VjpvWRAVSI6Sso5hJmCahA7XNIjypJjtZFk0mKh7YJubDXNIx955Ts0u8jLPepkeGieQWeac2kethq3EgKi8BQxsv7WkUL2O5X4Qpa8rmRq7O6WgOEd8HyAqrJnjRteuu/GZmvHo0+gNYDVRy4MoYQog2iyLEpaJulhNVMwoIukHUXbxs15g9Ujiiomirb6c4f4+nvp7fx8739mf9rJz3sBzbMuIUF5ow9LWnGg3RMzDKj8qwYgeF+ESGrbt9djZRrSLWB5U2JRzLP29X8+Ly6azwsT2nZ2jibKFCEXpZ90f9XhbM1HLNk/0hWMzWOhli+aFsCJCVXb+FoXacZxmMwSX973fn6c9AIChOa5PWG53dCFXSFp94eoNiNttX4BmOk/ZRsoXBKJoGCG68oQGUYVOxbVBxp9/8hvw3OVrePPoHgT/MyjS3YHZ6rx0ohfiDY8+KIlYrw2BDQeiePcFpub18KWIBrVUoW9is8zNMJMIztFo7CRbOMn1Am9BFOeAkgTCIyyfF4Hk4ISh9FwPAKjhGoZnbyAMPKm4lsWBkhL89BTJ0880PlelQD1sAQ11C5Ms7wVRJI4hju9hyrvNhwGAlAKSAKVqXoMd53EhO+k8W63nq2ZkAUVAgEF21vj35KnViyXqzcLj69ddk+fcgCjfnDMw9hOrpBE5I0g8wnJpxf0XDKIiBlAoFJ7KUhrPAVGhdixXpFvVBwDJs8/N/V13bM+cxwKqG2eXhZd9Lw17RXvG/qMQ1rokWAJE7azHtRTpwxKWm3dNlt6ODefFlR39fNKzCRL4JScy0PeCmY3uJC2xswJge6vj7c1EmXReu2XKMjEwC7EKl8+zczMBxdLPREWKg0jRy/I47YFnsgKAga326avOgwZRc32ivBYHpnfSeAwxvr+WL75Innoaqiig7ur0Svv8oiDC1z3157CbbCMqFVTIGkxI/bxT0wJi3ZPOG8R1PZs/tWRBlG0hUw+qrM1B9/nVNVG+dF4dRJ1Xcr1Ra3L6xEgzHCUXgGSmqe7iEQjDRHH/JC2HI4RKIEZ3TDkmyrBYYnwGCNHRsNh7xjwp0CiI9HouZT8TlSSQeY5p0W35AgCEc/CAgLdBlEvndRmZAAZE9WjItgKOUDSfcdwCh8uEbdNE4gRsZ9cxUbkx5vWl8wamZxpZwVaBM4pQAGFr3ysN60J7NlqrhrXK4B59kWWnfGPIakjtArlsSAO8Es+xASN4F6XXbsaOy0e52os4/7fF069rw6jXNuJBhU2/xbJEeB9MVGGa1/uKKQpYY1V9bbZ91+MWb28QZdN598lERZJDhcvTqKUVEUofE0UxMCX+fSxPtePzT5Cx6hc2V0yUr3deiMD2zvOAw0Y6b3qx6Tyg6g/GbunWJn3prs14AyFXEJ6XmDqLA71o+Ywn4zDQjvHoZ6IKs3uVRd75G5F63PjYjSSqm216dGWbJp2XzU/nAcDXXHkfntl4Ct//wl/FUxva4qHgEkoEEOiOnb5QSoGKEiUJGuLweojEpMR42vlblc7T13v6W7+p//3qtcbnSps28fxGFISISn1Pgz5NVBwDQiDNNdXfrs4jJQcPgKL13lTpPAlGW2NCurys9zf3lAZs4RXDIBFyf+m8/UsgcYzk6adBCHHjq5z2p/MSA7rVklW+QD/7x7mZwi8YRNm5hXtK9mXQD6Js7zwxxxttXgh3bP+CGoUUoSi8IMq+y74N0aMS1rrEl3bui2F9w/YQLQ4Ak85bgYnaNYUvwpnadjf6pUltWpbNNix+3OLtnc6zTNR9gKhBzBDJEpItr6cqzYTAeHdnFIcBEgOi+jRR0jStTXomFLuIi4B10DCtp/M81XnhXLNNIyw/PUFgmuxeJBMVXdXCUnZ0Bqx3mSgbA5ZoEBV7RPeGaStm/ek8QohLObSF6Tas7kaVnhdY9YOo+By9lb1fw0yhaJelt+LF/Xfjxf13N/6t5BKQy4EoCN2iRqfz/IsqT0aIACSlB0S5dJ5E/sbrOPrl/xtsewfb3/ptzXNjQAgg8IKoyOnY5jFRADAzGqU2E4WyBA8IyhaICho+US1fLwuiepiobWnSbF/+DpQ3byK68sTyvm/132MMT/6dD7t3115TOUsBbHuZKFtNK9gKGzJzOFI25wLBCRCh97pXjVByZABKD4gSc0BUEjEwxb0M1iJRmIXVd2wASAIgULIHROnxqB5lJsqYo/o6EfTFKKnJEh6aJur+hOUsoBjEDLTw+8UBQG5b/Jh5dPqYgqgvCibqftJ5lp4WbPkdgJ0QmPBrooZCD7A+lqcwu+2+CSVUApxQ5J60Sj2d115wzq3O29wEHQyQv/5aJSxfvzgmKtzTpcChER32MTUJSxCWCqVHBO12/mmGgJJeoJy4Nij+3b+beD1MVFUh50n1EeKei68dEI1jqCjEID8/nec9Ly4AGYB7ihL6wjrUcxo4NqkdPDKTY+FjoqrqvKN/+S8AIXDp+/6jjuauNMDTC6JohMikA+cJywEgm+rnP2wJy1FycEZQttLgJE6gCBCXXWG5EARKkl4h/tBsRJJnngXb2cXoxa/0fm6ZSJ55FuH+vrkmPQZyw0Rtr3fHhGVFueedOy8Kc7ltd2fTohOqh61eNeyiXXj807hJ1UWesannSwHeZgoXDMtOhMo/fofmOskcJko+yg7Ysr+dU19EYYAY5roflsXBoErnrcJEAcDagCEoc22349ET56ay1FplTLLHE0S9rZmoC0nnBQQMEvkK9HRhwEvQw0QNTAf4XhCF/skK0DRoSRiynHeMylypsGKdKhZWE5b7qvMIpYiffArpZz+jFzxCnNHhRQTb3dXplJMZgKQXZCQ0RsQVpp6X2E4mIsuwvh/2mibGzobA/xu5eYG9E69gQADIHnF3BG0n0NZr2VBrQwzTMWQP0zYvylKn87gqIZUEJedPZHaBLQlD6anOA4DCOnvz7oQVUAoWECSntzH5+O8jfuZZjL7yq7rHIBIJAQJPNU0chOcyUbYVzHSqxdjrLS8iVZbgA4KytfkghIBHDFHZtTjQzB2D8ujXgJqucDjCsz/1j72fuZ+wO+18mgIE2N3sLvKRqUYtV2CiCqvdy5tgn5dm3PfoJlcNJiyI6meiQo/WkwUUTAlknu8tEpb58h0bAEbm+XaMNpV077KXVX5EwjGmPeO0L4bBwwVRtA6iVhR7j5IQIS9AR/55IBcKAHVylS8xUY9gpBeQzovNzpavAKJyM5H4QFRdE9UHouz3+yaUQBgQVXgqywxoSGT3BQgpc6JgX3UeAMRPPQUohfzVz4OORktXJs4LGoZg2zsYnKYISNDbKoFyAYJqF974mwGJIs+9HlE2IghIkI5zNqAn3sxOvJ4mmLbyqY/diJRAOSdtIYaJ1kStkNoohXQ6nzYj0xeOiTI+Ud7jOhDlYd6gXcsv3dbNinc+9O1ecFpInW6jHhAVBVFNEzWfiZpNNIiyTZhtqKLwpvMAgIcBorJrtlkY0Cl7nlViwLQMNOBexal8XtjCBW40enubnv545p6XqzCTVjTdZqLMLVI9bPWqEZh7n6P73pfG68jHFimlECmO0sNgLRJOJ+N59kBV4dhmfwtRul6Lj3QvNjsfL8kcWrbmYQvLI1l47VAWidEgRCSK3v6UeSFQUub0b9P0S8LyRy6yC0jn2ZRNucLOyu7GaB8TdY4mKjOmcT5hOmDK2WnQA6JMZZ+nv1lIQ+eL1LezsaaYADB69wvez9xPhPv7SKYlhugHGNbVeh6Iorz0ekTZiGSJgjJI1U15lpK7idfHREmuf7ivQi6UHAUJoDzHBgCRhAgUEK3gW1OUFYgqxGKLgtWCaJ8o/6KanweiQopBqrVK0bXr/nOTJUpGnJ9T4/u0romaIywHkJrm0raJKwAozgEpIZgfRJURRVQqBK1FOi91+lP2aMhiU8m6CoBZJKzmTmQ54ijwOugzUaAkAYoVMm9ZYMF+87mVholaJu27UJj3IVfdudPKDHxARxlU50sDLhL5HAkEUKVlVdQcW4UsULp32T+2H4Ww5qi+npjzwrI1vkKgBxGVT1RZ9SxcMkaJ1hP3FVJkpUBBQ6ctfVzTeW9rEJVegE+UtScozmks6YvMlrOW3Zc6oATDc9J5qSAQoL0TChUlOGHIyu4L6QzxZPcRW02UpKQ3FZU8XYGozW/4Ru9n7ifC/X0QADtp/xC0/dUyTzmwc7uV3Csqt8GkZutyD9AsRIHCTrymIW49uGneVsIPYkID0LjoEXGbcReXy7tJl1xAGRCVLwiiZF4xUXkfiLIp5h7xbRQGGGYa3IS7/o70hSjBA4AU3XG3EBNlU1+zMUZs2PA+kiYVIwLqZeDKkLrjN67LgCjRV9VlNT4rVo2dF1aDqIoMe5tdI0gAYGWOnEbesXheuLRzC0RZ7L8oW7loWI1g6gFR3AGd7m9aRrfwMFiLRK4oJIg33QwAI6GZPtXaeBaiBqKyRxhEcauzXG4MJNT2k3w4Cpy6T9QqbV8AYC3SUhjZU9meFwIFZQjM+valdN4jGDad126Zsky4yXcF+Vhqm8j6yucJwcj4xtCeyrcs154/QR+I4po2z/LuCylNq4vYw4JYs00x5+Wot2YYHLyz93OrRrinBbnb036AoQywyTwiTFd9qLjXI8oGEyVKypB67lEhSpShnXi7IEpYENUDYgJRoiT+YwNAaZ5BuMKiWXCpNVlYnonihORy3M4AACAASURBVPWDKJOKoWX3egGdzlsrxqBra96KGkDfj5IREI/2pGlxMD+dV6TTBgsFVKkYGQYdTRSgmSiquimbvBTGEoI79/fGeZljzUu/3k8QxgDGwHiJvZ6+hkGZI6ehlzmeF0IKFIHfisPehkXHyKJhmdnM00JlXsGMBcH5iq1X8lKioMzL3gPAwFSVilFzzsxrIKrN1j1KIc6RCPSFzYj4mMEHESQMoQhduToPANZNxajoAVFZIVCSELQsQPD4gqi3tbA8y3Xj3mX75dXDGvRlq4Aog1H7XuqhbSC85hdtZ4UAowwjz65MCQEiBTj1a6JsCwRfKikgAZhQEB7XahuEMTz1D/7hyp3uz4twX1fobU36FxS7o8yYgpACQa3ix4EoyZHMSecFokQRrCHzsCalLFAy+4z6mahMdJ+fkhKB1Dn9tOBen6oyMunYFUHUskyUE5bTfibKpphJT8ojZgTrxQThlX4PpVwUOg06647LuGVx4OPorLAcRd4PoljgTefljm1IGxYFeSFc5VMhiq5Lv9P4PMApL4oR8tIrKgcAWuTI2Sbkku0t5gGEPCPuMxcZ9ndmHjlARgJsQjPhne+ZcVWSAFxIsGA5MJWXuoF22AOihsagVQzmMFGed/lRCWl8vfq0e31hN/OpJ7PwIIIQAhHGiGXhemouGxZElT2V7XkpQCkDERyjmGLyJbPNRy/Sgt9XKg8AlEnFZSvQ0zPDRPlYDgAYyBwlZb3i7rTQqSjqSb04/QsJvADB6ogiz7gkhCA8h4kCtLN4tH9+Z/JVItjZAQCszeaAqFzvOktGkIrmPSSu7xLHpS0/46GUQsCLXvF9IUoUYX8KgBf9C5RNq+jqSP81FGbyYSuAqLIUzmJhUZZBFtU55T3Cm9Q6e/csNOsqR6gE2O5e7+9kIteGmyWHks3fCWmVzutjsiwTFZaqIyq3btOKBd4UlXteafP8LRMFALlncbfFHdkDTIdIFiGS3CsqV5yDCI6cRkszUbnIawChORaKQgHq4kGUHd8z6SssoFCAlyG3RpflHDZ0XhRGJ+Ob8wAgLrQDNk+aICpvgKhHl4my5qh9aee+sCL+1PM8HlRoEHUf1XkGKPbpEK2wHAA2o7cxE3VwcEAB/AyAFwHkAP764eHh52p//xEA32v+9/85PDz8hw/iRFeJNBdYn6OXWSSUWVzTFUDU1FK3PSAq4RmyOeXvaS4wpCFQjjt/s5NpSRmkDyCY0/X1NwMAJhTyh1Po4Q05MNWDeX86zwKbkhFkPK+a88LQzdBMlG0x0A5Vlrq6r4etswJpwL97LQrDRHlE2HanXtDQae/aYe8v6/n7vCh4TVguF2WijA8RCZB7dHJAxaj2MVEbpfYFo61WL/XIRd6ohKp79sRBiOg8s03DIEVcYavDROlrUCHzM1HmdZZZ0+dKM1EWROUAmukeJgpwUOQPsDltGYSI5NTLRIlUMyg5DSGWBBd1lqXuZ8aFBBdApNjFp/MciAogpQKl1X0rhUJJmFe3ZIE8NzKDUbLc/JuXZmEtp96/R7m+j2XSZO8fFxAlONW2KUuDKP15HzP4oIKHEaJ0urImamCuMe9JoWcFR2iY8a0IuHVSQin1QDIfDzIWuTvfDSA5PDz8IIAPA/iI/cPBwcFzAP5DAP8WgA8C+NDBwcF7H8SJrhLZBTBRdlKYrUCjZpJAENrLRCU8x4z2g6gs10wUKYvOjv88/Yt14vb1NwM0iCofTnrdG9yAqDjvL1WywKZkBClvMVGEQAShZqK2/Yu1+z4JvWzdeRNvmeu/FZ50Xp2JSj3HBoDMDL0gX36HVdZAVN5TSdc5p6IC1nmPT1QmFArCoLKu2SYArBsQhS2/qFwfo8aMtLRJURAhdGabPUyUKXkOucJmm4ky75sKmVcTZe+pTFsg6hzmLigLFCvokRYNISVOCr3YvePJrc7fpbE+WOUccukfp/a9pwgNcLy4UI2x1DzfwgAd4mPIa9/LVmCi8lKgIKF3zgOAMJugJAHyVheABtB8hNN5ZamgFMA9TennRSA5BAimKxSprBo8iLSwfI7sY17Y3q4Z6QFRZWURs84UuFArsZdvdSyCML4ewK8CwOHh4ccODg7eX/vbDQDffnh4KADg4OAgBDB3BG9vD8FWLJlcJra2h+BCYWMtxv7+6i1LbLuFmQqWPg4XEjyIQHjR+a4sSzBZYkZjbO+M/NoBSl1V4O5mjKC245+l2mOnJAEiSjvHf61IMAMQS9X5m05zKZQU93Vv7ifKaBN3ACSl6D2HkXn3ipAgWeteY0EYEghcv9pdtAAgM60+SsoQxmHn+4M8AA8ARQiY5I2/S6lQFBQDADLgne9OJ0dzjw0A5UCP83VGlr7PisA5zUfD7rX7ooxNuTsJoNDzm4SYdEnu/fuW0AzA2vUnen9TUeE0d9trIZLW52Ku/xYMBthf7x7jF/74U7gCDaKe2r/c+J3j14y3WhKBqxS7uyPQWgVpZsbEWgTs1r5HAuo0ZIN11jn3zwgNooKw+7eLiN/8xGuYyQCXlcRz1zZAW6Xok7M7AICcRhixxZ6njbtgjvlLgup9JicamDESolTlhV7XiakGLEmA9Y0Btmti+SAMUBJd8NL+zXuv6ufHSYDBMFr6nGgQ6DlPqc6cBwBRPsVZMMDGsDmvR2fUgagQ8i2b184LGgR6cxQsd44RJHLCQNjy6xCw2jwvwhgEwJWtCHsrfP/ugOIegDJMvL+vQFyRwu6QAhCIhzH2t/2ZhUc1FgFRGwBOa/8vDg4O2OHhIT88PCwB3D04OCAAfhrAHx4eHn5m3sGOj2ern+2Csb+/ji+8rkFGQIA7d7rpsEXj7Ehf+kxQ3Lx1iqDHEsAXeSHAWYRyOuucAz85BgCkQYzX3zj1Niw9PksxMiDq9mt3wTarXXt2S3+fU4bpado5/u2TMyQUQM47f5NF4Uwsb90+XcgN+6Lj5vgEWUjAZqX3+ezvr+Psrr73JSO4eXQP+6T6XF4K5AiQQPQ+3/zNewB0Ou/O0bTzubvHZwAhUFGIfDxp/D0rOKAooCjGaff+pjf1sUvCcPvuxHsOZ7ax5t3TpcfgLC1BGYMEcHQ6Xuj743tjd07jae79zjQtUAQRykl3TAJAOD0DAByruPc3x+kMyugk7r55DzFtMoGxIeaCwcB7jI/fPcR3AohKBVYkjc9M7uhnLsx79ubtY+dor5RCaio1T24dQ9a+d3qWuWrG20cn2EXzd1WWoaAJ7tzrjoOLiI/90eu4bN/V148QjJrpptkbutl2TkOUnvd1Xtw6OnFNn6cn1Vh780gD3kAxZOXFXtfMtGQqaIg3bp6C19jU07MMm5RBFkXnN8d37OaO4ebtMXaWlFOcjjNEPXOekhJkOsE03EZ+r/nOHZ2eObuS9Mz/Pj4KcTbOgbUAWel/P/tC5TlKGvTONfNif399pfthGaTTW8dQqxgGn+nfPCn8a/DZJEdkjqsLCQJ84bUTr//cWx3zQOgiq+cZmgIDenh46PIXBwcHCYB/bj7zn694jhceldHmfQrLa9qXZfxduJAQUkGw0F8+P9ZpkzSI+yupTDoP6JY2u9QN8ZttZlynXHyu0vaaSk9/socVuSiQxRQs69dy2PvmS+fdPk41CzTn/N33CfOL723aJwo7wvLCpqSUP1Xi0nmU9Wqipsw0iE6X3ziUXIKZCWZxnyiTCmP9KaOilCiDsKMpshGbEvIi8qdI9fnkUKEel76egzHXlZ+U+d+93ACh5wZXcXV0pXkNZlzbno5FTRfFJXfCctE6/6ys+2o1z0kpBVLkc/Vr9xvTlLs2T773XTpN1CrC8qIyha2l8+xxGAmRi6LX9HWVsOnSnEad1HDBhfaK8hjUOl0eDVbzwzLVeUA3xS5nMxApMGUD9366cxIFRKAZ3EfZ4qAw/m8+vd+8IIKDE4bZAxq/vrBapj5j3vPCfm/i6ZoB6GdtO4GMDPM5fQwNNxcBUR8F8BcB4ODg4AMA/tj+wTBQvwTgU4eHhz9g03qPQljvniS+v9RhfbFcZvKzL7lgEWSWdSY4MTUgisa9zWLTohpkqrXIq6LSRPm0B1b8Sz0CY6sVKhi5cC3FopHyFFlMEKT9k7+990VIkLVA1K17M5dS6At7jwoaeicft0DHUUdYboFtAOYVli8yLiZUH9/qYZaJgkswYoDEoiDKLt5x0utYXnKBksVQZandwVsRldaba45WT+RQpueiz+k9LJVjBXxxIvX92EDXlNJq/Wx7i7xW6p7Lolad59FE9VhCqKIAlHqgIGqSla7SyFekYKsJ82C5zRjQKt8vuiAqpBEU1NIL87yQsxkkDSA8dhlFKfW1Cg4lmn+rV4iuoj/LTXUe0NU28VPNUk6CQWfOzEUBEAISRY+0sNyOU5/eb16QskBJGWYPEWRYENVXhHL+AfTzG4seEFUIKPOeuybEj2GF3iI0zS8C+NaDg4PfAUAA/CcHBwc/CuBzAAIA3wQgPjg4+A7z+b97eHj4uw/kbJcIO9iWrQ5phwMcpJ9x8IV9yWUYA1JC8dLtrgFATGpMVM9kkxUCynynj4kSgZ9lyXiGASNeV2lZY6JyXgBvQZVeyjNkEQURHCrPvV3Z68LyNpA5OstAKAORQntmeXr71Zmo1ONBYsEJiWPI8XHjbw5EkcgrLHcM5ZxxcWaajMqVmCiBEQ0xwxIgyv5OHPcuYHkpIYxvi0xTBC3NUpjPkBOGfE4VUC4KZzHh61MWceVMTNshpMBEphDMX3Bhj8eMDUJWs7YoROFsIzogqqiE5W0Q5doHkQfJRJVQxlTQZ5chakwUuZ/qvBpAsNcS0QgQ+rr7mnkvGyKdQRoX9vb8kpfCLbAyTRsdF+oVoqsIy4ta2XsbDIkzDaKmbICk8IAoAIjiR9onKs0FKBgKOVnui2WJkiaYPkQvJZvOa79ri4b93mnPXJIVAjDvTAIOIH6o13dRcS6IOjw8lAB+sPXPn679t78E5y0OyzwM77c6z5bZL1lVY5kAB4KyrOEH5ZioIO5tFpvmvPH9etgdO0L/edkKKuJB9vU02aLl8xcdM8NEAfpe+DyFKosD2vGJmmYccY32D4ZdMaIFngVlgOflnHH9ktM4hspzrbkwWhzLJDISYibOeo/d54YulcSEllBYbRIqSun0Agun8wzbQZJhLzAvuQQPbZ+3LogK8hTjIHHp8M5vKIlCFCCRvt++XT8rJSZD4mUYp9yYJYaBN+1iHa8D0xutnsbVIKqfiQqpTQG2QFRejYMHBqIyDhjrBl91mD1fEcbgK6TzBNUFENIDomJWgaiLklPLNIWKB+Z3mudbctkLourvhW9zd140QH5rfHADomZBgrUWQLNMNU3iR5qJSnOOAAyl1M76i+hRlZRQZQE+YJg9RJCRGnhw3yCq6ANR1TtjG4Q/jkzU29Zs0w42n2B7mbATYp/XUF/YRVhFdnfanFgdE0Xj3gUrK7hr3tgeyLZHFQkjr9ljJnK94HjSNg0m6q1K55UZUuPobe9FOxyD4EnnTWvpE58uB6juWR8NnprUVWBK7uusimWiQhJCKAHe0l6pvJ628Nkn5AAhEFEAseQkJKWCkKoXFPSFZTtI4tfZKaVQcOF6WfkmR5rNkAZxL9hw7F3UA+6VAisFypB4UxYTY5aoIr9W0D6D0DyTrAGi6uaoXSbKVjO2LSHsZwWLHoimRCmFaVqCmHMWsy7zWGcJly3jrlJVYWOs22tJTOr1It9lmabuetrvTlEKZzHQ1vupsuZVtmI6r2/jKM19TWnUGZ92QxTEySOtiZplHIExvC0WTOnZeyoDvyzhQYXVMq0Kouy8N5ZUW7a0Ii+F64EambY2j6Ph5tsXRF0UE1X3A1piAOc2Z28bk/aBqCD2vhhSKQ2OYjsxN83nnAA3ivyLOM+RWZDSnujsNYWkoTl5mKE1Ueb8pn5jPZVnACHgATrC8mla9tL+NuzLz0M/DW4nXmaabdYnbbvQRcbHq9365Tx2w6YfRRwunc6zE05sduQLM1FZBhJFiOIIJZeQsskEcaE9amyapj05yjwH4eVcEGXvAzFGmrIFGFRRgCitt8s85z2xPlRR6NcOmXEdmXFfv+/5OUxUZBb2vM1Emecqo7jXXf5+Ii8FhFSuaaucdcezc1iPB0trhaoCiKjhWO4arBtQfFGGm4pzY6JqQFRrLOQ1NrP9/KuCl9U1URZEtcGQBac5jTqMTGpBVJJ4NaiPQggpkZe6lRewjImucfEPw4cmvFZKOS1TXxHKeSHTFJIQlKS7idVGsQo0se27Ht8mxG9fEHVBTJTMcygWAoQsNSmUhokisV8nIWsgyrfA54WAAgCTppItoGF3pLRnZ5uJHHlkFpz2RPcICcuB6l60Q+a5ZjwIcYDHxiyrKhd9uhygWmhJkniBqp14Q7v41Rb1woGorsDZnpv+cuQaXTePbRbuOFp6J2fNO5ddHGU6A00SxMZ+oD0uSgPsVeRnNy2wn9G4t6myBXRkaMB9CyDaCbcICQoPQB8bJorEOu3SXuxsmjo0jtQNJkoWTrDeZinyUjg9UJ8mCpF/w3K/MU31MamxNfBtCqRjCZcHURYU2ntmowJR+nleVOsXOy6CoWWimves5BKc+YG4K3ih/qrh86Iohdt4tkG2qxgMuoxiyjMkQaJbCikF5XFTf6vDvlOhKRhps+t94Yo3WBc8PqjICuE0Ucsy6TZkmurmw4R0+uI5o1jbAsqwco+jJurtC6LsBHPfTFTmUnJ9ztS+sMJyYtNxeWvBMpNqRiNvqslOQGTgn5iddiSOwIUCF026NOc5cstETdsgyrRmYOTCe24tGjMjLAcqfVg7ZJ6BJgkCEmDSagMxzUoIU7nYx0TZnWswHHonnxlPEdHQpfN8btBxT6rEgdjEz9pYBkUlGkT53Jf7YmIa+64PElBClwBRKehggDjygyhXqu6AfRtEaS+XNEj6W9kYhs36ILXBfV1vNyu7k699jjRJACE6qWa7CMfmmdQZSJvWklHYWLyVUsgLidgs7G3Aa1lgEuvrumiWwrIDzGiDfCDKLkR0MNAbpCXOwV4PjaJGOs8+o1Fkx+jFvMv2XJnZwHWYqIL3spn1quFV3KfzUtTGZ9fiANC6svb7PCtTDFjiWgq1q5kfhXDpV9rV+80LN9dEIUou3WboQcYs4w3d2yoh0xTKAPw2w2QZYWa6GlBegBLyJU3UoxT2Jbvf6jyV5y5vu4omyra46MvvFzT0LvA2RecWq07axCxmsf/cMpGDR1YY2GYL6kzUW5nOM8LyXk1UDpokWAtHmBZtEMWByC9Add9PLYgaYZZ1F8+0TDFgA7cbqj8j+/yqlFpbZ6P/n8V+EbbdZaokBpRaSuxqJ5K1JEQcREul8+hgWDFRRQ8TZa+3NabqKeZeEGXuQzA04L6dZq7p2KZlN405KfRvOB1a2wvIpfM0IKmn8yyYtMDUBhcSUikMArs4tdKUNRAlpPLqM+4n7AIRGZF+G1gC5l4HAVgSQ6rupmde2LQPjZOGpcTMLESjyDJRFwMc7LgIzdzTrmyd5QLo0X/JemP0JVk/IU2KxzKlLSbK/hYdDDvjM+UZhmHtXV61LP8Bhr2PSWAYPs8mwxeVdEPP9Q+DjZrlNRC1ajovS91c0wZRFlBGw2oDO0zY29Yn6rEM+5Lddzovy1xKbplqE0dXJt0FGjDoPk6gCPWnmiz161IETaBhXyxmcsrtCSsXOYQBkJ1U4KMgLOcpeGLEqT2aKJlloHGCtWjUZaLSstp1niMsZ6Oh1pi1QIWbeM0zUh4mahD4d/l2kmaD2JvOq7RDNnW2uC7KgahBiIhGCzFRVsdCk6SXiXJVoEMNUPi46SJsmahZj04PqK6LjfQxuqlioxVjBJPCA6LMc3Qp1NYEbUW0ycCTzrNC3OGg8T5Yhm3ANHM34/5Ng33OF12hZ1MQ8YZhojyaKDGbIhiOkJiNzVIbMvP82WAACOHusb2ONaMfu7h0nr5/0Zp+BvWxoJTSc43dHLb1li6dtzwTlRdm42mZqDbAtpui0bBxTlJJZCLDgCW98olHIWzGYRAaEMUXmxPs/Gh1iA8j5TXLyso8dgUmSkmp107zzk1a4Mjei2hk54Eca4PwS0zUoxSzrAQhcAvKKqGUgiyK/5+99w6QozrztZ8KndPkKM1IM5JKGYQAIYFkcs7G2cY5rb3hrr15717v3m/9+a6vd/15d+31XW/w2gbDLsaAMRiDCRIIJEARSaU4Gmk0OfR0TlXfHxW6e6ZnNBpFdOv5A3pUXadOV50653fe9z3vsV/qUwlKtQYsaRoRJU7zUliuQzlUebCy8rHYImqiJSqfRveZS9knWqJK8i+dT3eeYLoLrMG7FF3T0LMZRI+HoCtgpGwwV8hpuk4yk7etcNO68wQBb2BybIemayTzliVq8gpKKybKK1c2vVuCS/b6jBiRCZYFK7BcNMVGITbzbResDifom7klyqq7VGKJmtgm7CzPU9TJskTlXL5pLFGmpcgXNFYfThRRpijKuQQSFURUzBZRgbJ62+ebgdM+n2mJKllpZ1lkhGDACFo1BZc1ufG4ZPyyb5IFzGpfYgVRcCawnpevanpLlOj3FwXuKYioTCGLKIhIQaN8a1BNZfJIooDftNycqcByy53nCvqRRKHsvcnkjFhNK6XIpMUJdsb5WWy0bE88K6eK0FKGNc/j9ZRZli2hXfYuX4C5omzLoS2iZiZOrPxYgvn8z4klKp0nIxXzyZ0qhXgcdN3u/6y4Qbt8K9wm4DW23sqkCfhkEqkz724/21y8IiqTx++REYWpMyefDD2fh0LBFkKnYomyBmErOHOS6ySZtI+lKsVEWRnXfR4Ej2eStcayvnj9lhArlqHpGrFcAsleLTRRRJkmd9f5tURhzdyjlfIwGVmmBY/hzgNImANwOpNH10sEaqby4GEIVT9+0+JVeo8yhSw6On7ZVxK3Nnl1XshjXHuiJcwSbi6/1TYmulNN60fYHPjGJ//GqbBM3wGfC4/smdEzsoSy6PPiNQfqiVnL7ViKQNg4J1ZeJ0tEFXz+itY1KMZEeV1eRL9/0kq0UndeRUuU6c7zhqrLrmlhBZZ7fcZ9K80PZge12/FYxrmWJcrrlgi4/JNEVH7M2M9NDBv7sE0VND9b7OcVMNpSxcDyZBKpRESdSiLKbCGLW3QjWda/EhHl88h4pMou59lSdIP7CfjKl9Vb986aAE4U0Xo2awgdz6mLKCuOtGi9nxgTlULy+/H5XBQ03Z6oJk0R5ZcrW5UvFJLm/oNBM8faTN15Vt8hme33XLi8Euk8BUFCF6VZufMKUeOdkyNVZnkTLVFmuI3PjeA2FkwEvS40XT/j7+fZ5qIVUYl0/rSDyq0XUfJVHiinwxrA5LA5YJVYW3RdR0unkPwBXHJld54l2HxuCckfmDLFgT9kvJDjyWIjjWUTaLqGJ2Q04ElB6efZEqXrOql8Go/Xj+j3kzdfuFIKJS6YoNsUMmZclGW5c9kz1inceckkot9nu3RLZ3BWB+aTffbMt7TTtgbmsCdUdm277FQKwePB5zFM3hMtN9bsWDY7PitR4EwodecFZD9ZLXdSK4NmBy77cU9hibJ+kxwMGFak8YkiymyjvsBJY6I8kttolxMXLdjxduKkewaGGPXJvuJ7McEapueyCLJsuzzSE5JtAkWLjLn/pGXV8bgk/LKfZD5VNpvNT+jQT2WByExI2AOCjBQIVHS96/k8ot+Pd4p4tenIFDJ4JJed1NJO1GtOFD1TuJxni1YSBB/wucoWvthZ0i0hOylPVBbR7cbjnrxdzMmw7onsnSImKmVY86y0Ndb7nLItUd5i/rILUERZ4sCamM3UEpU331NrM+ZzkSvKeua6xzurbausd85VbYmoCZaoktXzRoLUNAGf0ZdOdP1d6Fy0IiqZyZ+B9AbmQOg79VgKa5bkqjBY6JkMaBqSz4ffI1d255WsLhT9/gopDswVXGHjhYwlix1oNGMM2L6Q8dJN6ujSxbiV82GJymo5NF0zBtNIVWURZXXkXo9tibKsQdasxgq6n2qDXy2VRPL5CFgiqnRGbXZgZcGoFVIcRGxLVPnAmBsdQa6uxmt26JNFlHFf3RHT4jJ+Cu48W0TJhNzGwBmrIEhKKQ583uJAPYUlyuV2IQVDdudsYYkSwT+1iErbIsqDGAhMskTpJavzKrnz4tkEIVfAzpQ+0RqmZXMIbjeyKOMSy/cttGODrHNN0WevpDQtUVaMjP27xqMIHi9eM/6i0hZAp0OiZCGAFPBPtvyWrBKdrSXKI3mK7d0WUYUyS9SZcueVCvJJligrzCAYKPuufW7W2BLI5z71zXLtXQJ8UyzGsS3LxmBrlW+9y74SS9QF6c4z+62Imb5j5pYooz/3mILkXAWWg5GSY+Jm3zMhP2aOQbU1wNSB5X6PjOj1oqVSVAWNycBY7MITwNNxUYqoQkEjky2csUSbkscI1j2VgL5owujQgrVGwy8N4i1dZeL3Vk7lb7lTvB4JKRCYtExey2ZAkgiFjE4jVmKJGjNFVCBca1xvUoqDkm1fTnEjzDNBsdPzIkUiaImEvarHomAmJxRL3HmWK8i2REUqWzOgGNgo+vz4TBFValK2ZoF+2Vsx+N8amKtMt1KpO09Lp9HicVy1dXYbm9g2rEHcY4uomVuirPiBoM9VtMLlpt9rq3TgO1lgudslIoXDFdx5VuxQsGKcl/G7iiJK8vvRc7myZ2enOKgQE6XpGol8kqA7gBwynt3E4HY9m7X3mPRK3gl755lxgLaIstx5RUtUwGUIpUTJAJUfiyJXRWzL9NkKLA/4XIiBoPGulqRusN/3EkvUqaxcyxRyuKWiO68QT9iJG30eqcSdd4ZEVInoC3pdZHPFtmDdO6/PgyDLFdx5OUS3m1DATSZbOCVrVCxlWtf9bkSfr8zVq+Vy6Nksks+Pz9xUPpUu+KftVgAAIABJREFUF1F+2Yvonj5O8nxiWaKqzHi/U7VE+aoru8bOBlabNgTOqQtSa2LsqzNF1BTuPL/XmNAV4nHqI0Y7Hhyb3WrA88VFKaISJQ/odLDcO6LXQ1XATTQ+8xezfySJIEBDXcjoEEoGi1JzuSWiJgbTWe48r1u2k/iVznD1bBbR5SLsNxreeIklaixjvHShcJ15vQorqEQJTTo/lihrBuaXfchVpssxWi4y7BVVHg9B0xoTN2NdrFmNJ1I5tgdK7rHfb6e5KBWrxY7XV+IeKj6jsXgGSRSoDxrWvFLXVG54GABXbR1VIaPTntg2LAuKr8oQshOtPtMRT+UQBQGfRybosn77SSxRacty57PdeZNElJVAVBaRQiG0ZLJ8sB8fR/QH8JruzUqWBGug9soeRP/kmLvS9BkTY5OS+RSarhF0BYuWqPhkd57odtnXKHXnWUknXaaF1XrutjvPLeG3gnbNa+uFAoV4DDlSddZE1GgsbQR4e+SK1lEtVZw0hQLG+1o66ZkOXdfJasbGwmJJLJg1IPvK3Hln5l0uxtf5bBeL1RbSJdcVff4KlqgMgstNxPyd44mZC7v+EaOsxmofUjhSNvEovs++ojvPrFOyNLDcmhDNMrfR2cSKiaoOnJqIKkSjCB4PftPrcK4CywEknw89kz6lPHdQjIny1FTjcUmTVt1ZVjm/V0YKh0HTqPcYY6Ajoi4ArEH2dN15ucF+AOSqaqqCHmLJ3Izzu/SPpqiLeJElESlUPuu3O1VzgNd0fdKAZ3dWZkwUlMc2FRJxRH+AkN/o5Eo7ZcudVxWsNWaLk2KiMoheD7IgnZeYKCuGwSt77TiV/AQRVRYTZVoXLGuM9YL7LBFVIc+UVjoQeCdbi0o7XsmMNbA6bV3XOTGUoLHGj8/lwSO5iZVYgnLDQwDItbVUmYPFWLz8PloB0f6aerPsmYuoWCpHwCcjCAKhCfFgU2Fnmfb58JmWqIkBmrYlSpbsmKQyC2lsHCkcssXGdPmvrJgoKLd0WiKq4JaIZ8rrbP2GYJk7r1xEaSV52byyd9IGxACecHlQ+oDZ6VYF3ARkaxGCUaf8+DjoOnIkgt+0YJzJmBJN1+kZStBcG0AUhYpJSK33TwoEbHERnaG4GEmPoukaVZ5wmTsvVeIOOeOWqAnuPCix+kwMM6iQ4kBwuwnPQkT1jRj3qanGjxwOU4jH0QsFs06l1ntL2Bl9nm3ZdvmMAZlTWw17rrBjorwe3JKbVIU8apXIj48jh8PFsIRzlOIAiqvDp8rlNxVWfy5HquxVd2Xll6QgsvqiGtG4piOiLgBsEXWa7rzM0aMAeNrnURXyoDOzTiGZzjOeyNJYYwz+UsgwV1pqvnTAmxgkaWFv/VE6uzU7Y13XKYyPI4XDBC0RlZhsiaryhI24lUl75xn5lzzSzFZ+nWlKrUC2iBorj4vKx4uZrYvWGNMSZc1iAl5Ef6Bih2lnKy/pdEtjYawOzMoTJbjddh1GYxlSmQItdcZ9D7qCZVaVvG2JqrUtUWMTLFGZfAYBAY/Hj+jznVJgeSKVI2gOXtZvj83Ynecj6LesHeVtNVfqzjPdabZw1DQK8ThyKFxisZnsijkeO4FHchNxh0ssUeWuTgDJ67efl4VlTQu6A0XXVKmFNpdFSybtTtUneclqOQqaUQ9bRJltxrJiHe0z/t/eFLKXjyfMHDzWjFiKROx2cCbz7AyOpcjmNOY0GG1FrDDhKZ00naqI6o71ANAWmlMSWJ4oEzOyKCMK4hlMtlkeWA4l8UeZEgu5z1eeOV7T0HOGO8+ykM/0dwL0DZvW+2q/IYZ03R68S12MVp9pC7tc0Z1nLeSYaNm+ELDzRHkk/LJvRpYoXdPMyU1p+z377rxkJm+kCKoxJiz5sdFTOj8/NgaiYfEOeCfv+WdPhN2yveowoKURBYHBsQsvnm06Lm4RdZqWqPTRLiPPUFub3flNtDhUon/UeOGbqosiCk0rblswISYKJosoO8WBW540WGkpww0jh8NIokjAKxNLTY6JqvJEkHx+tEkrqIz8S27JXRa4e66IZg2RV+rOmxhcnu7rA0Cuqy9ZnWd0qGMx4xkEfLIhUCuIqFLzvyVISl2epZYoQRCQIxFb6BwfNO7zHEtEuQPEs3Hb5WpZoly1dcVgyInuvEIGr+xBEAQj/miGlihN10mkiyJqppaoYiC+b0pXiuXOc8nSpMBuK6+LFA7bMScTLTaJXJK+5ADzw+1IomTnCiqUufPMHEN+/6SYKOv5hdxBBFmeJICtgc+yDFo5uixxkC3kcIkyrlC5BfJo3zhhv4vqkAe/y1o+blqiSmbE1WHjWY2Mn7lO+viA2VbqDYEzccIDJQLA5ycSrOz+nYpjpoiaG2otCs8JIkoQBAKy/6Qu35mgaxqZ491IkQiiy0XAN2ElnOk69XskJJ8VE2eu5DL/L7jdRIKzsUQlqYt4ccmiPbBa701hQggElAaWl1iVLQvrKUxazhWpTAGPW0ISxRmLKC2RAE1DDkemnHCfDZJpY+Wnq9qIaZo4yT0ZhWgUKRxGEEXCATfpbKHMjW6snpcQRcGeNOmxGLURz8VniVIURVQU5Z8URdmsKMpLiqIsmHD8s4qivKkoyuuKotx59qo6c3YcHASgLuKddRm6ppHpPoqrsRHR65tysKxE/4jRaZZaoqA4cy6dmforBD0DRBMZZEnA65aKHbMpoibmDQkH3GWd1Vh2HJ/ss+MoCqlkWcyVljEyyYbdIWK5+DlPbvZ2/04AFlR3IFkxURNe0nRvLwDuhkYCsuXOMwJq39w/gN8j09ZgxNYUEvFJPvtSl0Qk6EaWxLKX08o55ZMNy4URgzGOrmmcGDKOtdYb9z3kCpDXC3ZQdX7EsETJtXWEAy4EysV1TsszloniNbchkcMRCvHYjOIKjPg4Tt0SlS6KxoBXRhKFSVaAiYHlUFw1aIkpKRSesrM+HO0CoCPSblzLjtUrtbqkQBBweYPEs+Xtzkq0aS0UmCiASwUPGDFRAClT6GfM2KDSGLZYMsvweIb2prAhJiYElpemNwj5XLhlkeEzKKJ6Bo3nMsdsK+I07jwxEDBiQEShTNBPR3fsOGCIKNHvN/YOjMcn7Q0a9oSIZmbuMp6K1MEDFGIxgpesAowVh1DBEuWREa0ceOa7ZgVzix7PKbvzkukc48kcTTXG/ZMniCGtJDh/YvtMlq7O83gQvd5J4QHnG13Xiadydt19so9UPo2mT98n5O2+PowoCgS88ozbzulgrW6Xq07dEqXrOvnomP0eN1QZ7aS0/01lcvjN9DDFvihKfZWPaCI7q30XzxczMdXcC3hVVV2rKMpVwLeAewAURWkCfge4HPACmxRF+bWqqudtaUQ6m2fTpi3M9WRpkas5fnBgVuXo0XFjSe0Shd5EP/hiCN44x6InaE5M3/APjfQgeOO4g0l6E/1kzJl9/8BR5JBIJmqIvKiQoeAyyu2J9xE2Oxxd1+lLDFBT76I/NUBONhrU6PAJEol+8v1dxm/1SfQm+vGGkvQn4vTE+kDQGUtHqfYaAkv0+Y2NXrNZBI+HXM7YHqQgyXgFP3ktz6H+IXymUJmKgl4gXUiTKaTRdZ1y2aVX+FSZdCHFvtEDzPHPJZ/0M6wZg9B4/xCZoZLg7aM9IIoMCH6EkTR+yc9gcpTXdvcRjWe5blWrYVEJBm0rn+XuSOczjI8Z9zghFcgmB6mpzzKQStCb6CeRS/JG31t4JS91PmOmJUcioGkUEnF7YCx154FhDfLJXiOwXJKQq6rsmZYlrjVd48VjG0nkkqyZuxqg6JqIxSj4g8SSWfIFvUxg6Lpx7070jxPKJ6gteMn29+PNp6gaz6MJg2QiPRXvqZbOkNixHQSBvN9LLD1KqDrLaGaEvsQAYDyvsdwQgjfOeH4Et9u49uhwj9GmBrsBSHlF8MYRvHG6xk7QUtLW3xlWAeiIzDN+l+m6So3FyIylyBc00oODCOEIkuBB0zW6BkbxSIYr/ITZEWeSEj2DcQpeP9rgAMf7xxFEkXy3YX1MyD6yg3EKWeO96R4cIe1zkcqmkXBxYjQNHi/psShHDhhWwfYmQ1hZgjuRNyccY0V3niAI1IS9DEeLIiqVT5PIJc02raGD+VknmyuQyubNpfd62XOy/tjTfwzBF8MVTHIi3kfebdyvkf5u4vEO4/dGjTqOkEJK9BOsTjOazXAi3lfxeZbSPd5DlbuKWAzG9RR4fWTGY2zcYUwyqkKGWIm4w/TEe0nn07YFT8/nyY9HjbgiTQddQ9d0NK1AMp8yY6j0src3u3EjANkl8+lN9JOX42a/18uchM6o2YYS+gi4jUTG/UPdiFI9hV6jfWYCbnJiFMEbpzfRT29i+r5F13W6eo1+MFwTpDfRT9ZrlD08eIzxRD3ZMeNexcQcCUYRvHGGM4N0j3s5EjXCLvzWhChSDErXzG1qUpmCnczTeo5gWM/0ZNzerqbs4MTPp8GhnigM9bF0bhWZEz3UjWuMRvOMHzuCT556sp86dACAfMDLQHKQqrocA2PjnIj3TUokPbGmBU0jlS5wLOFmLJos/mZ9+n56LJZmvDBMcyRA1FxkMjZwnFSif9rfqGuaMW729qHncuSDPmN8CqcQvHH2Dx7DFTQW2iQZpSrkNdqYy3gu0eFeglVhBG+cvX3dthGi7Bq6DqkU+VicVDKHjsDCJSuRpNnvTHK6CCezQiiK8rfAFlVVf2r+3aOqaqv5+W7gdlVVv2D+/TjwdVVVt05V3uBg7KyaPZ577CfMe+bXZ6y8V1YF2bZk+k7gZKzal2TD23F+sT7Moble1m2Pc8WeJI/eVEVvvfuk5zcM5/jQr0bZvsjHy5eHWNCd5o5N47y0OsgOpXLdltcu4YuXfJLeH3yf2Oubee36z7B9SCcdT/L7hx/moH8OT6xtQm7sJr3ravRUaHIhcha56QhSTT+id+Z7v82E7JFlFAbn4tJyfOXwwxz2t/Boy4328d8+8ihZ0cX32+8DwL14C1J4hNSbN4Im8+cPXk5HS5i+H/4r4xtfYeR3Psjr+S6Ox3tJ5VNcoia59q04T18T5mBb5U7q40s/yJVNl6HrOu989//g3raZRxbdxxEthCyJfO8rG5BEkccPPs1bu17g4wPtyF095AYHcNXXM////SYAf/GjFxn07Ka2NcZYJoqOjk/28Zdr/wi/7GPP9/4Z19uv8ZPOezgmRCbVoyU1yOXRvbSl+gkUUsw2x/4bl4Z5fenMrK+NQzk++Nwo2xQfr6wOsfBomttfHefFy4PsXDR1excQ+Prav+CNd0Y4vHEr173zJJuqV7Kp9lIEXeMPDv2EE946HtnQglzXS3r7e9CzxuDmatuL3HSU9O516Mkw9/e+yKLEMb49//2kJS+Xje3j5qEtPNG4nr2h+citB3C1HiKz73K08Tq8q15Az7vJ7FrP57t+hqRrfHf+AwB8+f4VXLaonqHUCP9j8ze4KdPOFQdzJHbtBE2j/a++jqelhf/9yDbU8XdYelmcnkTvpM2KT5eq8Twf/8UI73R4ef4qY4Z9wxvjLD+U5od31jAWPvUQg8JII9mDhmXoc0cfx63l+Yf572PpvGp+732XIEsiP977n2zu3cqfzf0I4sYtJPfuNawHsxABGVngn99bR0GaviVeuSvB2l0JHr8uQnezh47jGe56JcrGSwO8vTRwytctpeNYhrs2Ru3+d9XeJBu2xXlyQ4QjczyTvr+hdS0fUIy+ovt/fZ3UwQM8ed2XOdwbn2TVaMiMcNXobtpTfQQK7474m+euCrG3w3fOr1sdzfPg0yPs6vTymzXhyV/QdZSjGZYdStE8lEMuudXbFvl45fIK48oEKr0zpUgFnZX7UyhH09SO5ZEn2DD2r17GnV/8g1P9aadEfX1oypdhJm90GCi1jRYURZFVVc1XOBYDJo8SJVRX+5Hls6ca1910M5u6DxDxiginseULgO6SaFqncLPfQyKd4+W3jzOnMcTKzrqy70UTGbbu6SebKyBJApGgh5qwl4VzqxAQCCeOwttbWR1aQGdnB03q28BhLu+4ghNeD2/s7qVzThVKm2E6HY2l2byrl/mtEZa01yDOycGvnmBBPoSncwPVIweB7SxoX0Zj51x2Hx6iuy/G+lWthPxuanxVXN12OfXBEFs1PxGge18X7uYOFrWH4TDU1IXpbGzkKN1ceUkVNeLcst8U10fYUXiKHCkk3ARpxi34kHAj2MN88f6eyp2W8dC+YDXSQqP55U4EmEOc29bNA0DMZggcTFNobLX/7UChhx59hHVrQiyp7+TKlS0IgsBIrfGSvrDnWXobPLSEGqkLzGPRsV5gP0vnLmdeRxN7u0Y42hvj6pUtRIIeOmrauG7+OrJ5je88so380RQbgIiQZdWietatbKGp0WjK7c8NsuSXI+j6CHowSNVlq2i65SZq60O81v0mIy3PIQoF8noApa6DKl+EWxe8h9aaer798Nvku5JsAJpdOeo7GwgH3bhlCQGdlrdfoPHgZgCy/hDJcDtVLY1UVxt70wmCwMbuLQiCyPp5V0JJm9Y0je19exhKjjBQLTN+2XxWBWoIeYLsOjDC4GiKG65owyVLCMCrO06QSOe4eU070pw8+nNPsCgdwNu5gepho00tbF9OTVszz281ZoKrFzeWPbsmfyv/8Ng+Dh6PUltwcR2wIJDHfflc/JkY4iEdf1MD7fW19Oi9XHNZPUHBeF/2aAcZ0OHaSzrwCUFqN9fDgWPctrKOTKSOxm1HYAiWXzKf+U3z6NXS7NMOsXKpnxZxHi/ndQIuP5evm4dnLIx3pJ/b17YTCni4fs08XLKIPy1y/ZZxlh7cSgIIdHbQdPNNNK5cRKaQZax+E+76YxyMQmu4iYZAByFPEBGRg8eidPWOA2Z6Ca/biM8pEROlfYpg/qcu4qOx1hSeBQ39l48zP+vn5gUbAGjdthnoYa1yNYWAh617+hkcTXHzmjZkuSSiQod9R0c53GN0qX6vTMDrZk54KdVXGas8PaMhfKP9fPDGRdx33QI72Li5r5ZlG1PEH/kOFAq4qqsIL12Cu7aGhJZlW/8ecnoeWZQJeoK4JReyJFd8gxMdDVy/qBUBgVy+wK+3dFNf7eeKJY1s2dPH0FiKW66aR3WiG3Zt5SpvB4s7O+1+qWP+cmo75/Ds5qNUBT2sXdFc1oZyBY2te/oYi2UQBAj53Xg9Mn6PzMK5VbhkCZ9nGDa+yFJvC/WdK2k4vAM4wIrOy1gwp4bn3jiK3+ti/SWtdNS0c938tQiCQCZX4FhSpF7X6T7cR9OcBhprAvh9Mh6XRN3+t5iz5ZcIQNYfJhZuJu8NoMmusndLLxs7Tm8csWhtCFJtLkTZN3iI7mgPa+asIuItFxpjqXG2971DtpBDkGVob6FqeTvXefwcOjbO4Z4oa5Y3UxMuF5N9wwl2HBhC03RcskgoYPQzsiSW/jRONiwKgkBzbYCasBcxnYOnn2C+UMXNndeUfy+XZ86jmwkeNlyO6YYIiboQuZog2ZogfqWVm70uYsksG7f3MLcxxIrOOrL5As9vKfYvYiYHv3iCdrGKq5qvZNP2HprrAqxa1ICUSNP2o1fwDsYpCAKDQT9Jn5u8143gkkCSWHbTbdTXn1ysnS1mIqLGgdIaiqaAqnQsBEwbgTY6emYtGhMJhuv52Ne/xeDgmV3imsrkef7xVwhINdxz/aX2v/ePJPmrn71JOlPN/e/p4KbL59p5eiwSsV30sJXl7nnUtt9Jr3ycGIe5ofM2Eu4Am55+lYCnnnvWrwBg085eXjm6l6uWKFzb3grA4epXqBrLc1n7nQxte4wRtnNV53X42xejdx/m0NEuVq9bxRJTiJGChzbuYcfRDHcD71sRYvEDa8kc66b7RZjf0YS+eB5H921l5SI/a1s67PrGsnH++o0fkyukuLvjVq5v24BLPL0g/ek4sWsx8W1vce+yCK7aWtJdXXQDbYvnc/kGo16vnRjmJ/t2sXiBwNWtDQwNxUnlU7zQt41LgGXeNn5r3aeo9hp++OPP/A1J4PpL78dVW0dw8BgHjx5gyarlXNHeAMDgYIzvP/kOW/YOcGNdNYzAJ65uIbxuhX08vnMHgf98iYxLIPveW1l9/fsRBAENeGXfW3x3578hIpM6tIzfvu8eWuuM10HXdb7x72+wZe8AV7fMgZHtPLDQRd09y+3fPfjIw4zu3Yy7qZmGj30c3yKlovDftWWIwdQQd7znw/a/6brOv73zEG/V5lCqV/Hhxe+lzldrH0+peznR1cv6m9bQXBtA13We/a+Xaaz2c2/7lQB0NW9F7Bvh7rm3M7ztcbtN+ToX8ZsnX4Gkl3tuWWOXmctrfP1Hb3G0P8bVy5t44NoOBr76BO1Skg03LiR1YD/HgM7F7Qy3V9HTtZu1K6tZXGM8w7/fJjAwCh9cvxSXKDM01MLIgbe5QYngX9RB3+GXGAdu2LAEd1MzB0Z19m17ifa5End1zOPFF/M0VgV54LIOetU2YkMnuHtxEHdjI2Ojhvuu/yc/YsXBNNFaHyu+8Ad45xvXHhgc5we7f8woxyhEa/nY0vdxtVJs8794rYsDmw/TVOPn03csobN12rngtBxpeA1pJMbdc+9AEASOs4ckPdyx8B4EWWZk915OHO3l6luuoqnEZfGL17pQXztMc+1CPn3HUjpaJs/Kj2+vIzl8ghtX1JOIpUnEDEtKYO8AN2yJofl9zPnkZwlccimCKDKSHuU7W75Nqi3A/Qvu4D1zrkYSZz6Jra8P8fJTT6PF3Nxz61XsfuVNtN4Y933wWtLaIY49sZWlhUbq2+9kcOujjLKdq5Qb8bUv5OWnNsGYxD13rrXLyxc0/uahbQz2BLlcqedDNy6yhUUpWf8AXbxIh1DPuvY76ckcJgHcsPI+5FCY7S9soe9Ykrvueg+iIDA0ZLjg/+2Xe/HGdeqBP7l3AS3LFbvM2NYt9G75JVIoTNOnP4N/2YrTnmjPlrGjL/LioWdYuGIdc+uLfcJoeox/2PptUq1+7u64lWvnXI1LKuY7fDnag/qayqJlS7imvShOdx4a5qnnduB2N/PxmxexZmkjkmgI9Pr60KzHQ13XOeh5ltqMm8va7yz7955vf4vk4X78y1fQ+JEHcdXXVywjkyvwmydexkM191y/ioGxFM8c3Ux7uIl72pca13D9ktqcl48uvo9dL21moDfHrVevofdf/x+yg+NsDy9g/6L1PHDbSpS2qknP7UyP9xOZTqTNZHXeq8DtAGZM1K6SY1uA9YqieBVFiQBLgN2zr+qFi88j43VLREsCiDVN5wdP7yGVyfOJ2xZzx9p5kwQUlASWm0GCxeW6xkoqr1uib6QoLieu7gNwNTaRHxlBy2TscqzgS2uZ/VBJ4N6JoQT/+eJBsmbW8tp83JipdRuxL565c4l4jPPHJgSk/vzgL4nl4tzbeTu3zLv+rAooAO8CY61C6qDh/88NGL53V2PRCtIabAKgx4wj0XWdh/f9jD7BeHmurV5lC6h8dIzkvr14OxfgqjWsIPXVhil8oETEv/DWcbbsHWDBnAh33LjCPLdoWNXzeQYfeQgEgcevr6J3XsR+eVP5FD/a+wiiILJKvo3CcAvj8eLigNd29xllt0b40McNN2X68CH7eHzndkZ//SvczS3M+aM/wa8snrJDD7oCZArZsuzy2wZ38dbADjoi8/jiyk+WCShgUmDvWDxLNqeVxRl4581Hz6TJ9ffZAeZyKIQgCNRHfAxG02VxWz/fdNgQUCua+NQdS4gEvbgam8j29aHrOrmRYhLSWjPWbDA1ZJ8fy8XxSh67PVmLCqyUEcV0BMa/W79pODVCTjP3bDNzInnajOD2zLGjxXu6fRvRF19grMbLf91YjXvePPvYpp432DG4m0bXXLL7V5NNFgfuvpEkT77aRSTo5k8/tvq0BBSAu6kZLZmwF5IUEgkEt9uwKoC9cq10hd7IeJqnXuuiKujmDz+0qqKAgpLVfyV55wqJBNU/e4mCCAMfvongqssQzAH0sQNPkcyneP+ie7m+bcMpCSiLhmofQ9EUmqbbW80IgoCr3piMZAeNuNP8yAgAco3x7CN+N9EJQdDPvNHNwZ4oVy5p4Av3LK8ooKB0z0njd+YGBxG9XntRQWONn2xOK9si5M19A2zc2WvvMReheO1CMsHAQz9CcLuZ89U/JLB85XkTUABNfuPeGTGLBrqu86O9j5LIJXnfwru5qf3aMgEFlYO0R2MZfvCLPUiSyB9+aBXrljfbAup0EQQBuap6UmB5bOsbJN/ZjX/Zclq//LtTCigwdhKoCroZGDXqbKWmsALLS1cwC4LAqoX1pLMFtv3rQ2R7jrM9vICu1bfxlU9ezeL26vP63Coxkzv9OJBWFOU14O+A/6Yoyu8rinK3qqp9wHeAjcBvgD9TVfXd4WSeBTVhL4NjKQrmKquXtvdwqGecK5c0sP6SlinPczU0giCQ6TFW2uRjMZAkBI8XQRBoqvHTP5pE04wBa+LqPgB3szHryPb3lazYMDqLjmajwz3YU0wW+R/P7iNf0Lnt9tX2eQCZ7i4APHPbqfIY51spB8BYUv1635vMCbZw/dz1s7pPp4pvwULAEFG6pjH2yktGHVvn2N9pDjQiINATNwJqt/S9zVsDOwhXG+KqNBlc7M2toOuErihaUeondD7D0TSPvXyYgFfmS/cuL+ZDKUm1EN34Mrn+foLXrGegxkXX+DH72FOHf0U0G+PW9hvorJoPQJ/ZScSSWR5+/gBet8Tn7lqKv7oKV0Mj6cOHzLwvMfr//V8RZJnmz33R3gJlKixB0p80OtxsIctjB55CFiQ+tuT9kzpagEjAXEpviihLpDdWF+MqPKbISHd1kS9ZnWfcLy+ZbMHONDwUTfHclmPURbx85KZFdkfmbmpCz6TJj43ZYkiuraHFFL2lwdPxbMJemQfgbTeunzKl6MjMAAAgAElEQVTFZT4aRXC77azTEU8YWZAYSo8Uc0SJ5pYwlogyJwVaNsvAT38CksSRO1cTl/IMp4yOP5lL8osjv8Irebiz9V7QRTvNQfFd0fjoTYvsVZGng7vJfFd7eynE42R6juNuabWPT3w2AD/feIRcXuO+DR12GoSKZZsTi8yJ4iKDkWeeRkileX1lgKG6YozlgdFDbB/cTWdkHutbr5r172mo9pMv6IzE0qQyebxmMlcpFDIWqwwaizhyI8MgCPaqrHDQ2PrFWtE3MJbiqVePEAm6efAWBVGcejAUPR4Ej8dYMavrdhyi1e4aa4x23G++cwVN47GXDyGJAmuuNPqT0gnR8JNPUIjFqL3z7rJ+5XzRFDCeY1+yKKL2jRxAHT3I0hqF9a1rK543sR8DePTFg8RTOT5w/QLmN0/fl8wGuaqKQixm726gZbMM/dejCLJMw0cftCcH09FQ5WMkliaX1zjSa/Q1pe5IOWykmNF1nWtWNlOnxYls38S47Gdoza38tw9caq9EvdA4qYhSVVVTVfULqqquU1V1raqq+1RV/VtVVZ80j/+zqqpXqKq6WlXVx85+lc8fytwq0tkCh3rGSabz/HzjETxuiQ/duGja8ySfD3dLK+kjh9HSKTLHuvG2tdsdQlOt0UkNRY3d548PJnC7RKqCxQ7R7pj7eo0NVeVi/qjW+gAet2SLqLf3D7H/eJRVC+tYtaINKRwmZ4qo9NGjIIp45syxLVGlS6NfOv4qAHd33jqrWets8LS1I8gyyd27GHjox6T27aVmzRX4lMX2d9ySm0Z/Pd2xY7wzrPLo/p/jkdzcsuwOoGjl0zWN6EsvGvsKXnGFfX59xIsAHO0zUjr8+DmVTK7AB65fSCTosa0fVvoCLZ1i+MmfI3i8NN7zXhr99XSNd6PpGgPJITb2vE6Dr44b29/D4jbj3F2HjHN/vukIyUye+9Z3UGd2et6ODrRUimxfH/0//iGF8XFq77kfz9zyWLRKzDdTChw2VyG9emILY5ko17dtoMFfV/GciUkdbevmBEsUQHL/PkMASZLdpuoiRr2HzJVsT73aRUHTuXf9fLzuYmdmiftcX2/ZdjhN/kYEQbAth9FMjPFsjCpv0cpjPff0oYPGvTeXRVvvhSiI1HirGU6N2Nm4bUvU3DYA0t3GPRl55mnyQ0NU33gzNe3GINoTPwHAc0dfIpFLcsu862mrqTPvhzEIbdrZy77uMVYtrOOyRVPPpk8F613N9fUR37EdCgVCl622j1vPZmTcsKIcH4jz6q5eWusDXL28eXKBJXgmiMd8dIyxF36NWFXF9kV+xjNFt8YLx4yVdvctuOO0Zu/2wD2aIp3N28v0LWtUbnDAWNY+YmzKLZgrpeY2GKtaDxw3+qUnNh4hX9D5QEks13TIVdXkBgcoRKPomQyuugb7WKNppbcmnK/t7qN/NMX6lc3UNFu7BBjXzY+PE335ReSaWqpvvnXW9+FMUuerQRZl+swVb7qu89ThXwFwd+dtUz6v6rAHSRRsEbX/2Bhv7OlnXlOI6y5rrXjO6TIxzcHor54hPzJC1Y03465vmO5Um9b6ILoO73SNsHHnCQQBrlxS9DS4GhqgUCDb28vchiBfrOlFQoMb7+KL71+N6yzGUZ8uF2WyzbPFyk7DvbDz0DBPbDpCPJXjjqva7U5xOrwdHejZLNFNG6FQsK0vAM3mwNY3kmTX4WH6RpKs6Kgte5Gsjjl9+BD58XGkUNg+LokinS1heoeTjMUzPPbyIURB4IFrO41zG5vIDQ2hZbNkjh/D3dyC6HYbyS5F2RZR8WyCN/u30+CrY0nN9MLwTCK6XISuWkducIDoS7/B3dTMgi9/aVJHcsu868lpeb67419IFzJ8YNF91LcphpXPHEwTO3eQ7T1B+Mqr7BkxgNslsbKzlqP9MR56/gA7Dg2zuK2Kq1cYFhO5qgq5uobkvn3ohQIjzz5DIRaj5tbbkCMR5oXbSBcy9CUG+MXhX6HpGnd23IJLlGmo9tNc62fP0RHU7lFe2tZDY42/rFPzdRjP4sTff5v4W2/iW7iI6ltm1qF32CKqi1whx6+PvoRbcnND24Ypz5nozqtk3fS0tSFXVzO+8RUy3UfxdS6w3UB1VYY1aHAsRf9Ikld39dFc6+eqpU1l1ykV93b+rJpa3JKLpmA9vQnD1be5dys6OqsbivGEosuFp30emePHKCSTRhb+SLkrrdZXQzyXoGvcEA2Wy1YKBpFrasgc6ybb18voM08jV1dTe9c9tAaNOvXEe4lnE7zc8xphd4hr51xDTcRLbdjLzkND9I0kefTFg3jdUpl17XSxrE7x7W8Tf/tNAIKXXW4ft1x1e7oM99d/vnQIHXjftQumtc5AqYgy2vvYC8+j53LU3H4HBVmw3+XB5DC7h/YyL9xmi/DZYlkvdx8ZIZUp2OEDAO76BvRMhkI0Sn5sFNlMzgiwbF6N/TuPD8Z5/Z0+5tQHuXJp+WKFqfAtXISWShEz72Gpy6ippM/MFzSeerULWRK5c908+7233MtjL/waPZej+tbbZmQ1OReIgkijv56+5CCarqGOHuRo7BiX1i9nbmhqr4YkitRFvJwYNhKuPvT8fgA+fNOiSSkPzhSeVqM9J1WV3OgoI888jRQOU3vnXTMu47pVRhkP/Xo/R3pjrOyoLXPl+hcvMa6x9x1yQ4Pktm3B3dTM6vtvueDcdxNxRNQpsLi9GlkS2bSrl+ffPEZjjZ+brzi5JQGKg+jor54FwLuwKFKaag0Xx+ET4zz+yhEA7r56fvn5CxYiV9cw9psXyA8NGcq9hAVmHMffP7aTvpEk165qodks19XYBLpObOsW9EwGb7vRqQqCQMQdtjOcv9a7hbyWZ8OcdYjCuW0ajQ9+grr3vo/wuquZ+yd/jis8OZDvyqbLuLrlSoKuAB9b8n7WNK9G8vnwtLUbVr5MhpFnngag+tbbJ51/p7nS74W3jiNLIg/eWoxDEgSBwMqVaMkE8W1vMfrcs0iRiD1znR8xLB+/OPIcbw3soC00h1UNK+yyL+msI5vT+M5jO9F1+PgtCrJUvIfhdVfjUxaTGxzA3dJK8xe+ZAuWk9HgqyPg8nMkepSXjr9KNDvOhta1Za6xiRStHYYl6fiA4e4sdeeJLjetv/dVpFAYd1MzzZ//LfuYJez3dI3w801H0HSd+9Z3TBrk3U1Gh59UVTK9JxB9PiSfcY22SCvJfIrRzBivnXgDt+jiiqZVZef7OheAptH3g++DrtsuPgvLlfl6rzGQLqwqBoN72topRKMc/9Y30fN56j/4YUSvtyiiEn386uhvyBay3NR+LW7JhSgIXLuqhWxO40//z+sk0nne+55OasKzT8w7Ee/8+fiUxSR27iCxYzueuXNxNxXFZ03Yy9yGIPu6x9h+YIhdh4dZ0l7Nio6aaUo1kKurkYIhMt3daOkUYy/9BikUouqa9xBw+YlmDUvUKz2voaNz7ZyrT/v3WElnf/2m4c6+YnGx77GETXLfHtA0XDXF37BwTgSXLPJO1wg/eW4/OvDAtR0zHuwDS5cBEH35JfNaJZYos332DifZuOMEQ9E0117aQk3Yi7u1FdHrJbl7N4VUirEXX0AKhYhcfW7CE2ZKk7+BbCHLaDrK890vA3Bz+3UnPe+KJY2kMgW++fA2uvvjrFveZPf/Z4PgamMCEH9rK0M/+0/0bJa6+x9A9M485cKchiCXLqhjKGps7XLLlW1lx/3ms07u3cPQ449BoUDNnXfNuI88n1z4NbyA8LgkVnTUMJ7IIooCn7xtccVA8kp4O4zg6fyoMfsstUQtmhPB55F48tUujvbHWLus0TaFW4geD40PfgI0DSkcpvGjD5YdXzbf6LyO9MZorPbxvmuLieUDy43Bvv/ffgCAf1lxNUiVJ8J4NkYil+SV45txS27WNK3mXCOIIjW33UHTpz5rB89W4kPKe/nGNX/BVc3Fmb1/kYKezzP63LOkDx0ksPISe/ZUSmdrhGsvbWH5/Br+5KOXlbm2AAIrLgGg95++i57NUnv3fYgeY7a0sKoTURDZMbjbjkUqFZqXmwNLKlPgtjVtLG6vLitb9PqY85U/pOXLv8vcP/pTO/h1RvdGEOiItDOcHuXpI88RdAW45SSdbX2Vj5DfxTtdo/SPJtnTNUp7U4iQv9xq6mltZf43vkn71/5nWZ2WzKumudbPxh29vLGnn7bGIJcpk91dnjlzcDe3EH9zC/mhIYKrim2nLWIIrIf3/Yzh9ChXNq+elFjQt8hYPZXYuQMpEqH2rnvKjtd5jXa9d2Q/kiCVWVVqbr8TKRgiPzpC1Y03EVptuG/D7hBBVwB15AAvHttEnbeGa1qKMUHrL2mxBe6lC+rsWfKZQhAEGj7yIILbjaupiabPfnHSd1Z21pIvGKIb4P3XLZjRjFsQBDxtbeSGBhl89KdoySRVN96M6HZT76tjMDXEUGqY105sJeIOlQn92dLeGGL5/BryBR23S2R1STvwL1kKwMBPfgSYEzYTlyyxaG4VPYMJ1GNjXLqgblJ6mOnwLTGsE1kzlrTUEhX0uWiq8bP78DCP/OYgHpfEHWvNTPouF/7lK8gNDjD48E+Me3TDTfa7fKHQbMZFPd/9MntH9rOwqoP28Mkn5bdeORe/R6arL0Z1yGN7HM4W7sYmPHPnkti5g9jm1/C0tRNed83JT5zAR29exL3XzOevP7tmUv/oqq3D1dBIYvs2Ym+8jqetndCVs4/jO5dIX/va187pBZPJ7Fm/YCDgIXmWUuOv7KxlZWct91wznzkThM50SMEgqX17yY8M42lrp6bEN+91y7TUBtiyd4C2hiBfun9FmRXDwt3YiG/xEmpuu3OSL7o27GX1onpqwh7u29Bpb1MD4GlpJTc0ROZYN+F111Bz5912hx3NxlBHD3Is1sPx+AnWtlzBZQ0rT/W2nHGmeoaCmTupFD2fJ7blDVLqPgCaPvFpXLW1k84FuGRBHWuXN1VcFSRX1zD6wq+hUMDb0UnDhz9qz4SC7gALquaho3ND23tYXLOw7NzqkIcNl7Rw+1XtU8bWCIKAu6kZ0X1y92+Fs9k9tIe8XuCDyv0nddEIgkD/SIr9x8Y4cGyMaCLL+69bMEmcAwiyPGnGJwoCVUE3W/YNUB3y8LsPXDJJgIEhfv1LlzL++mbczS20fPHLtsskGPTy0pHNDKaGCbj8fG75g3ZMk4WroRF3czOCLFN3//vwtJS7MgIuP6/0vAYYg851c4udt6u6hvDadXjnd1B94832bxAEAZ/sZdfQXnR0Pr/yE9T7i+3B45JQ2qpYu6yRO9a2n9SFNhvkUIjINRuoufnWioLZ45bsrOPXrWplw6VTu3Amku3tJXVgP5mjR5Hr6mj+zOcRJIlMIcOeYZW3BnaQzCe5qe1alJoFJy9wGqz3sK0xyMadvaxd1mRPGMDokzI9x8l0dxuC8eOfKmvfPo/E8cEEnS0RPnrzolMKDhY9HuLbt9l7Ktbd9157v0aAec0hXt3VR76g8/m7l9HRUrzPei5PfNtbZI51I3i8NH/uC7N8784esiixufdNjsaOIQoin1nxUTtOdTpcskRjjbG90xfuXW4vVJiKMzEeaqk0yb3vIAYCtHzht+w99U4Fn0dGaauecvFGfmiI9OFDCC4XzZ/7Iq66mQvus00g4PnLqY6dNGP5meZsZyyH08uLcbbJDQ0ien32FiWl9AzGqY14ywJ3zxR6Pk/qwH58CxeVxQWMZ2P8+atfp6AXkEWZP7ni92gKzCxY8GxyKs+wkExw+Pd/Fz2fJ7DqMlq/9Duzvm666whaOm3kbLrATMm5Qo5oNmZvVXMydh0e5u8e3QEYK2G+8fm1FcX5VOi6zq7Dw8xtCE25FN2ikEwilizjB+MZvrRvK892/Yab269lRd3SGV+7lEf3P8HLx1/lurnX8MDCu2d83kBykHguYW9Tc6Gx89AQkYCHtsbgKcV9GMv1f0zynXdo+vRnbUtzLBvnjzf9FWCkxfjzNV8h5J75RK8Spe9hNJ7B73XhksvbUCEeZ/T554hcsx5X3ZkJzrdId3WR3LMb7/wO2+pVyp6uEdLZwqSJSyGR4MgffxUEkcZPfKossP9C4s3+7Ty077+4ff5N3Nj2nrNyjTMxHuqFAqlDB/HO70B0nf4K1kpouRzZ3hO46urLxPKFwHQZyx0R5cAP9/yULX1v86llH2Z146UnP+EccKrP0Fql5ZnbdsEHIp4r8gWNP/vn1xFFkd++f4W9F+C54ky9hwWtwFsDO1heuwS/69xvffFu4uF9j7F9cDdfuvTTtIVOfyn/u7kvzUfHED1eO2XGhUpBK5zVldDv5md4oeCIKIdpSeczjKRH7dw+FwLOMzwzZHMFZFk8ayt3psN5huceTdfQdf2MDcrOM3z34zzD0+d0985zuMjxyp4LSkA5nDlmuvDB4eJAFMQztdWbg4PDDLiwgj4cHBwcHBwcHN4lOCLKwcHBwcHBwWEWnPOYKAcHBwcHBweHiwHHEuXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXg4ODg4ODgMAscEeXgcBGiKMo8RVF0RVFernDs381jdadY5j8oivI18/MvFUVZeoaqe8ZRFOWriqL8+zm61m5FUa6d5bl3K4rynTNcJQcHh3OEfL4r4ODgcNZIA4qiKO2qqh7F+CMAXH26BauqevvpluEAqqo+CTx5vuvh4OAwOxwR5eBw8VIAHgE+Anzd/Lf7gSeAr1hfUhTlLuDPATeQBL6qqupmRVHCwA+AS4BeIA9sMs/pAh4A3gb+DrgKCAEC8BlVVV81LUHjwApgLrATeFBV1XhpJc3v1QCdwC+AfwH+0SyvGdgOfEBV1bSiKGngG8DN5rG/UVX1e4qiuIDvADcBA0A/EDXLnwN8D5hn1u+Hqqp+U1GUecBvgF8DqzH6w78APg8sBt4EPqSqqjahvkuBfwX8wD4gUHJsHfC/zH8rAH+pquovFEVpAv4DsKx/T6uq+t8VRfkE8ICqqncqirLALLfGvN8C8GPgJeAF4JfAGqAa+ENVVR/HwcHhvOK48xwcLm7+A/hYyd8fB/7d+kNRlIUYAut2VVVXAZ8DfmZarP4SSGEIivcBSoXy1wAtwFpVVZcCPwT+uOT4auBWYAmGiHnfFPX0q6q6TFXVPwI+iyF0rgIWAPOBO8zveYAhVVXXYYi4v1MUxQv8FrAIWIohpNpKyv4J8KKqqiswrHAfVRTlg+ax+RiC5nJgM/D/AR8ClgHrMcThRH4C/LOqqivN77cDKIpSDfwb8DFVVS8D7gG+pyhKm/mbDpv/vh5YqChKZEK5PwIeVlV1OfA7wNqSYx3Ar1RVvRLj/n57ivvo4OBwDnFElIPDRYyqqm8BBUVRViuKMhcIqaq6u+QrN2FYdF5QFGU7hkDQMMTLjcB/qKqqq6o6CEyyfKiquhnDivV5RVH+N4awCZZ85VlVVTOqquaAXRhWlkpsKvn8R8Cgoih/iGFBaplQ5hPm/9/GEFUBs64PqaqaVVU1Yf6OUvflP5r1jWKIyNvMMnLAU+bnQ8BrqqqOq6qaBk5MrK+iKLXASgxxiqqqrwLW/VyLcS9/bt7LXwK6+f1ngfcqivJLDEvXH5t1scqtBq7EsPyhqupeDOuTRc4sz/rdU91HBweHc4jjznNwuPj5EfBRYND8XIoEvKCq6gesfzDF1gnzT6Hku/mJBSuKcgeGNeZbGOJmn3kti1TJZ31CeaWUuvgexuibHgWexrAqlZ6XAlBVVVcUpbSOleoqVrimCLjMz1lVVfWSY7kp6jeRSteSgL2qqq6xDiiK0gIMqqqaUxRlPobYux7YoijKbRXKKC23UPI5W+JWnO4+Ojg4nEMcS5SDw8XPjzHcaB8AHppw7AXgZkVRFgMoinI7RuySD3gG+LSiKKJpKbmnQtk3AU+pqvo9jBiiezHExOlwC/BXqqo+Yv69ZgZlPgM8qCiK13TvfQBAVdUY8DrwJQDThfYgRhzUKaOq6jDwFvAZs7zLMGK+MK+zUFGUDeaxS4EDQKuiKN8A/ruqqj8Hfhd4B1heUm4MeBX4pHnufOAGDMHk4OBwgeKIKAeHixxVVXuAvcABVVVHJhzbgxEH9VNFUXYA/xO42wz+/hqGZWYfhstrV4Xi/wm4VlGUXRhupkPAfEVRTqdv+VPgcbPM7wMvY7gXp+P7GCJut/n9IyXHPgLcYJa3BfgZJXFhs+BDwAfN8v47xr3FdHm+F/imeS9/hBEf1YURw3Spoii7zXoeAX46odwHgfeb5/6j+Z3kadTTwcHhLCPoujPRcXBwcDjfKIryZ8BjqqruMy1mO4HbTKHr4OBwAeLERDk4ODhcGOwHHlEURcPom7/hCCgHhwsbxxLl4ODg4ODg4DALnJgoBwcHBwcHB4dZ4IgoBwcHBwcHB4dZcM5jogYHY2fdf1hd7Wd01FnU8m7GeYbvfpxn+O7HeYbvfpxnePrU14emzMt2UVqiZPl009Q4nG+cZ/jux3mG736cZ/jux3mGZ5eLUkQ5ODg4ODg4OJxtHBHl4ODg4ODg4DALHBHl4ODg4OBwnshref5xx7/wZv/2810Vh1ngJNt0mJKCpiEKAoLg7HXq4ODgcDY4Hj/BnmGVPcMqlzdeer6r43CKOJYoh4pous6X/vYV/umJd853VRwcHBwuWkTBGYbfzThPz6EiR3rHyeY1tu4bON9VcXBwcLhoyRZy57sKDqeBI6IcKrLz4PD5roKDg4PDRU+mkLE/a7p2HmviMBscEeVQkZ2HDBHlcTs5RhwcHBzOFplC1v4czyXOY00cZoMjohwmkUjnONofA0B0gsodHBwczhqlIiqaGT+PNXGYDSddnacoigh8F7gEyACfUVX1YMnx24D/Yf75NvAlVVXP+tYuDmePeLLoo8/mCuexJg4ODg4XN6XuvGhmnLmh1vNYG4dTZSaWqHsBr6qqa4E/Br5lHVAUJQR8E7hTVdWrgC6g7izU0+Eckszk7c8FTSdfcPz055r0kcPko2PnuxoODg5nmWy+xBKVdSxR7zZmkifqGuBZAFVVX1cU5fKSY+uAXcC3FEXpAH6gqurgdIVVV/vPyV4+9fWhs36Ni5UTo+myvyNVfvxe1zmvx/+tzzCfSPDGX/8VgsvFuv/66fmuzmnxf+sznMjQa5sZ37OX+Z/+5Lsu75rzDM8uUl/RcZOXM2flfjvP8OwxExEVBqIlfxcURZFVVc1jWJ2uAy4F/n/23jPKsuysEtzXPxsuI9KbciIKwUKCloHGTbs1wADdTGvoWTNrWPTQMMJ7gYSQoDG9hARqhLxHBiGLVCqp5EollfeV5bLyVaXPDG+ev/6eMz+Ouec+H5kvMyNT8f3JyIhnrjn3nH32t7/9tQDcMz8//0ClUnm+34ddiW7Sc3NlrK01L/v3XK+xtJrdDS0u1TFZcq7oMXwn38Ng4QIAgEYRVhY2oNv2VT6ii4vv5HvYGc+/6S0AgPy//V9hlieu8tGMHjv38PJHtdmSPy9uro39eu/cw0uPQSB0lHReA4D6CToHUACwAeCRSqWyXKlUWgDuBgNUO3ENh5rOA4Ag3knnXcmIq1X5s/dC3/3ITlwjQUn6/FA/GPDKnfhOjCCTztsBO9dajAKi7gPwUwAwPz//g2DpOxGPAfje+fn52fn5eRPADwI4Nvaj3IkrGl7AxOSTJcaA7IjLr2zEtVQL5T77zFU8kp0YR8Sbqeca8f0Br9yJ78RQheXtHYuDay5GSef9C4D/MD8/fz8ADcB/nZ+f/z0AJyqVym3z8/OvBfBV/tpPVSqVnVn/Gg+fM1FTRQf1Vogw2mGirmTEtZSJcp+vXMUj2YlxRHDhgvx5B0TtRGeoFgcxiQe8cie2YwwFUZVKhQB4dcevjyt//2cA17b6dScyIdJ5kyUbWNlhoq50qExUUq8PeOVOXAsRLi7In0ngXcUj2YntGIKJypt5RDsg6pqLHbPNnegKT4CoIkvnBTsg6oqGYKKs2Tkk7daQV2+PiDbWkbg7qYhescNE7cSgCJMIlm7BMezrBkRRSrH0/vdg/XOfyWgCr8fYAVHXcTQeuB8bt9+25fdJEMUr8sIxCMs3br8Ni+96Oyjd8WEdFnGtBs00Ye3eDRqGIGE4/E1XMSghOP26P8LJ3/p10Pj6WATGGeHykvx5B0Rdu9F85GGsfuLjY5/DgiSAY9gwdfO6SecRz0XzwQew+eXbsfqxj1ztw7mssQOiruPY/MqXsfGFf9nyTkCAqKkxCcsTz8Pml29H67FHESq78p3oHXG1CnN6GkapBABI2uNjeNznKzj9+j9GtLk5ts+kYQAkbIxU7/z62D73egmVoduOIIpSim8+fgErm5fffuZajqX3vBO1O7+OaGV56GsTz0P1a18BiaKhrw2SEI7hwNRNRGT466+FSBpplWHz0Yev4pFc/tgBUds0Nm6/Def/5n+AJhcPYOJ6DaAUxNuaDsMLE5iGhiI32LxUENV67BFQzqa0n3nqkj7reg+aJEgadZhT09CLDESR1vhSeu4zTyNaXoZ/6uTYPlMFBrVvfmNsn3u9hGprsB1B1KnFBj72tefxuvc+eLUP5ZqI4Ny5oa9Z/If/ibVP/TPq375r+OdxJsq6jpiopJmCKOK6SMY4h2232AFR2zQ2Pv85eM9X4J86dVHvp3EsF9+talW8IEbeMWFbbHgEl1id13jgfvaDpqH99A6IGhRxowFQCnNqSmGixjcBxQ0mVB+nfkkF6XGttpOy7QgSpMBpO4Ion2+Sdu7aaOGfPTP0NZ6oqiXDrypjohiIupY1UZRSBIsLoJQibmYNm6O11at0VJc/dkDUNo+LZW5ipYYy5OQAACAASURBVKqLbDEd5AYx8rYJ22LtecL40piocGEB1p69cI7cAO/kCRB/p0KpX4hqPGNyEkaxyH43xl1c0mCTG2mPL3WTeAowSJItj7frJSilXZowmiSgUQRjgrmUb0cQ5fnX7sLdKxLXxdk/fwOaj4w3jaQXCgCGg6hM+l0fvMTGJEZCE57Os0AoQUKuzUKezS9+AWff8CdoP3kUCQdRuZtuAgCEOyBqJ6548P5aF8vcqM1rt6qpEUyUw3scXopPFKUUiefCKBaRv+lmIEkQLq9c9OddS0HCEIm7NbBCPPZ6o1iCUbwcTBSb3MbKRHWAYvEd32lR//ZdeOHV/w2ekioVLJQ5Nc3+vw03EE0v1eG0vGtfkxMuXEBw/hzaTz853g/mc3Jw9sxAnal7PPWbVlnIXhFyjygmLGfzbUyvTRC1cdvnAQDeiRdkOi930y0AgGh1B0TtxBUMEoYAT4kE585e1KKUKCCKbGEhjxOCMCLIO4ZM512KJopGEZAk0PN5mLt2AWDl8N8JsfKPH8TZN75+S8J+AW70fEGm88bJ7CQ8nUcuQzpPz+fld7jPV/DUa147VgH7do+NL7BFpHHvPfJ3gnkyJycz/99O0XTT6s+VK9Db9HKHmC/jMXus0YBp24jnDZzDVL2heE+/EEabtuHA0pkG9VrURalrlKbrkvHO33QzACBaW7sqx3UlYgdEbcNQRXkAEK1unbmJa+kEshUmww8ZYMo7JpwxpPMEs6LnC7B2zbJj29gY9JbrJvxTJxFXN+WEMkoIwKvn81JYPq50HqVUHksyxnSeAAbW7j0AmO6qfs+30aw8j8b9947te7Z76LkcgCzbRLio3Jic4v/ffiCq5abs0+rm9mPKthpJi82fW3nuhgWN40yqdlCxjso+k6Egiv3dMZkmCsC2rtCLE4LKuaqs4AaAtc98Cqd+77fS19Rq8h7kbrwJ0LSL1kQlrdZIFY5XM3ZAVJ8ILpzHmT99HWp3ffOKC2UliOL5dLUNyKgRXyQTJR6OgpNqoi5FWC6+2yjkYQkmavP6B1E0SRBxsBhXR2djEnm9CmPXRBHPkwvBWJkoDhrsPQxEJY2GbJzcevyxsX3Pdg/BxKkLrABNRqEAzbK2J4hSUnjXAxMlwNM408qd940O8G5T2afhIIqn83TmEwVsXyZqve7ht992D970T0/gqw+zCkVKKZoPPQAA0BzmKxg36vLam9PTMKdnLoqJSlotnPyd38DSe945pjO4PLEDovqE98ILCJcWsfrxj6Bx/31X9LuTFhuAzsFDALJtQEaNUTVRnTssAaJySnXepaTzEiXVY47ARBFK4MfXfqf7uLoJ8DTeVlJaMjVWKIy9Ok/dmW9VqzUoxDELJso/ewbxOkt3BOfOXteiUjUkiFIWXMo1MXouBz2XA92GIKqZAVFXlomqBXVUNk+M9TPFJjRpNsbmlt0JhugAdqTX/e8XaTrPlum87Vqh98L5umxOX22y6xGtLCOuVlF62Svwone8B3ouh6ReQ9JsQs/nmWnw7CziWnXLdj1CwN8++sRYz2PcsQOi+oSgIwEgOD/cF2Ss382NypzDhwEw88Utf0ZdTef1BlHVb34DJ37r13Dm9a+Vk02bT6jFnAlbCssvJZ0nQFQBRrkMzbYH6gnuPHc3XnvfX6DuXx5xsnv8ObjPHRv+wkuMaD09x63cP6IwUXo+D2ja2JgoYW8AjFdnJRYNwUS1Hn0EAJA/sB8A4D333Ni+azuHbjNz2kRlovjiqzkO9FxuqND4akTLjWCZOnRNw0b9yh7ff3/wzXjb0fei6m99o9gv5NxNyNjGeed9G9RFQAVRw5ioXsLy7ZrOU8G2aAUm5tLCd78YAEtbx7U6kmZDVqQa5TJA6ZaLWUYxNd0OsQOi+kTGLOwK7x6Fx4Zz+Aj7/8Wk82pqOq/34N388u2gYYhofU3urMSDMlG0YRoaNA0ILqHti9REFQrQNA3WzK6B6bzzzQWESYjF5uWp4Fv+wPtY+5nL3M9J1QDE1dHTl4l6vXQdRrE0toUgy0SNX1gumCgxlmZ/7EcBoMsz5noNod0QYx5IU516Ls9A1DZkolpeiImCjXLRQqN9ZVsMCSbGi8d3XdQ03rhSekLbplmMLaLRYBClmSw1NxREccBkGZYiLN+e1XktLz3ngGtn3WMcRL2YgShzchJJs4Gk0YBR5iBKMOrNrW0GgwXeuJtXRW7X2AFRfULd/V/piU8AOOfAQUDTLoqJiht1mDMz7PP6pG7UxZmE7GEXk2i5YEPTNNiWgTBKQAkBGTBx9AviskXE4KkOc9cukFar7+TSjNgx1f1mz79fSpAgQFzdBHHdTD+zyxGXykSJ1JBeLI4xnacwUa47vlSHqECbnpY6PmNyCtPf/1L29+vYN+qfK/+Cjz/3GQCpFiZpNqWOUoxzPedAz+VBfP+qmZGGKys9NzBNL0KpYGGyYKN+BUGUeh3GCaLUDbA65ntFtLkx0oZCpOWMcpn9PxyQzgsCtgmyrKEgKkrY59gZTdTlYaIS172ksdd0u5moYHEBeqkEe243AMCYmJSvEddKWLWQLc5jwQJrESaqurdr7ICoPpFloq6sTkB8tzk1DaNc3rImilIK0mrBnJxiu98eg5dEYSavLxaABn9QJgpsV+SYOsKIoHbn13Hyd35zyzu7RKnOAyAr9Pql9NqXEUSpwGacbU96fpcipNwSiPI8QNOg5xiIMorFS5785HHwe6fncqwd0JjGtcq2CB1Y+RWvhMnp/Ou55cOjK0fxxBrzchMLJg1Dyc4JgKk7OWgOu+7Dyt4vV5z5kz/C6df8fuZ3QZQgjAjKeQsTJRtBlMAPr4wmpxWl4MWLxzfHJs3RmCgSRTj9mt/Hub/4s6GfKe6tUSrz9w5monQnB93JDb3XIRGaKEupzhv/9Q+Xl3Dyd34DzQfv39L7/NhHLWBAtNUDRCX1Gqzpafl7c2pS+ZlVpIprpkpkhgWlFCEHUUgub9bgUmMHRPWJpNVkk56mXQUmij34RrkMc2qaifK2sIjSIACNY+jFEvRCsWc5e6djtcjxC8+YcoHpO2zLQBgn8E+fAg0CRCtbS7OlFgecieIPXNLHw6UVchAVXAYQpaTYtgqiNhtbYxCi9TXAMGBMTm2pGjFxXei5HDTO6Oj5PJAkA6uBRv5sDs6tPXsBjM+1XOreeIk/AEy88odg8Z3oOFOH2ymCJIQXe/BiHzGJM7oZ4dMmQRQXlqu/u5LR7zuFBrJUsDBZZM/8qCm9WlDH0dWnL/qY1rz0uXDHBKIoIRnQPoiJEvPBKJVjpIuJGlSd57Nn2LFHZqIs3ZJM1GUBUUtLACHwz57d0vve9Ojb8Cf3/RXCJELTDaGB6WWDiID4HojvS/sOADAVJqr8Ay8DABjlrafz4s2NdCNylTYdo8YOiOoTSasJs1y+KjqGpNUEDINVtE1Ps53tFqqpRPrHKBZhFAs9NVGdYnPJRPEJdKKYgqggTC7a6Vqk82R6ipfB9nowKKVyd3o5hOXRejpZeidHA1GUUnz0axX8wTvvx/3PjCZ0DNdWEZw7C3vvPli7drF+ciOmzojryvYSQMrgqTqbiw3BGFmzjA0cF7ghvg/NYcBv36t/DdM/8VNwjhyBURivMH67hdihA4xVUce0YI/pNgFR/Ww2RIqmlLfkM99oj5ZO+sqZb+J9z3wUa+7FWZasuSkzPK50HnFdgBAJdgYxUeHy6MJl6fclQFSf6jxKKUvn5RgTNdSxnKfuVCYqTsafzhPPfqcH4bBY5feoHbXR9CIU8xZytokgjKUXoWCcgOxGKj9/K/vdRXReULMvNNwBUddcUEqRNJswymXoufzAsmQax6jf/W1Em5sIl5e37IFEogjNRx/J2AwkjSbMiQlomiYH6FZSemLRMkol6MUS02F09PTqBFZiAWi6EXRNQyHHHmjL0BEn9KKdrsVuwuDAQBsAovwkQMJbHlyWdB5vPaDn8wgXF7quSa94rLKGux5nAsezK6Md0/pnPgUax5j5qZ9murQkGdn4j3iuvFYA89cCgMS99J26uObmDNMYDAPmidseiX0jvi8nz/LLXoG5V/08NE0buzB+u0VdAVHtyM3ME+J5lZoox5H3dZz2EqNGpKSUVUDf5GLhct7CZJE9m/X2aIvWps8+sxldHEhWmahxpfMEi28fOMj+38F4h0uLuPDWtyDaWEe0BV2k1ETJdF4fEBUEAKXQnBx0xxmezstoorjFwWVo+yLm4WQLRR5qD79W5KLpRigXLORsA36YSBsdFUQ5h1hF+cSP/Jhk0y8qnadKTeJ4y/YIVzJ2QFSPoAEDHUapNJCJIlGEhbe9FSsf+RAW3voWnHn9H2Px7W/b0nctvevtWHr3O1C/L3V2jptNOfBEz62tVOgJlskolfpO3PI1fGcl0nkNN0S5YEHnFRGWqSOKicJEbW0B6NREiTLwXpNLW9FIXJZ0HmeicjfexEpuR9gZLaynxzRKmoNEIVqPPwb74CGUX/FKGAVumDnCdaOEMECSv1xMFHcWn+YFBwPAjfvcMZz8rV9H/dt3Df9cz4Oez/X8m14sjp2JIlE0EgC+3FH10wW66TUyxySYH3HNNScnS76HiZ0vR8SKV5mqhRM6l1LBxkSRLeKjissbAZsTLpZFWr8M6bxYFOUcZCCqk4GrfvMbcJ99BvV778kwUcOYYrkB4fewXzqPSF8wB5rjDAUAvTRR4xKWP71+DP90/LMglMhxOAhE1dsh/uCd9+HBY+y6VIN0494K22j7Ecp5i2UnIiI3CqaSzsu/6Ltw5I1/gT2/8Ivyd1upzltpr+Jjz30abS97nNs5pbcDonqEeBCNchl6PtdXgOs+8xTcY88yZmNpEQAzFxw13OPPof0Ua5Lpn2bpJRKGoIGfVjbIiXcLrUNaSjqPl5l2PjxiATX5giooU7HbEGGZOkAS+Zmd7MUnvvEC7nio/zl3VptpNmeielC0zVABUZcjnbe6Cr1YhMUrSZLWcIakrXijCIO5QZE0mgClcA4cYGwMZ95GoaSJ7wGUdqTzul2wLzaI70OzrFSjMIBVrH37WwCA6le/MsLnelII3xlGqTQSo7Ww3kY0YnuhU7/7mzj92j8c6bXjiAefXcY/fPYpJB0LbT1Ix2jbZQuKGFuicIIoZptCLzLOdiSjhgom1GdYWJqoTNSomqh6yOZJ/yJB1IafHpMXjSedJ3V/u2Zhzc3BP39Ojj1KKdpHjwIA3GeeRqj4EA1jZaXzfEmk8/qAKDV9O4B1F5EyUeMXlt+z8CDuW3wIq611eVzxgHTeE8+vYbMR4L23MduCVSXdutFugFIGtnO2gTghiPiYUpkoAHAOHZIsFIAtmQZ/68L9eGDpEXz++G2Z32/nlN5QEDU/P6/Pz8+/e35+/oH5+flvzc/P39LnNXfMz8+/+vIc5pUNgZiNUhm6k+9y9RYRc1PMXT/3n5G7mV0WseiNEu2nn5I/h4sL/LsFgBMeG+XM70c6fj5Y9VKpbzpQpOWE0JsEAaKYwAtiKSoHGIgqJIpgVmEvLqy28PVHz+PTd/XXFxHPk3oZYLAmKsNEjTmdRylFtL4Ga3YubacywkPd8lMQtdkYBUQxlkGU+uoOu5aj7KSk0abKRBUEEzUaiEpaLax9+pM9tSA0CFjVEE+9DUo1iPGh82vVL2gcg0aRtLDoDKNYBJJkoA5oYb2NN3zgIXzu7lMDvwtI2bqLsf24mEgIwXu/eAxPvLDeZURZVdN5bfazvZ8ZjIpK0Ew6jzchjq8GE6WCKK+biSoXUk3UKEwUoQTNkD0/Fwui2lF6HONK54nUsVEswTl8BKTVkucenDsrf/bPnIZ/MnVKHzYXSBAlmfvebFF6v5kmChgMACSIMhSLg2Q8IEpo9mp+QxrAqvYbnWEaWTigplurHpuPS3lL9lQNNtmaYkxOY1Do+TxgGCMx0rbBNvDtjvn/Wmei/hOAXKVS+SEAfwzgb3u85i8BzIzzwK5miLYrBheWA73FoGLRs2Zncfi1r0d+/lbWn2xEEbEYVHouh+DCBVZZorBg6r9bySdLTVSxJCfuTm2ASC+lTFQoK/PEZAowTVRRmeBUTdTdTy4OPRbieVLXA6QgqtcCni159uUE0/NzowjNxx4Z+VrTOJIpWrEzGsW3pO2xCe3AXBG1VgAyhFERxpKC9tdtwUQNX5jEPVGZKAGoRk2j1u/+FqpfvQPn3/RXXX8T2qWUDex/TGoPv0Eh01W53um8UTxinj29CUqZ/mwYY6WyOFfCb+npUyn46OwhqQrL/Ta/75OT0EullInyfWi2Dc0wUsuHqwCios0UdKpjSfTNK+W3Vp3XDNugYNffSy4ORPmxh2mHbfLGJSwX7KpeKEh9zvm/+R9YfMc/yE2rc+QGoGPsDGvI3VWdNwITpYkNlN8fAEQ8nWdlLA7Gk86r8XRz1a+ner0k6cu6NRUzTS+IM8L/msee33LBgmNzZ3UuMVFtDXqFpmnMqmWENUw4uJsJuz8aB6LbGUSZI7zmRwB8BQAqlcqD8/PzL1P/OD8//yoABMAdo3zh9HQBJm8ncjljbq580e+lGls4p/bPob65hhaAqYKBXMdnuvx1u/bPYWKujPWpCXgApgu6LO8eFGshG8zT3/8SbDzwEEpBA5bBPnNi7yzm5spwg324AMCK/JHPqckfwtmDuxEWLawCcGIv8/4mf3gnD+5FHUDeBHyH7QL27CrK15aKDorKJGnGIebmykgSggePMbsDXdf6HtupwIM9PS3/3mpO4zwAx6Bd76Eb7NzzVg5e5MMuU8wVe3/uyte/gaV3vQu3vu6PsOuVrxh6TSK++OYnSpjaN4s1AAUtHnpNw5jANHQc2TeBhbU27JyN6YnegAEACGXXderAbszNlRHtmsQ6gJKjY3bId9V5dqE8OyWPy9g7g2UAeT0Z6f77eS5OXVlBKW4jv2+v/NvJMIA9uwszu6ewAHbP+33mOZ9vEEx94Pf6hAHswmS55+uKs9NoAJiwgZLy99h14Z47j4lb53F6mU2u63UfPgEO7+3/fc3NVAy8a9KBwUH55YpHv5y2rMkXnMw5tpMUGNKEXYfiVBnxnj3wzp/H7GwJ5+MQZj6HubkyQusAzgIwfLfvNV2vebj3yUX87I/eBF0fn1PzhWbKRJcsil38+0PCFqsjh6YxVXJgGhrcIDvWeh1rq5p+nmaTi5pv/STAgYm9aMdtRAgvac4W4YLPyQd3I54uYuPzQLy+jtb6Opw8AzW3/L+/gBfe9nbQhMCaKMM9dx5li2B6wPevc7H33JG9OA/A0rrnLwDYPMvuWXnXJEKdogFgsmhkxr4amsmu//7dM4hs9szZeeOSr0UYh2jH7PNqXgNTCjCbtAjyPT4/oel4awQJakl6jwP4AArYO1dGLPAnJxv23nwQujkYSlyYmkRYrQ4/r5Nso2LwzL49WUaw6mOyYGJiDOPjcsQoIGoCgLp1Subn581KpRLPz89/L4D/C8CrALxhlC+sXoEu4XNzZaytXXw6qLrIBMgutRBpDPCtL6zD0bMpi+YaQ+KNEAjWmogN9pCunl+FPTf8e7yNGrMyOHIL8MBDWHryGMAntUB3sLbWRBIxsrC1tjHyObXW2e65EWlIwCtuFlfgKO9vrbMHJLRZuqa52cDSAhcKapDflSQJiolCu1frWFtrotEO5S6WEIrFpTrTTylBKUXcdmHu3is/L2yzp6Nda3adzwqn2vfm9+B0dBZnl1fY6tsjqucZ4tg4dR7kpu8eek1EeiXSDLQTdk9ryxvQe1zTxfU2opjgyN4yqk0fxZyJos0elRfObODGfRN9v6e2wCoAXdhYW2vCjdj9rK3VQIfcv9YSO0afGvLauBGb2JrrtZHuf3M1ZU7O3vEN7PqZ/wiAV5x6Hohpo95mC0271ur5mZQQBOuMyvf5/e4XwRJ7XQij63Vzc2WEvOJo/fwKvIn0oTj3138B/9RJHPrTP8czJ9Md77cePYeffOWR/ud36rz8efXcapceY9xxQanIXF5rYLaU6gXX2ptwDBtBEqLB0+U+0aFNToGcPInlkwuI2i40mz3LlGiApsEd8Cx/+q4TuOOhc5gr2/iuQ+M7N39NYRWWN0H492/w+dhvB1j3I5TyFjYbnjy+fnPp2Y1UT7TZaGx5vk1IgiAJYcJG3sih4fcei1uN5hqf+0LAmNyd+Vvt2WOApiHccxg3vOnv2O++9U24H/sINhfXER/q//1+g1uv8PnYb7k9j7e5wtYELwZiwp7djaVNeOXeC0KLp9lqmx5aLbYBq7fal3wtVD1T1a9jTz39vLWzS8jb3YBkZT3dFDxVWcUSSS1hNlsNADPQCQHhbcDCzSqMchkbIzStprkC4tYFrK7UM3qpzqgLmQlnopBjTPjmShXB7PiLjUaNQeBvlHReA4D6CXqlUhFJ218AcADANwH8IoDfm5+f/4mLO8ztE0RJqwjBbM90npdNeUj9yoipl4RX4YlKknBxUaaDBG2sFwqArm9JE0UUiwNBtQpPD/maDk0UDUPUWz3SeaaeAVEiFeB1uBqL/1NKpeCWBgFASKbaTAqtg246XGii9pcYe6KmS7rOUeT4R7UOkI1gc6nQsU+O/vXvfwh//uFHQChFm3ujTJfZcQ8Tlwu9ixARp+m8EfRUPKWg6pAMKSwfcUwpaTM1bUPjiN2LXA4ar5Dsl86Lq5tSAzhUKyI1IL3Bbpo6zYrYhdnpytkltP0Y33fzLmgAnjox2CIk2kj/fiWsAkSPMADwg/TnMAnRDFs4WOIaKI+nkRxHceXfkB5aAJjlQ7mMuFHv63hdEwvpGNuvkCDIzEmd6byCY0o9TN4x4YfDBf5q9ezFpOLEe/JmDnkzP9JnuJGHTxz/LBph/7lQPENGoQhjclIK/QEmaTAmJ2VfO2D0liQk8NmGl68H/Xyi0kKCfCpdUJ59EgSZeSdMIli6BV3Tx2q2qc6dNb+RWb/6eWc1FEfy86st+LGPssWuj8tZrULOlOk80mxk2rwMCqNUGqkiOoi5HxcnE+T8sY3TeaOAqPsA/BQAzM/P/yAAaVFbqVReU6lUXlmpVP4XAB8G8HeVSmV4Oc82D7WiRmqigm60LUTWAiQIwfLIIKrFvKhMIThtNro0UZquswqnrWii2i3AMBhgKE8ww8N6reM1beaozXUaJAyw2WDnPTORpkiYJkrpSs7Bl7qgACyHDgBPrD2N1933l3hw6VEpZsxqosQC3ksTxa7bjRNMy6DuprrOkV/juI/zeWek7TeckatFltbbcP0YpZwpr4m4Rn2PixcbiOs6yBer673tVMsmQgDzZAvCchFUMfqjfipwFvegn05L+Gl1fl6vEJ8hdFadIQDhqZNLWNnsfi6qNfa7771xBjfsm8ALF+pw/f6akKxAeusgKlhckODxg19+Dn/+oUcGvt6P0nEeKD8vtJZBQXGofAB5M4dIWHk4DkwBolaWmCawlN5PY2IS0coKTvzqr6D5aPd3C12i+BdgY871L35hlXYm4llXrpvomyfC4ea6apAoxPrnP4tQcfxvhOlCfDHC8k4Q5cbeUI3bF05+GfcuPoQPPvPxvq9JCyJYw/PDf/pn2P1//z/y79ZMtg+bfL6GeJkRXpSh6To00xyqidIcJ332FU3U8gffh7P//Y3yXEMSSjG1NUZhuQqi6n4jU2HeuZZEMcGJhToayphr+xGCJETZLsHUDASEnVfONpCzDaYpC4KhmkkRUts7hAwIEg6i+BAUz87VapU0SowCov4FgD8/P38/gLcC+N35+fnfm5+f/9nLe2hXLzL9rgYJyz0XmmnKnb0uRcCDH0jRzFdMsKkNQbOrOk/8vLXqvDaMUomV2BsG2/12CcvbMAqFlCkJAqxzgLBL0fyw6jwvPQ4OXjr7awkQ9eTaMwCAz7xwW1fLFwCZ7+sMUaFzZOIQAGDZXe16jQjx2SODKNkINqfsPgffp2NnqqAAinkLM2V2TUZloiSTuAUQlVYWpUyUtDgYGZirjbOVHbAqeLU4kO2zELjPHZM/0zAc3CdMqT7rFeJaP/LEGbz2vQ+yz1QqXUN+vKW8hZfcvAuEUjxzure7NgDEG8NB1Iq7lrEfkN+1uoqzb3w9ql9j+7x7n1rC2ZWmHLu9IsNEhYm8FgstVlRxoLQfJauIhG+yNCcnHeG9U6zaUPXRERsmAPI41BALWa3l4YunvopNr4Y/eOf9+P133Nf3GIeFYG07TVYppWi5zPtHRM42EMYkY+ew+aXbsXn7F7Hy4Q+mxxleIhPF55S8mUPeyoFQIt27+0XMzR8Hbq7abWi2DZ2PcaNQgL3/gPy71dHMVozPQawmJQTR+rpMHWuWNbw6r4/FQXD+fKalSZhEsHV2rOYYheU1xcOs6tVBPKXCuoOJuvOxC/jrjz6Gs8tNTJbYsfhRjCAJkDMdFK0CQsreb1sGHMuATSNooCNXoxsj2nv4HESJdJ7YhPXadG+XGAqiKpUKqVQqr65UKv+6Uqn8UKVSOV6pVP6uUqnc1vG6P6tUKu++fId65UIsPnrOgZHr79OTuC70PNvxAGlab9iCt/LhD+DU7/02e0+pnEnZJR3pPPEzcd2RDQaTVivDZpiTU11gg7Rd6MViulsKQ4WJyoKovKgg2b0bNAjwvqMfxnKb5ctFuavHd8q7Cyz378U+YjfL1AFgVLph9AQVQRLA1i3sKczB0HSsuv17Wol2MqNWOglWRreddPfZaqEdufjIsU/2TB0+e4Yt2MW8JXfr7QEsCTueBksDW+z1AmCPls7rthXQB4y/3p/RStN1ChMlftacXGp42oOJcp87hs07vgRzehqFF38P+8wBfloCDIvP7Axx7x0+hoTVhIiYn3MhZ+H7bmEL3JMn+i+SakcAsfBVmwHe9pmnsFFn/Q3/+4Nvxuvu+8uu98Yb6wClCDucqlf7aDoopRkQpZ07uPpMogAAIABJREFUiRO/+ivwXngBF1rsMw6W93EQlZosinSeKKFXq5cEGwQA9t5U9C9CtGE5FRzDV87cib97/F0AGAt2YiEdoyQIsPHFL4zEUAqwKQCEeI8XJEgIzVia5Lj2LwhTENV+8ij/nPS71HSe36M6L240EG32B8PCFypv5JA32HwzzOagYLFnYZAxJ3HbmepWIAuczE4mqsjn7AGsdLSxDhr4cA6xzZ1m2yP6RAkrESWVxudhsSnOMlHs33gMjuW1sDOd5wGGwb87C2TUTgwzZQeGriGIIhBK4BgOilYREbIgyuGV06OCKFGZOszew48DlKwiDA6ixDp2rTNR33EhF9xhTFS7o8/ZiG0d2s8+m7ZDKZdle4yk1cz0zROR2uYPL8mnhIC4bobNMCanQANfngOllDNRxYzlwEbdZyWsVlo9aZk6LBKBarrciVUWn8FXVj8LAFIr5PHFRpSoAsDSOjPh7KR8dcfp2/bFMR0YuoHdpVkst1f7UvzCCX1Uzx0BjLWcA80woBcKSNpt3H7qq3ho+TG8/+mPdr3nGV7eXsql12SYXiRpNjILZbobHcHioAcTpek69Hx+dE1Us8VazSC7A84wUX00UZQQrH6CpUr2/epvpI2KB4w7sUPU+jBR4vwtrvNYq/sIlSbWgrUt5Ewc3lPG7GQODzy7gjsfu5D5nODCeVBCss7b/Dl78uQ6jp5YxxMvrA1cgJI+OrqlzTbc5ys48du/joD7tQGsMpMi3SgYy+yY/PNncaG5CF3Tsa+wB3kzD5PbH7B03i55zECWiVKBSOc8QSmV9gJCY1gNUmuCrz18Tv688cUvYOML/4Ll97+n7/l2fqdIZYmx1OIl7aUOJgpImea41UKwwM5bU6qqhX6xbJd6MlFL73lnT5sNEcIWgTFRHBxFg0GUzQt3BjE1SdvNbCAB3vVBdGDoYqKGdxQI+X10DjIQpVs2aF8mqn+vROL7cm0RQCbimigAY7E4oHEMSqlkovYU5tDwGqBBAIvPC53nurSRbpLKBRuOZcCPhZO6jaJVQKKFAAgcS0fONuAQAaJGTOeNaBodJiFKdgkmx/DXiybqOy5IEACaxmjhPiCKUtrV56yXsLzTVyhx3Yw+SQwSo1xmTJTSN0++ZsR8MsA7k1MqF1Ig3QnHamf5JGEpP86YJEGAjUaQSeUBzIDNJjFg2fL8nJCglbCHQYIonhIJFBC1ssEmn87diu44PZmZIA7hGOzzDpT3wo29jHeUGmIhSBqNkbyiiAKMAbbDSdotEO51s8JZLzWNIe5dMW/KxaVTL6IGTRIkrVamk/mg9GX9vntQ+9Y30+/roYkC2PUbhXGgSQLiuTAnJqHZdmbMqmk3qevouAfNRx5GuLiAiR/618jfdHOXdqx+3z1Y+/QnM8B2WDpP6K8sysbH6cUGIgVEgT8rBceErmn4rVd9H8oFC5+66wTihN2L9rFncfbP/hTLH3p/ZhctwIFgQZtulAHxnYuyeC47d+Irmx68ynGQdlsK3oH0XosUh+a2+PVoY6G9hL2F3bAMC7Zhw+J137qTY2nyQgHgY8lQKgjt3Xvkz53PsxvESLigNvS7Nw9PndyQ10RcdzX12i/EhkOAO8HiCrfyjCZKjHOu/6odfVKeR6SkUr3YR85wUDALPUFUuLiAeGOj78Yv1UTlUTDzmd/1i2hIY15KSNecDDD2WxTQdDFROdYke1BqPzjPQZRkoqy+Ke6M9lKwL5x9UgXdYgyGJJJM1KWabRLfxwuv/m9Y/eiHUQsbMDUD+4p7JcA3OJhXi3oIpVhWtIoTBRuObcjnyDFsFC2+qTMjlsqzDMks63384TpjVLd+PwmQMxzYvLJRSi92QNTVjQeeXcbjz/dPDXUGM8hji01fEMX7d2WMETuYqGdObeCX33QX3vTxx7HKS4lFexj5HsVUk7gu4lpVMk8izC0YbvpnTgMAcjfcmL6/YwBL3VWpxBZU20bsB4gT0gWiLFOHTWNQy5Z94HIhBQGbZGc4iHIliFI62YuKpQ4Qpdm9maiAP0AAsH+CLTYrfVJ6YiEAISM1uO1c7PViEaTVQtHIpgjCqBuQFVWX3mgA09FiLV/UVGyaLs2eL/F9rHzoA1j92EckCEzabebu3uG5oucL6fkOiMRts+8vlhhQVUGUwkQBLCXRqetoPvowAGDmf/sZAIpehC+EKx/6AKpfvQPe8dQ7SYDDfsJyrYOJOr3UQLiWgijKBa9F3vD64FwJL7llFlFMsMLTbKKVUvOB+wEADh/b4jkTY6/pRZnxt+Zl04JSR9doZIDgyqYrHf3V/l6CjREmlAJEtRobCJMQB0r7APC+Z5EwB+Tnq6aQFCZq13/8Oez95f+P6Qs7FhTV5NKLlUVa4yXlMcHCGq+qVXq4ETqk75vKetu2BFXSrbwnE8XGub+aPn9JvSYb7/qxj5yZQ850pI6FUopP33UCTz2/LOeYaK23rtFXhOVCE9T0Pdzz5GJGVA8ArSePYuHtf4+4nc5/vc6ZeLxtUg+XfZFiFf+GUYK3/PMTeKSyxlnp/mxr0MFEaZbdv3eefM7yXX1PVcPjuNFEQhIQSuT565oOXdNBPX/LjewBwH3+OACgfve34cc+8mYek84EbD42hR6v1WhjrcatFZpBZs6joKw3HmH3lKXzePN4DqJytgGbM1EjC8tHSOc9WllGQhPYug2LiubFPJ13LWuirod43xeP4e2fe3pkh2MS+NBzfLHtY3EgqkAGMVFPnFgHBVA5X8M9TzENRbiU1WOYpawzOY1juWsSIf4Wj9CB2z8tQNRN6XF1UNYCjEnxs+0g5sLDXZMdIMpg6Txi2ZL6dhS9xPREfyaK8s/spHxZOq8jlUQpgiSEwyn7/WWWSlrpIy5X01ujpPSoIvgE2MNJ4xhJB5hrnTiBXWENE8ruvJSzoOsabFMfmM5TGz+L6Ccsb3GdCZC25EnarUwqT34GT+cNG7/S2qJcgu7k5Hfedu9pPPwkSwWpIKpzISDtNqBpsizcKPVuj7PxpS+m7+Gf0ZeJ4uDK4mm2M8tNxOspuNG5ILuQS4HjwVn2vQtr/HwK2WuSv+VF7LsFiJJMVJgZf2rbCkAZ/80moijd7S9vupKlVTcqvmSi2DkYPru/zTo7/sMTzJrENmxYQgjLz1dU6AFZEKU7DiZe+UMwpya7GLGmUmLuR+l40RwX33MDmxNOLrKxro6nN9z9V/jbx96B5XafZ4UDcD2fz6SGhYhdTed1pq0j3l5HtLMRgMBLGIjKGznEJEZEYjTaIe546Bw++MmH5eeFfUCU2LTkzBwczsS8/QtH8aE7juPbR7MbzY3Pfxbto0/ghtselb/rZXOQyDm5+xnKv+i7mOXBbja2z640cexMFfc/swyzPNG37N+tHId38iT0UkkyObpts010j+dRVMFqjsPmV12Xz3fcSDMQSbMhmw9bhtKrVDfx4595Fqdf8/sSsI4a7rGUlWQg10HRzMOOhV1AGdA0nF/YwB+9+wG0/QhLG9nUXr0VwrF0eWyOYSNnsjGtGQksU2eaKMFEjVFY/s4vsjkxjnRYnInSJRM1PsuPccd1D6IISQd654Dp+x4/kItNykRlmYCeLTr4wysmqTNL6YO+uM4e8EFMlAh73/7sa/gAHKVfmH/6FKDrcA4fTt/PQcza8ibTQ0kmipfh27aclGd6MFEWiUHMNLUpdjYAlVVrwvJA+HwAKojqnc5TJ6GQRKCgcPgDO5Nn56w2JRZBojAjsu/1YDYffwxnXv9aOYGl6Ty+IPKHM1YWzTAOUXv32/CTqw/gxTem6dA8X+BztjGQiRI7/oyQnqdLO9N5zUcekj9Hq4yZIe12TxBlFAoApRmBaq8QAnC9WILmOPKcv/n4BZw4xRYzkc7ULbubHfNcppnSs7tA2Z6Ij2/v+HOS8RwmLBfnL5iolhdJew3oOozAZ2NM0dsc2M2+9wJnXTo3MBJEeR1MVDvMMlFuJxOVspd+IwWGK1WFiVLST+JeCybK5C7ufou99kiZMROObqdtKmx+vrMKiOrRFsMoT4D4fkaXpjJRaqWalmvjpS9iBRsnubhcvSb6RhWn6mfxsec+1fU97LzTnoxGvpBu8p5n1+fg7hT0C2G5YOFCfl3Epize2MC3jy7AjXwmCjf58x/7CLgJY0nxlVPtMtTIMFF846Tp7HqrYBJIW1NNndvAbJX9rep3b5xID581Ebt+7j/jpje/VT7/IoW1tNGGOT0D0mp1aQSTVgsX3vImJPUaCvO3SomFZlmsxD9hTNInjn8WT6wy5x8SMAG3blnQdJ0V9fRgopJmM9N8WISlWyg22XFstT+k+yyrjDYmJuAlAQOopiPnaz2fB2ybyTMAfPLOE1IP9ZM/eBi7Jhz87z9+ExzLQMzHn2PYcDhTZjkEmqbBUTVRfRqPdwarCrb6glVCqbz/OrVgCYsDUZ23k867euEq5cvPX6gNeGUaNPDTxSbXm0lIDTkVEbDjsCq7dhtxQnB+tYkje8rIO6Z8aDtBlPSYKvUHUeL/4eLgXnU0SRCcPwfnwIEMMyCA3pfveg5Pn9pUmCg2eTJQwx7crnSeAdg0RmJaaapC+P5bgdREiessdjAAAL4r69Io2DYDBXE6WYrFT2iiStxJ3Y26gW9naivu8MCilGLpnf+AcHkJrad4ZZHcIfL7yr2rhEkiAGw0lkE9F+W4jZxl4JaDbPETKUvHNgYyUZ0pMwAyXdo5QbvHnpU/R6uroHHMetv1YqIGFDeoIe9rqQQ9x5ioOEnQdCNoUZaJY0xUdrFKPC9rR1Hgu8BWS+pNRFTv/Dr72xBhuabrIKYlNVFeEMuiBqNQhBn5KDjZ9OXBOfa9gonq3MAIEJXwcSAqJptehCDuz0SpWkVf6SXnBYnsA6aybkITJVhJK2Dvj1pNaNBwqMyeS9uwpa+NBI0zs/K69FpoVFsTESKNZehaapQDQM+38aKDkyg4Jk4s1EEozVyT2Sq7tueaCz2NGhOvk4nysLzp4uiJddy8fyLjwN+p/Qv5dcrdyFKo/toaPnHncVAQ7vGUAyhF8/QJBAHXWCnVc9Fa73S8qokSIAp8Ee20T1GfnYkWA2rVoHsuT3pkB0RompZxyhYVmes1H7po0l7NVhPGjTpAKUovewX2/fKr089SCjM2vCruXXwI9y4w+w7iB3LtAABzegpxrcaKIhoqiGpkmg/L1+vpsxAPSek1H30YZ974eiTNJuJaVa4tJAwRJiFyhgPHsGGLoodcDtS05bP4xAtrWOLr0itu3YM3/9oP44a9E3AsA1Rnr3EMR25sLYvN+4yJ2lp1nqZpMCYm+lZTL623Ad7yjCaGFJbr0idqPL0VL0dc/yBKKUl/4fxwEEUp5cZqPJ3XRxjc64HVNA16oQDiuVhYayNOKG7cV8b+XQWsVj3ECUG4sgyjVEbpB/4VgHTHamaYqH2Z77J374ZmmrJKpjNIFMJ97hjc48+BhiFyN96U+btMw5EIyxtthYnihp6OAy0W1H52QbNoAg1AYlrymphSROv1FJaLiUATVhGd6Tx5TdPJ0ecMVk6CKPaeXuXMcmct0pwd9g2qZidaZu0piFKCzo6dTXSJshitr7PrW0gC2JaBP/gvL8Ubf/Hl2LeLXz9rsJszURarzPk6Tmb80DgGDUO54IarK2nD3x4gSjYMHrIbk2adJaaJQpKg2fRAkTJBAuzojt2lMyCul7lXRjE1+iRBAFCK4ve9BPbefWg+/BDiRmOosBwAm7j59/thwu01mPjaioNMKg9goKWUt6T+R61oM2d2sabahiHHQUZYTlQQ1YeJAhCoDv6UgnToBQHAD2KAUuQckwlqea9LeD72FffIxc82LFmSrZlcJCye68nerVtktZIQGK+tIj5RASjFnpmC3JUDLJ1XLth48Q3TWKv5+NjXns8A6pkGd5enCRZbWbkAO+/Ur01zHNA4xv1PsSrE//DyQ5nXCmG5MBmNajUYpbJM8S6fXkQIXrml28iZOXzX2QCtN/9P+F/7EgCgFKdgtZ8myuvBRAkQ5XWafSrnKgBBL0uSXj5r/UJsaikAL8fnkQ5LBlnVODub0SkK+xIahXKMNSMB+P3MJsqcnAaSBEm7lZmnkmYzTecpTJQKokQT636x9O53Ily4gPr99yJUGD/q+9AI5anSLBNFTEs+i20/ZuAFwNxUOmc5lgGNg3jHsKXEwrSJ/LtM542oiQKYNjfp0COKOLnYgMZBFIkNmAlANIBwZnSHibqKkWGizo+gnQlDgNK0VYNpQjPNHpqo7nQewCjzxHVxeolNjjfsm8C+2SISQrFa9ZA0WzAmJ7HvV34VN7/tHWl1nuof08FEaaYJa89ehEuLPSvRmg8+gAt/+zdYeOtbAAATP/yjmb+LhTFHQjTcSKYsUk2UDT2OAErlJCrC4pUiiWHLxdySqQtPpv8kiOI+H7qmQw96581ld3PVhE6pBgEGM1GCgRAmep209+ZXvpx+7vlzme+SDCNf9GMFRNU2GeCyaAIbCWzLwBGlGW7OZm7O/bRJvZgodr5OJnUmXuccZj3iotWVvpV56rEOBVGt9DPEMdQ32e8EhS+ZKMtmYI6PJ8rZjQwTpTBg6ngvvfwVAGc9BRDW+wjLAYCYptz9+kGU2msUCnCSAAUnO+Y0TcPBuSLWah7qrSBTmegcOMA2K/l8qokK0lSh8B8CgA0vuygmCpMWKQtaIfFlBZq4hnGtivxH/x4/s3IPcpaBoknl4mOHiTSEBRiTYHLZgFhghbC8X28/sWkS6Y2Vf/wQjnzto/iv52/HwZkcoCtsjBGjXLDwCz9xKw7MFfGtJxYy6UgnpJjJMc3UuWZq0SBCBfci7bq8zDaUtx7O6i+lsJyn58NqFcbkpKxqq15YhmawjalGLeTMHA6s8h6aD34bQEc6ry+ISs02RbpILNx+h/kpzYAo3ouyRzovkW7lw0GU6p7fMNj82DmP9H2eBYgKI6xztlNotJieNn29qMxMarU0nWcYiBsqE5WCKDW1F28MEZfz9GJSq8mUofyciCJn5DgTxcdmLo9YZ8+iqDg9vdRE3jEzGxnbMuT4cwxHCt8NTg/Zlq6k80arzgPYGkfjuKddy8mFugTRUajBJEBsaAgR92Tyt1Nc9yCqrbRL2Gz4XZYDndEzJZPLZYwLgRREGZ0sS4FpDsRO5+BcCfs5k7G00QYNA+iODc00MwLIQBnEveho58AB0CDo+WCp5oH5+VuRv/mWrmMCgFwSoOGG3UyUEMPSBLaZXdBM/rDEhiWviahE0h3WnNfQNelrw8ThjEY2ghjQtK4HraeTb5JlogpWHho02YlcDfEQOgcEiGKLZfVrX8Xiu98B99lnUPju74E1Nwf//DlQSjNtT9i/op1Pel+9Wrrzy/dgwBzbAKFUlpl3HRcHZJ3pG72jGlG8ztq9G5qTQ7i62tNoU76/T7/BJ15Yw4XVdDEV2ipzZkaeX7PKFmlRTSNBJF9M67U2wihJ+xwqxy6vkQKijEJBVoYl7dbQdB4AJAbb/eZsAyaJgSSBXihAyxdgUoKS1T0NvfzW3aAA/ukbL8jrZR84iIkf/hF2HHyzAiDTEqWhgGI37v3MAtlyc3XRT1pNUEJw4W/fDGt1Ed/TOgPHNjCJ9No7IWv3Iv+vs3Qe1SANDe09exhIPJRqE9XoZKKEdmhPWMWRApGAAgBMK4Fp6CjlLfzgi1nVaqiktO2I4pYplm4717gAQklGeC1BlNLPrbrJFs+yUkABADmlCpWEIZK2C3NyUoK+drUu0y6ILeQNB26Oa4X4sySYKHPXLsTVKvwzZ7rO34t9WLoJUzd7MFEd6TzlGXX43NNLWC7mAXNIPzdC2YZWmMg8tc4X780NbNx+G06/9g8RbW6mDF6nHEFx/Bcp41bYBqGEM1FK2yxeJBRVq4gbDWiWBWvXLJJmQ/pBqcApRxUmakg6Lylztn5tCQnXrolNkBNR5E0ny0Tlcgg1ExaJccsBdo2CKMGuieyz69gdTBRP55kWm/dMQ0eO8uq8EX2igMFeUWeWm3JcRYEOI6FIdGZ7o+dyF9Xi6UrFdQ+i1AmWorvnW2ektv2KpiiXy7TQABjNDWQZJCDVF4ndVN4xsG8XG2iLa03QOO5ZDr6eDLYvEKyLagYogsaJPJa5/+O/dP1dgDKHRGi0wx6aqNTLx+5Y0EzORMW6lVZa8XSemQ+haRryjglPCMuTgFPADswgzgiVRfRqytupidJ1HXkz19OATzow797LdnWbrGHu2qc+gdajjwCahrmf/z/hHD4C0mohrlZBAl+yioDSCFm1AVCcuXNxN+uTG2K4OWo6T20NYe/ejWh1JWWRSt1MVC+bhPWah3/47NN4wwfTSijvxAlojgPnwEFofPw265yJomLnyCttOIj6yw/cj0/ddUICFbXPoeY4gKaBBr5kcfR8IfVuabUYc6tpcnfeKxKDaaImizZyPA1gFIogDvuuSSPues+Pf/8B3HJgEo8cX4XLz+Hwn7wB5Ze9gh0HT5sD2Y2SCqIiEiEh6b1SJ2LR49A29YyGh7guwuUlqS+JNFbSPYH02jsRxf5C6vck03mGIcXHei6PG//qTZh91c/3vCZSE9UQz326uZvNQwIKANCt9Oc907wC2PPkWLZigiPlQ7B0E2ca5/CRY5/En9z3V9j0q/K8xXMoGPZ6tYm9M/mMHx0A5JxUWC6YE3NySpoOU9+HbnJ2OjYYC6c+DpRKEDX9sz8HaBou/O2bupgSYZEgrh+QCss752g1CzBJ2fjtBaJCnroXJrH9otYMEMYEN3Mg8ewGAwcbn/8cNj7/OURrawjOnU2tIXKdFi3C8T+SIIqCounV2QbBUYySJ1UmqgZjYoJ5ArZaCLlOUdVEFeL0frRXl/DRY59C1e8tQ/HA7oN7/qwsjBDrhBMSns6zM+m8AAYMUNy8J92sdRYTOZYux59jODDBxoRuppvHPN2aJgpILRY+9ejHsaJUkkYxweJ6G7tn2DgIAg16QpEYGkISwiiWZNHAdozrHkQJ0akYmm4wuGxUsgmKOJCVi2d3tQsvsDTRhShblSR2epFI2VgGdk+zgVZdZwi8FwW6Mqnj/G4Lj/z4oa6/ASnrEvbQRQka+/Dr/jTjDyXPiYOWHAnRFEyUYcg0nwA1NokZlauEwdNskWFKsFXguyWDT+55x4AXxLL/lQRRYdLT0bZXU16hiRK7HgAoWAW0BwjLjWIB5vQ0os1NueiZ0zM48Nu/C+fQIckCBOfPgQRBBrymBQMhphy+c1UeVKcHeOsU3UZra2gdfSI9rj5MlGZnU2dqb0bnyA2gYYjmww/yc+rPRKmLyaOVVLArHOjDxQXkbryJObLz8dtusLEhUlHi92IhiP0AF1ZbMkWqToqapjE7io50ni5NONv8utpdi7EasWHBogkmCxZyfDzpxQKIzY6lpHU/k7qm4SW8DUzsugygKEBNz+dBwxBhEGaYwRZ/TsXuXq3WS7y09QXhDNBE0UYpUcYYpfAqFflfiybI6RQTyLKA+wzFQJOn80gHi2uUyzK91xmSzWuIarv0OAtaLBcxGpvQFZQi5hIa+NKHiLEOOcxP34LF9jIeWXkChBKcqp2R5y2fdcHExhH2zPRgvK10jIuCDWNyErplgerMH+iG/Tz9FeqMdVYsT4qJj1Liwddt6C99BWZf9fMgnofGQw9mvseNPWmyOYiJYmnmtOAin+gomHnU+4AozXG6LGI6Q4jK5w9P4WW37kbT7H7mkna7/6Yoo4lK2aJmk/2sKRtwkc4NV1cQV6uw5nazjTchCF12DqrFQV4BUe7aMh5cfhSvv/+vu4xI25ELizvO6xt1hJyFFlIQJ6RcWO6kRrC5PDzK7u/+yfQ7O4uJHMuQrJBj2tApe62usKMOzcoDRglrjm08motn8baj75O/X1hvISEU01NsXfE8wEgIYoM9v3qhgMRtj2xRdKXjugdRQnQq/I+GdUOnPYSynUwCAITr6yDQcCHIimIFQEi8tOt1MccGYSQeyh5M1Eq4ic/9+2k8fWPvSdeaZSXOUY+yVyGo1Hv4owBAtR0h0Ew4JESjHSFpNmWDYiB96C0SZVq+AIDBK+gizQKx2LkWiNiZcBBlm3CDWHG5dZjrbJj03Kn0TudlNVEAUDQLcHuk81RWxJqeQdKoy2avMz/9Myh+7/ex8+Fi2HhzM+P9xY6Bp7WiGNMcRGltNUXSO50HpKLb06/9Qyy+/e/lLls0+TTyg9OXasp46t/+OwBA82FmedBptAr0Zu4eOZ4aVjbaoXTazt9yS+Y7/SZPfZIIFCl4Euk8kyaot0NFfNyRusjlsum8fCG1Pmg2WRHGAD0UAMQaGy/TeV0KUo1CETEHUUWkIMp97hg2br8N7WefkT3diOcxJkUBauL82o3s+Ghz36lJh4EUL06NIInnyeeIcuPGyaItmSghBncrrDBBHJ8dByjyLvbcvga2wpY4vDqPGqNPp7JFFJ8T1HubIzE0I4FOTdDEzOijBBOlhwH0YhHUNGBFFLZh4+e/6+ek5QAA2d+PKFWXahuevdPdIEo12xRCaJEeiwwLDolw82H2vjDQmY9QqLBoYRXlxEPTzKPtRZj84R8FdB3rn/4kTr72NXCfO4aEJGhHLsp2SV4/AICRoJS3JKvNrgvTqKqAccKZQDPIgihKCKLVFdh79g4E9ADTzgEMQP/af/pezL8oZa5kw+92O1PVqIZ4hpIwwIYKolpsHsgIy7k9g3CWt/fshVnOOpln0nkKiLIaLrNSAPD46pOZY6isHZepTQ1Am9sbiH6MTpQyUY6sznPQTtgYnbLT75npTOdZhmQFHcOBxjfNaoo5R0JEutllDDwoRMHUTD1GLahLXdy5FcY0l0vsmFyPQo8JEkNDEIdsY0nI0OrkqxXXPYgSVL+oPhjUsR1Qq7iyTBSN44w3kd2qoWEWsdHM7qLFgiJD77HTAAAgAElEQVRMHG3LQJ5T5JErmsB2e+oIelPk1jtDAKRezY0T1+2pPRKxXvfhGzZyScg0Ua1mZrEWgMImMSwzOyQMXrUX6iYEXswTNtGKaoqcYyIME7lgMW8RC3bUu8u3TKUNSOcBTBcVkVgKMEWoWgVzZgagFG1uZZDjYm0AmbYltKP0WC4mMZuUdU2H4aYPqShnV8NRmChV4C8mQwmOeji0AylAV0FU7vAR5OdvBQAsF/egfSBbWQl0M3enlxo4rXiQHT2xjsUnmGVC/uYX8fPjgn+eorSETQVPrcoiARKj1g7777o5iEqUa565rmGAQZV5ABDxiqMpBzKdpxcKCE32HBRpen+X3vsubHz+c1h619tTE8jA79Ye8vNzm7z3Hn/GXJ4iESBKNMelYQgkiewfJ0qmJ4o28nzs2XvZJO8d587PuxgrbEc+ivw1jSJnstw09WtxnyhibgFEKXqzrrklCRkrQwwgMUH19Po4toGpogmTxKwdkGPBjhmI2pWfxm++9Jfxqhf9LADgfHNBgkdxXwUAsGjck4lSQZRoT2VMTSKKE7gwkddilMtssfM9DbZhI6cwUXuDTeSTAG0jj5YXwSiVsMSd3ZO1VbSffgqtqA0KigmbzUFCuKzpCSaKNvwglqyDZHe515Ydsfe1Yzdj5xBXq6Bh2LOpc2eIQgQxZiZK6fid+jdsU5O4rf7PBL+GbbeeOYZWk4MoZZ6x9+yBZlkIzp7h/98LY4Kdd1Bnr5dtVQDklalOTwgKPru2nX55JxeezfwfUQRSzMs0scpEiXReqFvw+ZI/YafAt9Ng2bENabHhGDYbh+yA0vMiEUK9fwq/V4jna7rBPufxlacApA2QiwU2ruJAh5YkiHWWzktNrNnaOKxR9ZWO6x5ECYuD2RGZqLRRrSoszy5irUYbhchF3Spho5FFxzJN5PswDQ2mocMydZiGjlhJ43SGaG9CQXsaTIpyc3XylsfMO5d3ao9EbNR9BDrToyRRBOJ5GXNPAb6Kegy9YxenKyDK13l1RkxBk5TyzdkGKIAWZwEcw0aBmCyFmu9eYAXQFNf6A186hqfPMGYlp4Ao0W6gk40SppJGoSB3eu0njwK6DvvgQfk62Vy03WaaKGWxVz2v8kYOOcOB6aagzgx6pPOslIkS+gsgFUqm6bzRmSgA2PuLv4Svz74cH93z73H0dHfVkfr+MErw/tvZrvbHXsImpX/8SgWVR9nvnCM3sPPj4zDk7JpNIsQKyyeryGiMIEzg83Yn3SAqDxJk03lqOxgShANF5QAQauy6TVmQ6TyjWESgsePJcW0HJUQWPRDfR8nkO+0wgN7J7vHz8ziI2jPDN0m8Om/S5iCKA/vUFqPEgAS/FxPF1DdHAKyk1YRRLqNZZGPLjAPkOIiqldm5qE1cHcOGQSjIVpgooTEK/K6qS4swEEUSAzQxQbQ4k8o4UOYaItsBsUzYEZVszpGJQ/g3h34Es7kZnG8tsM8mpCudZ5MYe3ul85QGxDG/F+bEJNbrPgKNMVEC1Hku9xFSmKjDHnsuWmYBbc743Fucl38ngS/1TBJEiXSWnmCiYIEiNToVz4o2UWZWHRHBBGewmmETp+tn8fePvwcfvftd7NoN0UMB6UZagKjJoo3HJueBqV0ovezlAPicMSA9DwDNNgOZuwuz/HrU+euVtcMwZLsYALD27pEmx36dCeEnHcXeJsqmrAq8h6Lfmc6rcmuFG3bL3wVFO9W/hlQyUaIQaDPUEGnsWjtIpP61VzpPU6rzUhCVBfq+tjUQZRQK8AomprklxzLvRnFupQld02A77DgpMaHFCRKDVXvL+abdxudO3I4/uPuNWO+ovL2acd2DKMFEzXImyh3GRCkNJEWkixj729nnmR6qZnaDKNXTR02NFRwDsd+dKgRYKks1j+slmtScHKDrPbuNJ223Z6sDERsNBqIcEqLAF4MME8UniYLWLZjWeTovhAEfERINMCIKJCbAJ1Oxe235AkQ5KHDamPZYYFVA2PIi3Pf0Ms6ssl2ZYyoiS5O9rlMXJbQa5uRUptGyvW8/dCt9v3z4Gg3QKOpiFwEGCPNmDjkzB8tLt4FGTyaKi26DBP7JF9LjEboWz+ONq7PnLLRkgnnrZDvd/AQem/puJLrRMxUhq/PCEMfOVLG04eLHX7of/+5fpZPzZNQCbCe1reDnF7seJkvMpTjUUupdU9J5AODWebFBDyaKhmEqfC8UWBNjy0LSaslq00EhvrdoAjmSeocF/PdCX9HJshbBbDf0KOixkAkQxd4zO8n+Lrx3Opko2WEgX2CpwZAzUQVbXgN1LDkHD8HjDIkZeLK6sVnQ+bGmmxlhtpkYg9NI2eO3WeNbPwVRPt/Zm1EIzUhAYp0xUSAZxmNviR1DYFhIbAN2RDNl8gBwqHwA7chFtcY2J6JgQIwLi0SYm+rezBk62/QFUZIBzm0vRqhbMOIQAV/QWy3OOocECZ/r9vt8cTfyaPkRXD/CyeJB/P2NTGCfNJpyfitzEGXqJkA1aEaMCe4OL1J6IkVOcjZCS4MVEgmQN7xNfPGOdyJ5+pj0g7s7qKAeDG6PJTbSIkMwUbDx9blXovFLr5GpS9JSmKhCJxPFxl7gsWdif5EzmG2uee2Y88TGBgDsPfskExXxeUOcD6C01JpivxO+WJ1+eULCsffFP4CEg/egoDSJjwjypgNTN+FwTdRaO5GsMMIQ07zbRCeIyjc3YSJ1LCdJNxNlJSEC3e5bqdwvqhMmJtoEZkzhxh4opVhYa2PvroLs16fFOjTChOWBykS127jr/L0AGMu6XeK6B1ECNI3MRPVJ5wEpc7J6iom761YJG/VOJorvMMMg47mUz1lIegA0AFjlLJTG5e89QZQw8lQWmi+d/jr++uG3MiZqgDdKy4vg6zY0AFNRtm+eesz5HiAKfOEPYMKLfcSmBiNO2A6ZgygBFpv82jmGjQLX4ZJeTJTCZCzzVjxpKtABpRRhtYqilcdMLUbbzU6KSb3GhPGlEqzpdOErff8PdHwPuybC+TcDjIUOLGI7tpzhwPZjEJ2di96jpFYKy6MY3skTyvGIdJ7Xsxqx0yyTdjCSDx9PK1U6m6+y96e+WqKR9ffcMIO9M+nkPhm3QCenleowDqJ8H5NFGzbtDaKE4NyrCyaqI20mPoeXj6sO+0mj0bfaVI0A7Lo5iDNMlM8ndIsDlM4efXkSwqYRNPRiyPhCxp8HsRCIsnEJoviCTzpcu7UwZaJM4f+0P7UtyM/fKkGUHniSrWrydF6iFCGI6rwtgShdl424RWqxxf2KEPhpOo+zAKpAfpZPTaFmIbINls5DVptyoMQExsub5+R5AykDW9CJBBGdkePO/KpJZ8uLEOgWNAABd/lvtigs3UIupPAnC0hMG3kOYhkTFaPCDY493QGFhrjZQCNk91kwUQCgUROackzCtVywQcQ2EVoazDDGBGdu7jpxJ37iGyv46XvqONBkz9zT+gqer54ceO0lE8VtZQRwq7sRdGEwqwrLOwE83zSEvJfiviITTAe8QXUnEy0lBoYBa3ZWaqJokznfq9dBgCZMChDVm4nS+PgrTs/B4drPhMRZJspgOkInBiJLx1ojQKSl5pWHd5cwUbSlZxTA5uTSB9+MX7rrBHSiwdRNBuYBEI3fkyiCQRIEuoVwQBuszgiSEGtltspNNWO4kYdaK4QfJti/qyCBohHxZ0zXECShzCjEyvwQJtvHN+r6B1F+BNPQMSV3OKMKyxUQlROaFuYzdf551lWeTs2g3spWB0mRbdjNRPXreC9KWHcXmOi1F4gCmBg3UXbAj68+heX6ImgUDeym7QYxAk73TwsQpTbJFSAK3ddG7pI1E27sITI16CEBEhMEgoliD+b/z957B+uWneWdv7Xz/tLJN/YNnXQ6SGo1SAIhhCwsiSiCwBiwxta4BiZ4xjVmKA/jYYbCRRk8QNnYYowRYEq2xgiNBUgCBCij1Eotdb63u29O5570pZ3Dmj/W2mt/3znntlpUNWIoVlXX7Xu/tPfaKzzreZ/3eSMDony6sT5J9vdf16ympqndVIvCfHb8qU/yuf/6x1h97Apv+aMdig9+dO7z5XCEs7CAEAJHmxoCfORuOUfzWmEIlkWx3YCo/cDYrVomKkgrst6SEmCn+8Oms5lL2cWL7fU04bwkPbjER1Onbzjk6StDing+7NfUQ4P9dcPUtbYgbHOo+nhtMcR1bB68exW/ygnqgqK3uO8zVpHT9R28uiDBMWGhTFdJb1iYTIfFDrJnACi0m3MzzuxetwVWt6ib17QWRFXzmii98Ts6ZNx4ZTXNLzOCW5SXaJ5fE65sxLGFLBAI+q7qcxPOm/G5soIQS4Ooha5niiN3738xt/3k/8qpn/05lr/rTURoBjGOlU6JWSaqBVEujjEH/GpaozczMgGdrVYlMcKqkbUK5wFz2VkNY1zYHqUOybh7pu7A1/c/0SGmPeG8vitvKcD23QZENYkSHaZJq4Ep9BpUFTayEPiFpPBtsrAFA1NHfebTj+sECCFI3YBqMjai8CYsB0CtvIlCvZYYJkofOCrXJncFdl62oOPzj5iPv+hSRmXB9oLDtNg/d2dbku1hovTeMI5yLNdDeJ4BUcJx9mVYNmt8oUHm0e4h3S8aRO2Ra/inTwPgrq0hbLu1xZnG9NwuttXuE26mM3gX1T024vHm+T91cVeFv7R+0+738XSyhB2lLROVS1M42Cs0iNpNDBNVZxlv/Y57+Nl/+ErsmUNf4znYzSpe8aT6jbxQ8o1mjW72sdxyyYrnz0TtpLvsDtS93vdsSlxEpqbs0ZWuMVa2tbi+nBWWAzu7rYSicYj/q9D+2oOoKC3pBo4pIvv8w3kHMFFZxhfObCKGavMYHD+KBHYmMxXXmwywPJ8DUaHvmNDYbJYYYNJ1m1pcezNPzHXMMFF5lbMR3TT0760y80Cxb6nVgCi14TsHMFHBASCqYU1SbNIypXAEdlFqrUZFVVeGcYt0RpvneISJ9pLpHhAymGGimtpNTTZIYPvETz4OUrL40YcRgLx4ub0eKanGI1NOwz9xku73von/9J3LfHTjId7+6DvMe4UQ2N12s7d7s3UONROj08M7wsMvJJnfUaxdtH+SBjPZecXOdpuJ2ZQMSZN92h1oa71tPPwIP/+fvsi5C4p5bPp9Y6el6g9kovTvjCbbPCzfh/BikyjxP/3AS/lH36rGTRTsf6aeLOnaaoxkwjFak6leqBZ99WcetazDbGuZqN25160ZZ/WvJCxPGxAly9Ynqtsl1SCqSV4wZTt0qFkmMQOnySy6BbjTgLQRx1Yyx7e9tjBu1Wii5pkouyoQslZMlGaZhOvSuede5bMlBFPU5lnFEY5ObohNxuAsiFLLaPlVrqZW4FOnyQyI6uh70iCgUsJymGeimsNObrnkDYjawwg0ofBCg6jm4CJ1WZqefet08cBT5Y1MMkEQzIGosqk3WbmUeu3LfIskbMNSUzvkU49d5/NP3eTOYwNuW+sxtQKq8ZhxMa+JAhTjZlUE2r2+sTloIgOlZ5M7AjsrGbg9kJKXPj0T4koz7OPHqGzBJH/uDTa+FYhqahd2e9QaRD1XYkyhWbKlYJHA9inTtr9mm3/sOO7qGp1771ffr8e3FaeGMW2aq++7WlDPa1B7WFg8c2OLh5/e5F//v1/mN//wCey4lWUc+pG3MBq4PPQNawYsN9l5oNit3BXcHCYUWp8o84zQd0xx7aYVW611yl0X1f3lhWJFa+afSWE5XxUTtZPucvZUQL7U58GzCce/eJlr+hB9bLVLXCb4IsDRiVWVsTjQIGqnrR07vsUe+bVof+1BVJyWdAKnzd65RTgvLTOyKp8R/e4XIddpyicfvW7YnEBngsyG9Foflv0gym0MyvYwUQ3zdJum4G/NRHWQRUFd5FydXkciTXpxozO6VR9kWrC9nM+7lc/eXyCfg4mSNokGUVZRmsU9rTJCDS7ivA3J+ZpRKXoHgahW8N2E84wvie2RXdIhCF3awtpo04jrKEKWpaqfhgJK8Tc/yLb2GNlrTGd3eyZN2FlZbe/ZcZFC4JYqnNcr1FRIXZfYDpDT/c+gAVF5nFJHEYHWOjSaKLmnbpb53O23I3yf/KzO+pqo8J3wA6SU3NiNObbaxRKCSXIQE6W+8+zNJ0ncDcK1nbkyDQO9aYyc/cDGrQu6GqDmVps+ntTqftd0eKrc48DfZIg291ONhqrGok5pPmj83Ko1rJdLZQTaVqdLokMLVtEwUeo+3ENr+u8Ri42F0L7SQU3tQ/V9vdDFsS0qSpV2r0/hJpyny0YIz28BZl3Q7yg39cqyEZZFWqaGrZvIJnQXYZc5lQBCfQCYKUUjdGZd9dWCKF8ViW42pYmt7rEBKbNM1Gw4x9frSGapEBeAs2cza0BkOZ1nnmP93BtgfVBryhvVSYLlqeoKUarCeaAOC0JaIC3ykRo3mWcR++34mzodhtMcIeCt33kva4sBkeVTJwmTSM2Xgb8fRIVGd9iE8/SG7drkroWoa/pWSD+uWR5XiKUZvy5dJHn6FViKZMYIGTBAYhxpENXrUkVT5a91ALPcMK+VTj7pul1CJ2wjDXvLxDgOp//Fv+TQj75Ff38PhMBPy/k+ABx9bcVAzcOwFNSlTVqlvOMDZ8iLmuu7E8JUGyz3B3iHD/OhH3kx51ZqpWGkDeeBEuNnjvLHcsOWEDioFVtt1YZAs2JZUSErm0pHHprP5jOHsufTdtJdksAi/vEfInctXvTITW5sTljJhxwudomLGN8OsDUzXNk6nKdB1HjUArzxVwDKf5ntrzWIklK2IEp7Nd2Kifo3X/p13val3zADRMyF89qBtzlMWCvHWJ0uS4eVHmcORGmAFB49gzuTRhr6jqlftnfTMSCq/9wgqhXYxVyeKFT+fJioKC2o9f00TNSsJqrWYm7vQBCl7i3BJqsyCkcgigKpj91JmRomqqGcfdvD0wtS2tkf6hGOo9Kzp204D6tCYGEVlTHObJozTUzW1qyovGmzhndxmcy5VM9qxZrsK1Dgq/YclZ3nBITaCyW3bXa8ATKOiM88xfb732vsDJr7rLUvlHvokDKCG4+piwJZlgcuusJxCO9ex9ndpMcOlaUocysIGEc5WV5xdLlDr+M+Zziv0UeE/Zx3PPEuntw5q/6us4K2mHUbV8/brwtCoa6/sByTraqjrSyHOjw1o395fPsp/vFH/jcuT67N3c9syHjqHhDCPqBJKYm1rsetFRMltR1HqkGKtSec1/h71XHEgk61vhUT1YxP37UJfRVy8GzPbCANE9WI+i3fa0tj1AUfvP4BvHBIaTlcmVzjJz/+M3zx5pep6pqtrLUzsMqM3BVYmj2ZdbqXhT4wWF+dGaAVBMgsM2GzyGndyNX/2HOHlaY1dctS4ZJrLC32mAh3XB0aNEV5FcCZaqTXsZ4bRNVSUsWxOZxFM0yUTBIcnVmZ6YNO6gkibzacp37/ruMLHF/tsjwIiPQz2byuQnxNyBVQ2b5Whe/pdWVPOK9whQGMy4TcvqMzy173egPsu9re46Ds5lrWxosuzkp8zzZhrKZ01ShqjGB71ElCHU0PZqIaGxs9pnpuV/V3U0fygIOUsKzWl8+2EZ0OnbRm0Ztnomz9HBsQ5aSSunQRdmmuryQnyPThWa/jfbdHXuXksqTwbPxc4lqOOnBWkswV7IxTwr62yrkliFJAJXcEgTYVbpioUoP3RhusmKjnH87b1fUOl1aPcfHeFTpJRefhT/Jjl95L/m9/QRuwdozEoLSEYqL0GCymrTZ2cos98mvRviKIWl9ft9bX139tfX390+vr6x9dX1+/a8/r/2R9ff0h/d/PvHCX+tW3NK+opaTju+bUESf7wyVREXNxfJlLkyuGwr5StIh81jF6dxSzkE/wjhxhQfuLjGdCMG0YpUD47Wm14zszrtHzm04Tvjuu/VSeSxMFKtPoylRlJxgm6rnCeVlJHaiBuNyAqBkmodQgyq9vzUQltU1W5QpEAY4W/6Vl2oa5ytZs043U4peFB4tX7W6Pajplc5jiuRbCLrFxyK9dNczRbMu0U3tT3qApIQCYSupdt4NEzmWyzGq/ZvVTgAZRNYHtG++rwhJseAocX/nFX2D7999DckYxSA2zKMb6GpaWsQcDBaLSgz1lmta5914ATudXjYNw4VpsaPfkQ8sh/Y7L9KBwntZkOLrwc967zEM3vsDbvvQbAEgdXr5Wz9S909fh1YVJGMhFy0QZ0z0dzpMz9gxP7TyNRHJ+dHE+rN3tcX50iQ9c+DCbot2otutba1CqWhpBu1MrYXnhKMFr1PiNNVmLDYg6pIS6VRTR04xJ5c6D8VanqPrLc21Cz0GKSpm93pKJ8gwg8+uCz9x8CKdUC/Yzo/NIJM+OLjKa5iQN8xJFkKcUrkDa2ml8prxMC6Ju2Q0HNsPyaSYztTyE67UsV2Vj65BiOlOGyNWhxQSHVE+vvUaEjRu4bOxA9DwYF+p5B9yaQTCHhTTB0cB5NpyXJxGBUP+eaWuMxIWJ9juyej0qHTZ62V2K/V0ZBMSaaYt2dnAJ5rRAdWWBkPjaBNKE8/R95Y4g06/ZecX3Wio0Ft5zL562EOjftY4lrAPDee8++15+4mM/zSSfqoP1jKheCMGg67VMlD54ybK8hVmw1splGQKhDmFOgMifv4u37IUsjyvWP/CYWdMALA2i4q6e85nOhJ4pjSScgjCrkTPX2hiXTvMphWfhl0rzNtt/tSjpDfS93aKgb8NE3Vx2lPdZlmkmyjEgqjmQFMIhK58/E9VkTS74C1x72SlKC15y7pPtb1cFHSfEqRsmSh0ezPOIE5a8BQLb//+dJur7gODMmTOvAn4K+OXmhfX19TuAvwd8E/Aq4I3r6+svfSEu9C/SojTHu/czTPpPYFsWrxt+ie/7yL9l+8YO/88HzzKNEm6+6z9z6RFVkqCsSwodUvhXT/4Hzo0uAG04JZlGhPEYS9Z4R44YJ/KmtAwAerF3Swluu7CpcN7BIGqUT7CFTd/tETrBgaVOoGWiymjCZy8/CXKGiXqOcF6SlpRadNyIaGeZqMY/yK33T6yGoo6lZUAUgJPr8FeV4buN+LU127SnCbXAFCfddy+9HuVkQi2lWmjtElG7RrDdOaVKtoy7On1Xg6gmE+5jz0xM+ZWGibp9oLJgohlhqX0LJgqgcizcUoG+UIc5MgEb/vL8+7RGpRHQi8lQf98yzmBBFeJtXOMPYKIAUxT6SLaNV0pqAU9PLphC1UeWOvRDlygt5xIV/vj8h3jHU79L4QiCykLWgtJqN/Cb8RbFtlr4LueeCUVZvsqG8uvChGlzyzFlj6Z6Te5YNZ5jIastSsdCOI7xLNvNhjBjXzB0evzSF97G+859gGeK1jH9RrifPWtaVlRGh2FXBd0qIfO03YgO8zUZoE0/e022URzR09402R5jPwPu9Gc9xyLwbaTVhPP0nG00UU3CiOcbG4fGtsCpJIUj2YjUfW8l22yPUwrhUFs2dRwh8ozcEWCpeVPPhPMao8y/CBMFrVkrnofVCZGNi3ltt2Bwholy9WElkTap9tKavR5oQZRoSiRpEDXShy7/OUBUcyiqk8Swj012nrqYjI6tvq/QICp2JSNdPmWWJX6pBlGLPY9YrxNdGZmML4Baat85wHF1NtqecF7mKCCg/i0hffZZhOcRnDzF6ve9mZXv/X78Q0foud0Dw3kfv/opAB7ffookmwdRoGwOxlGOlNKwdnDwoej8VgvMu24HS1iETmgy676SRhCg7KhnP3j8Ijt/8sft72UFuSP48qZiu0WiAIywK9CMsrBLwrSmDjyELmPU81TfT4opmSuMIL0ZF7krwKpYWVWHgOdioqyFBaaaoa6iqRKP1zY1NWVdtuE8yyW/RR3Rg9oob0DUAGt5kT98zQKlaMdBkEl63gwTZQvSMjVRltMXpvzAf7nEgt25JdHwtWjPx7P9m4EPAJw5c+Yz6+vrL5957TLw7WfOnKkA1tfXXeA5vdmXljo4e2pMvRBtba3PufF17P6QhGusrfX5hi2VzfG7v/mHfM4+xurWZzn9wQ9ifcSGH9J1utIphQ21JYitCWtrfdzDS1xDpXauFJqSvPM0i8e0pwiCOkzpez0KXUTRLSVOJ2NtTS26h1a6JJrpWTmyTGetBTFROWUxHHDo0ICe3yWr28/NtmxtiV3g7OYjFPaEcvM4Ya7SeZeOrILrsLIwXx6jKCvyssY+ujr3XYdvP4qlafCpDif4VPt+91pVUAmbvBYIpzYgyi0EJeB3BUcO6eyzZIs7r6Xc8V3HOBcnTHwLJ7QOvJeNxQHZhZJA1Pz4mx/gf/zAO6H0SR/9PAC3/8O3cvV97+cPg2f4rk+MsbY3cK+eY/yhPwHgqd2aB4cpr7z/CDeiLTzb5e5Dp3hs+0lGRcJL9G9O15YZo0JqR+48Pmc/UPsO7kRy9NAyN5qMG8diuzvfV0GRsLbWp6P1XX6iFoOV22+jfHqZ5Kyko0+/3eXBgfdb9e/jIoLDyRDXkhSO4On4WYJULWrrd6zy9LUxXBrid3xTFPT9H1b3+4ANbmEh8wARtBvmU9MnOX3jGoUbMKkd3NBjqR9QViWla+FbMb4Gsrnl4ngua2t9pqEqoxFMtlkOTrI8TtlacugveWxlCpTGRFgL7b08OmzH1fkVyd0LNk/cGbLwwLED7xmg1w9NRtCN0XnCOmfT67C21qfCohAO3apkeaXDrgbhay86zQ3ALTMWGxZu0J/7jelkmcvAUDwG1u0cP7pAv+ewKaAXdjhxWD3D2iqpgoSnNh/nELB8eAl7Y4EdIBQKjDilJA1rdkt138N8SCEFCAFBCGmCyAuKroVrLWJ5HnaZm+uJptu6f+tb9kPTpJRkRUXgOYwW+kyAXIOokydXcS90qadjwIHaodfpsAM4gTTfvWsVxEDihpQab/c85pmt7owAACAASURBVH67rtXGY6fqHg+dOoK70CfXB6aOLW95rUuDUOlSSpUyv7bWJy1qvMZbrZAsd5a4AFja3DR2JRPNhnTWVvi2F5/i0o0JD9xzGCEEb3hVyO5Dy7AFYVojqsD8fpqXBkQtr/gs5WOO/vnvIwevMWDP6rsmnNepUvKrVxjcfx+Hji7B0W+C132TuvZwwM14+5b3di46R5KvcbLnz71nZTHk4saEwWKHeG2JJl+2s7h/Pv/Bx2PuBcgLFgI1Lpd6fcMwrx1fxVt67nFQd2bq5QWu+Y1n8oKpK3hGs1NuVhPYgVIj2SWUHmgmipk5cXR7BS6BFdZkLizlNaurPeJmbLqCV9y/whu+8TRPvg/8A8aqrCrO7uwQ3nUHCSrSMXAllmMpWgjoL3o4mhEsLAc/9L7imG9aVEWETsBtR1ZYvrLAF4/7vP3uV/HD2SWWLj5BJ6tZXVjgulRrqXRsKlFy+NgyjaFMd5JxvAx4WA5ZWeli3cJg+i+zPR8QNQBmbZSr9fV158yZM+WZM2cKYGt9fV0Avwg8fObMmbPP9WW7uy98Nea1tT6bmxMev6oARkbE5maLXHu717FOh+xe+iSnATFDSY6HWwid8XJjd4fNzQmJtt7/wpcusazJmry/TK1DgzeHY37yA/+Bl629hFd6d2ChQFRaTczvVkVlNEfDuCTS/y6lZDcdc7x7lM3NCYHw2ci35q63aYl+XJ97+rPIoy7F5XW63gUAzt6I+fn3/Cnf8+rTfN9r2tIhJo7e6aviq1VFbnts77Yb8R88/Wd8nQUiT/b9bj6NqWyHspIMoykrDROlyYeN7V2WqiWcuuR73vVZ1d/fcpV6NCHqWuyMJwfey7C0EcBr7h4gtbng+lNTxo9fp/uyB1l44KUUx+/g2od/GhgzvniFjT/95+bzUztkY2vCI0/BtfEGTtXDKtXC9Ivv+hT+9y5z+siAiZ78sr/A1vZ82Cm3BZ1SMt3NqDU1kwpJ6vWxOl1jqDi8fB13c0JRlvj3f4ryYfXvkRVS+uqkvnlWPYdM2vvu9+KNCe/79Hm+zu9xOIpIAknuCp6+eZ7+VfWsfCHxdIr8hcu7VId6c99ROAKRVThVl5r22T329Jc5cmOD6MgdIAQXL+9SrvW4Nr1B6ko8mRm9UyEcNjbV87geK+bAOn+ek8fXsCVcPOrxxKUL3JwqZuvGaJONtL2OXbcLqNc2l10+/aNfz7nRBV4cDQ98xmtrfa7dGBlvmovnHmcdmDqCzc0JUVJQ2A7pZMJb3/MTvPWqIAAirZWJdkbUjnoum1E99xu5FnXZVYm9ssV4lBiXZVlYDHdSLGExjiN+9sO/wku2r3IIGMWlEdV3HF0zr5IUruTRDVV4eCPa4vwVXaMy7JDv7CLqmty1ySMXEQRkk3ZNSW6qDS+3JBs3R1ji4IX9iQs7vP19TzCOcv7Pt76CQOrnffEsa8CJY8vIa77WSHWQlU1oKXC/PRq3v7etrm07t3E9vabc3EXseQahE2DFahPdTSQin3BlJ+U0kMUjfvljv8GPrL95rgAuKOd4HzVmnE6Hzc0Jo2nG4oxBrWvpagK7Y7rA1K7YlD6Pr93HG179Wv7ug3cCsLXVskIn71qBT0Entqgu32PuZ5oUxg9rur3N37/yR4R1zoV3XiPQYvHtPDGZiBsPP6pMWI/etm/cBVZIUqRc29jFbdL5ZY0lLGpZ88Vrj1PXr8GxxNxnm4o9l64MkTNO3IXlsLnZst6+Z3PuugJRVlkRWAGbmxO2t0qWNPuzOy2xyva7n9w+y239YySRhSWEMn6+OuMNd33DXEudpEp7N1Df5RU1XTdkiGKg7ji0ysX0KmEmKcPAfE7k6povbFwndVQ9vZtXNsmutyDqvtv7NHkr8XC6r++KzU2oa6rBgDRTus2tyxsMxxZS10u9dnMHa0uN90I4bO1EB879g9pOPGTgqb3ZKtX3TTouVWcNLipw7dYenpYfCMdhmsb7vn9hKpAdyfnrN+YzPF/A9lxA8fnAuDEw+w3WmTNnTIB2fX09AN6p3/M//AWv8QVp12M1EHJialmb7JGTyQYiiDmxoY3hui2WtLLcnHgayrDZBKLJhJVSDSDvyFG6OkNqUozIqpyL48tsloqlcEtJYbeAMZzTRLUx86RMKOs2SyN0O+RVTnmAPqnRPck4oR6vQOnhpeoRXhqr2fHeT16Y+0wjJO6GHtayYh8Sbx47X4mvkDsC64CaRHWaGM1UWmYzTJS+/ioj8Gy+efhF85n86hXIC+LAmgtDNK2oS7aEOsHe1hNGw3TvxRFYFoff8vcNmxYEXaLQZnr9xtx3TJ0Oo2nO1d0dhF2RTwO6WpgrnIJffc9jlFXNxbECwBfT/eeF5l68SuBV6v8zGzzPJtDeLoApMDwuJljdMUGmzhQqnKeYpM9+6U8BeHJjPxH7Ox96mkfGD7F5NMerKhYixehNiojdaYZtKU1GU3C3sTmYLfVROCqT8P7jyhBy4PUJnQDvugI1+SH1741D/ygfk7sCv6pMQkNuuSaxYhIXbIYr1JMxL9pW4OHiUY8zu0oPBSrTcSLaUN1oML9c3LV4O7awmTyHL09e1IaJGkzV4jgeqDmS5aXyOkpisionm45A++gIx2Fz6zI3YsUeR3JvOK81SxW+KrHk+TqcgoMQgtAOSKuU7XTH6MnmNFGDy4ha7vN4KuuSG5PGFqM3I262qFIlTK8P0ERVNnPO4nvb55+6ySjKkah6YSOh50asxtfddxzCDkNEUWLVEmqbnq+udVYTVWv3+GFtE2uB+EHFWUMnxEkKVRJKh32GUU4uHNJ0xEM3vsCzWrIAMH34i9z47d9i7cIj9O5SBbFLv2GrC+N67hWSRV20uwkXZa4gqyo+f8e37DO9bVoaarZpskK8M6DSCRuNcBnAHm0Zw846z8x9RaIy63J6XhUbbwrazrZZbVDTRtnYZJsmZYLoTOayW4E5acasfUdTi+6f/tqn+Ke/pkKCN3ZjcmHjlpKe20VKyWPPjBUTJVojW1DlvN725d/gvc/8CT/17z/Dz71DMe2XXnm7eU+53SbGkGZKe+cWZI7AK2sWQ7Xuv+k1x/mvvm2dBSdDAGJG79nTerQb8U3TT1WcGH1d7gpstzZ6rjrfvy5n17QL+OoyqdZK1tPp3PPJqow6m6mneovsvN1JRlG2soSyLpkWkQE9TbgZpyBYUmOpk9Z03JCODlQJ1z1w/1iMdfbsX5EMvecDoj4JfCfA+vr6NwKPNi9oBuoPgC+fOXPmv23Cen9V2oau4ySpVcZGpRa4w9kOq8UuqyN1uV5WsdDUccoluc4QabwodnM1oO4sLnD/5ByEHbxDh3BsC8+1iEr1MDeTba6XavF1S0lOu7l0fNs4M9duO4H31pHq6sHVAIsnt8/yzz7xc2wl2zOW/pI60XR9ojUEbrsJXN3ZNSCssXTo+A7ZQH93Z177NMpHFK4wfj2zrU4SKrcR6WaUzry5X1qmpEw5Vl03n0l1sc0otPjiM9d5z8fPzX3nI5uP8SxK+3T4d3+V3T9TAGQpynBW10zFdgDfChh1LGwt5q5sl08uvYSpHTKa5jw7Pq+uM+6TaaAknJztccrmMAEtqB87+4X3TWaTlZd4euRmlsRzbA79yN/j6H//j0AI45E01jH9bpJjdbpYQYCty0T4W+o9D13az7SW5LgnnmZzeeaEaytTwOE0Y6HnKXGrpvibDL1Zb6DSEbh1xeGuCjsf6R6m53bpX1f9Uh9TGrKmXtk4m5DrRdiuGg2DY0DUOM4Z9ZWA+7bNy2SO4Maqy5PbLZE8zMaMRLs5j1fnN+rjvaP0vR7TA7KhmqY0UbpGmQZRUbdU2VJFTWm7Rqgq4gy701Hu/N0uZTQ1FehHlU2SldSN5ksLy71S4nQjhBC4nnqvo00yPdtnnGnbBB1qsTyfSgMD1x7SZPqXzrx272akNjZ/uR2LuSPIY1/VEzxAE1VZ4jmdlGczg4fTjO1KF17V6eq9ha4BeF6hQNRAa3KazWQr2WG8e5PCcpiUNZme93s1UaA2Ki8r5zQ+42lOYTnIXI2T7VStV3Wec+3fvY3xJz7O6hc+RCgacKSfYVnj6vXHKyQrodI9NW7ruSsoZIbn3lqqEWls0dWav6n2kitKZSwKYEVtBlY1mbB1ZYNK2ExFTqR1OukzquSSf/TYvt9oMv4a4fGTO2f5/MaX5t4jvGyfW3tXJ8BEScHZ7gk+t3Av02/5Lhb/9huYJgWTWP2X5RVbo5TCcnBKSdftkuYVRaZAlXTdOcnAZqwOOU9uKK+7cVwgpeTc3Qv86g+t4ayuUuiKCrIsVaTAEVSWYqT8smJtMAApuffiI6yNb7Dk6CzAGRDVgMfr0QaZZuzqNDFgP3cFwq7aElJZRlTEc+bEibZgqU4dJ/FnNFF5ZcKtWZW3PlHiYJ+o69sR/8uvfpJ3/lm7ljSAp/HFauqiCrugu6LmWCet6TodQn0wEK5nDg9Xfuy7+eQDag3v6ajBXxVd1PMBUb8HpOvr658C/hXwT9bX139ifX39e1Ci89cC36Ez9z66vr7+qhfwep93k1KyXbSU6TAdEuoFzkLyks229o5XSh5cWMeu1KnUCrQvhX5I2zqctxgXWBL6/+C/adNqA5e4VgOkkhVPjJ9FAk4JqWyRchg4eFZKLeDXHm8NIfeCqCY1OdbGlY9tP8koH/P08LwReQZ5jUw1iNKprru6Rhii5v/60i/zLz/3b4CWmegEDtWSGsBJYHFFWyRIKZmWY8VEFfMCYSmlclT2dLp4mSM1i9UwUWmZ8nsX3sOgau81u3BB/XZoMc1jvvT01tz37mYjEq/dtNLfey9BWhMWFWLt8Nx7fStg0muH6bnjL+HPVx4EIRhOM85N1YJaDQ9x/pLqM+Gq5zya5kz0ZN1xB/MJAECu13uZ57hN5ptd47kW3tFj9L/+FdiDgQFRTXZJN6kQWivUMFGrQw0Q7P2ZOZtCRfQ3ltuFO7ccyrpknCTGp2YvE9UA6TsXbge5jCNrjnTUgnOkc4i+12NpU/s73XYagKm+x3E+IXct7Bpkuqt/0yVJVTHbaVwQL7fFWs/cHlBbgqd2VX8Gtk8lK67m7bOLDqv7X1+6i9sHp7hn6e5bCnmbluYVifYo6+ixGgcWkzwiKyoqx1Pp+VLipoWxpLA6Xfy8NsVtL08q/vGv/Dm//UdqoW/SzN1SIkLtheRVLExKXI09J5OaqFQAz2lAlO+xI1WfeUVtwFWpN77mRL+b7+J7Nv7SDIiybdKsNvUExxMtANfzptS+Ns/VF00bTXOua1a7KTJr+YExa/UKiSUd7jysQPOxDz/Kjd96O//8Ez9PMtomc32SQrEW0Fo9AESPP8bVt/0KvdrFz+o5m484K6lsF6GveSdRY6MajUAzQ3Y8Nf2eOi0w93otiFrtqn5prB5yV1BUxZw33t4WaePUsFL90Izz9Pw5vufRp+lFFXI6oxyREn/3JkOnyyRPuLbmghAGtHoHgCgjsM4jqrri1x99B7//7B8BcLKv2Frh5CZbu2kdX1vgpCVXpjUfWnsFz558ELvT4ekrbfbc2StDpFTjxS0lXbejJBOVKgRd7XE339G+dTt6DoKyb5gUEbbv466uUY1G1EXrUZi7Ammn5J6gh+TkyiL9uEb88UfYfv8f0GvqT3bbAFEDTq5Nr5N7LbBus/MshF3NlaD6d1/+LX7m079gDkHxmTNg21Qnj5BqEFVOJoptqlsQ1SQbFZZzoGP5l59RoPDjX26taoyoXFs6zDJR/TWVyBNqJqrbgCjfI6syfvsDT/KZeMKZU7qyxlRXD/grwkR9RU3UmTNnauC/2/PPT838/1fO5/watN1sSCHbk/xoskUg2wd+XPubqNO65F7nGJ/Rb5dul47jGICzGdc0mP+L93R4/X2nzPd0AscsygCb6Y4KveSCuJ4gpUo19TyB704obMFTw2d4+OlNHnpig5e9XNfwMjSn1hroDXRLZ55tJztY3dsAZaRWa61K4x20K3NAiQ5Lcq5FNzi7+wxxpsWegUu2EBIAiW/xmWtf5AfXjzHOp1SU5K7AGxVs/pd3s/T6N+IsLKjJIiWyKbhZZeDNZB+iimhe3zpHL6mIfYtOVpNeUizTtOsgnGJfkeaiKsn8FhhJS7CsK3tXy2tz7/VEYOqVAdy0PLqBQ5SW7E4TbvTOU2cBMu7z2NMTuAMj2BrHOTc7h/nc0ddxKTzCq66PefHtbYZepjObZJbiFJJK/1tzmv7Utc/heiWLwxgpJcN8rBb2QlIFqh+aEg6e7o+kX1DXEsvS4cGiIqknOMD11YCtRZvVYcXaKAW6VFbKQJf76YZqAZ7qTatxgD/RP0YpFat6V/c2lvxFXrp2H8NsxMpuib20RGdlEbhMlLThvLDZYCcaRAkVzouzUlkPHFLjqXBs/vzBeQ3WfSvrfPHmIzybXucb9L+JnlpsX33slXz94ZcBCnRcmV6jqIp92hpQouHCcsm7PTyd+RoHFjcnQ4qypnZVTUe3lCrTVDMvZeDgF+rfagGPXp5S1ZJPPHqdH/rWu+gGDoWtQpz4E6q6wisj3vJHO2zd8yS8ErLMQuuoDUgWrsfNesIKau40Yb5susaJzhH+1qlv4D8++btE1YiVwSncxTbTrLI94qzk8qhkFXjvR87wlu952Vw4Lzsg/NC0WSZqZxozLnd58czrVuDPMFE1P/GDL+f04Di/swG3PXyJMZf4thM+QVYz7nrKF+gAJurG2/891XTCfeIETg102wyzNK+obBdPA99tvbk3hrGg9DQNa5jY0ozHQDv+e2XNkd4ScN4Ucs5dAXaF5976XD7Rnl9h2YAoXdz8oU/wou1tXvQHUHzzJjawHa6wkmxjIRm5PSZZjAx8/NtOkF2+hN0fzNmXNK1hoqb5lKvR9Tlm8ET/Ni5NriLcfF92nmGi0tKUVmr+fPpy2zdPXFDMTWHbdCoNoqYZsnKVhMOfv38DnrxEZddJi+E0Y5JP6Ht93OUVEqDc2TEh18KxwFLeTvakILQD+pEu9XNzg3CgQIecKbPTd3sIBNMimhsTs9l5tVUovyo/oE4Szo/VtX36+uf41rVXkl28QHjX3QxtSaLDecVkQlbWWKJ1zp/LzjuAibq4oQ81VntQbg6gjWylIQssp2DxyCpTdDjP6RhLFmUcOuXjj1zGu2sTd2CBEHhjtd/eKov9L7t97aXtL1BrHlqdKYw3HupSG1pXdGisBtfGihocK2mAF+vaUHQYeH0TztsatwzG5+7vMMraSdX1nbmUc4DaUROqomSaTdj94J9BNlSTTA/wX3//I3z2yZt88ZxC680JqkHoTR2hJn1/K9kxmig/l8iki+tYeKXaZEaaiRJ2e61/fOHDJDPhvKivwFDiW1yfKpZuR9P5hQ7T7f7xH3L1X/8SMOPKrJmovM7Ba7MPkZK7/uNH+MEPDnEq2O0dURlN+qQ5WgjALkmy0mizAJIqmXd3lrAy0rqdwbwNgYNvbA4ANo9cZG0xpBe67FQ3KMmph4cAwfaONqPs6N+PcsZJwTPdE+SWy7lr84WMU136ok4zbL2w505N4Nl8efMx3vnUu9nyC+USH0WMswl+IRFAqkO+TdV3c29LsQoj6raxExuPl5OLx/mTV6n3P3JUg0UnNwVAe3tAVDMGOm6HRBtTLlkdfu7V/4x7l19Ez+0qVrLX2We3Mc4mZjGVGkQVOpzXbF7B4oBTP/PP+b3vf/FcOOt47yh3LJwGYEeHdYoZzdBy0LIzzbi9Vb2yhn3JllswEgcW10c6jKRDxd2kxpIKPIHyHbIkDKKazLGZzlQa+NiXrpJWKYWrx6FVsxFv0o3UOOxtqtO/1CFvBx+vElSWMjq8Vqj+8EppGKqiDvjuwz+sWD+gtGOWeh72TLp+aavyJzcidRjb0KLdFkSJuRp3e1uSlYS+MnbczbeNPUHThOdjad2Rn0t8x8OzXSOQBrj7coZbQR64YFXGO2m2lp+jXbyPPKmAd63ZLSklSVZSuYpFWRmWrP/Op8iuXjFeVU1b0vNxapeGzQ60UaNfwGLYx7YEQrvNK/uHCv85Mq/jKtHp96q/GiaqnukG57NKA7cRtOvA0O0QF6nyY1pfBw7WQwH0vDacd3F8ee61U/3b9I8cAKJm5s9NnXSzqf88O8NEPXFBg05b9aEtfcVElcq4N9uTLbabqc8KAcJTY2NnkjIpIvpuz3jXlTs7c0yU+tNC1JJQOvT1mCu2tuho4FrNuJ3blm1qEc6GeOfMSjWDZXc6VElsXO0/ce0h4mfOgpSEL1onrwqzvhXjCXlRmRB5Ura1Hg8K50kpeeqinl8zgHqk99KWidKsZljja8+/TqaYqECDKKnXBuwK4aW4ToizuIQ9VN/1NyDqBW7NYtaEvaKx1jicUMZstp65N1a0od5uhDdVgyoqQwZen6iMKeqSzXHK7z1wB+96wxK5Z5mJAYo9aCZH06TrG6Zm62MfZvN33kn8m7+BU0kjYB0sqtef0cLgZkCHbquJqmXNto5Zb6c7RhPVKQTUDsdWunilqosUVwlCgOu3g/ra9LpZALuBw87xBa6tOpw/7hl6tTmJ5jOaquzyZdJLF9vTrfazKerciCbdqmZpXBGMUwOAJs5yW1wTGPe7CA0gtmZc3dMy5eJRj2ePe0wXfISUnLquQ1j9eRBlS5/xDBM1WclY7Dss9DymWotWJ11OHOpBbSNrC8fXMfMoNwZ6gCl2aa5DC2LqLMHRtHTp1/iuzSeuKWHtVIthy91dRtnYhDki/dnZ+60FpN2SK5vt79yYAVH3Lt3N1pLDO958Lx8/qbKXhJsz6KrFYi+IikoNopzQgKhZf5eeHeJWUPueYbH2CssBLO3lUzoeSVaaPhl0PfwTJ5n4KbJoWaSXrt7HcqA24soWvPu7TvH2r3+leX3gtsDRaFBuQa03ICpdaj8ThxYbGtg1C+VAn7TTQN3nWOubeklN5s0vU48+u01UxC0ThWJs/ViN6WCkE0Iu3E/6pddyavv7CWubwhFUdcWVQq0FnSzkTs3ulsIhSkr6GhQKN6cbujgzTJTUc7TxS2rCGrWuiVlagkQzyFVd8SsP/zr/80f/d/7zmfcAGH+iQddjnMbG90j1syo7Y3dUf/q5xLd9pZWz9nvAZYENttLPSCHmijc39dNcDajrUNt3lDVVLal0mPe+cwkr1ydc/JmfptAha++YCpEtTXQSgMhbXWXHp3AEYSmwLVsBwiKjdmykJRB2+ZxMVFTGpJ7A0Rq4BszPsmhCa7WuuG2/jzsueZ0pEHV3A6L2h/JgVlgecWE0D6JODHQ4z833a6KCWSZKg6hhQi0lF2+02pvLN9U4F4GDW0GZCeUvVTp4pSTdU4R6NozndtQaeHM8opY1A6+Hq0FUsb1lAE9TVLqZv2Ep6DclBqRkZUdXb9iTmdaE9OaYKA2uU0+QFK0hcB0nKNtkNXeGWrPlHT5CXuUz4bwpWVHhoMZQXCat2eYBwvIbO7HJCE+yyoyd8YxHFECojVf9oFI1YS1BmNZ03U5rBKvXBmGVCDfHJVCgczxF1PJvQNQL3QyIStSkSjR16R+/zbxHopxZAZKtHazLSpy7m9uGdpzmUzaHCZdut7mxphbPnZn6bJ3AATczA9IWNtIOcHVmQjrVwt8LF3ELaTLCLA28pnpgNwxUZ0ZYvpuOKLXx2HayQ4FaNEMtdD+62sHTQsS0iukGLrMM97SImGqL/jBwmPg1737jMlfXPBOqbCZ5sUdYO/nsQ0aUKIIQkJSyRGqTuKCoOLE1P4HGdmhE4VavR+L4oJmx2ZBeWmYUrsX7X7PM03eoCz59Tce5w6W577Rqby6cN+7a9AaSxZ5PXus6h9Lj9qMDQCALD9GE86KccawWTIHSoTStqiuSxqgwTkz9s9KrCTzHTNCoo09kuzuM8rExN21CE5bvm0Uv8S2El3NtJq37xnaM0Gn6f/vka/mBu9/Efd1vR1Z6gXByo4nqzYhboWWifCsgZz+IWqh1QVjPphfMf1ZporSB4VQbLgYBcdoyUY0GK5ETZN6GfO5fuYf1pbtN6ZTdfsB4927zuiza7KPW5O9gJirTLs7pSjswY99iK2kNJgEGU9Wvsf7qSTgD6r35sTmKcqZFROEKXB3OHuUT/EiNaSfLiXdGgEDmIeevTnErxaYNsxGXdTWCxXyBH77jTQAUlk2UFvi2jy1srZtx5pzx0XqpBkTlE13jbiac16w7o3zM2d1nKOqCJ3T2Y5JVhL7DYs8jKpK5OVfpZ9Xol4K8xtexyKUDFBNZaCnWWQiq0DNmr6AqGsy2omH3dDixGa9N6RCA4Z8qPzL/hJIqLI3U89glNwatoWeTesJUSej4DnaZIxtDVqt6TmF5XCRkvoXV1ApsslDTeSa/EjabYavjGg90qRMnoPfAy1j+zu9m6Q1vPPA3Gk3bpJhyYXzJ9CHA4Y4ycW2e7WxrmKjtUdIywZkCVFUtWRm0z6DjOwjdp0VUM4pyPL20pHt21Nm9YmFZ9f9NvSf0vR7OcgOitg2IqnTiUcMo+SWGiQJY1etL6swbgTYApRGWV0ls6lFmnmXGptXpUCexAVUAka5naIUheV1QOoLCsqgilZ3nCh3FKNKWMTug7EtjHmzuf6Lng2Gi1L5aFboGp1ciLIs8dHU4L8Rvyo/pCAhOCU5OnXsKdNY1vaSeM1X+Wra/tiAq1eGtWoOoTNfdcdfWzMId+Q73n3gdAPnOjnF5ndS2KWswzMZsjRIIJ2ZC7s6cLrqBi/Ayek6PB1bv5xuPvpzK9nDrGqQkz9qB6laSwtYbrhajN0xNw0Q1WQtJkRg9FKhFeTPZJvMEnt7Ij6508SqlZ8plSr/jEnTmB7URQweuEavLpEdcTRXTpe/FT/TiZ7fMS3NCtMMAdBFbNBsW1hmnZjJzAYZWiKOFuN6Ro5S5jbBrEPUcHk4Y6wAAIABJREFUE9XovdxqwM1Q3b9dQ2R7jPekslO6homKfIvSEQSdksWuZ/qu6wQcW+mY9xfaR6lhopb6Pr2Oa05IoASSs4tNA05KX1WSbxaYKNDvGY8ZZWM6mc7ctNvvSjT4iQML4WVzC8nmMAHtXxQ4Pt964jWsdZaRpRpLsyDKdWw81zJZS00/WZVnNu7ZVPaerqtWeLapDTkbzistLVLWm6cThjqcp66933Gp6opKlsjS4RXum/iO06/n9OAkgePzbafU3BCVD9LiJcnfJX3kmxlHbWit2bSmX4GJSpa6+vE4VI5glKpx2WzARzJdBFaLj8dzIArQtgtHljsMo5yoUExOw0SNsjH+tL2G8eU2cSRKS+xSUjqCi5MrJEIVE3arwpSDUUxUgRCCjt0FzVbMZopa+l7zmWdRlNVcOK8pMzMb1htmI8q6Is1KOr7NQtenFsUc+1vqMFjjsN8wUQCLUj3H6cxhIgkwhwXCwLi9gyqf4yyvMPmWByltyI6pjTppQqs6y+3IeMZCQ9dM80+qg+SifsY7xEYS4PlSrT+6dFDoO7hVjtSibGFXuM6tt5S4jCl8F1Hk2LIyxbZlmlAKy8y1IugynQE5k8UCRE1oBwjHYfXNP4h35OBwXsNEbSc7bMSbnOzfxs9/8//Bz77qp/BtT9lfuPk+i4Pm7xduzGd8PXtVgYvTR1vW5/ZjA6RmR7NxxSjK22xlG2od5ajqilE2xtYHoLCvxtqOZkz7Xs8kplSTyQwTpet46t8IClomChhMtDUP887oC9p2wjBRaWoYytRrrWTsMAQpcWYsCLIGRAWB0ZEltketHct9vZYkZWLmTHFAAeJmvq8uqPfv6MNzrFn1rj50FYWFrGxqWxe4D2w6qcS1XNymRp/eE4WnoixpbOMsKT1YL67/hol6oZthogqPjhNSahBld3uIRTVwJ77P8kBJO8vRyBT2zCwPq1Iof2O8Q1GrSXy8pyjknZlwXujbCDcltHv8+Ev/AT96zw9QWC62lNg1lJNWa2BJSBrPJW1/0CyE4R4mKipjUxPO04v2xfFlDaLUQD223DEgqhQp/dDFD9TEWPbV4j/RtfI6vqM8UhDItItEMi0iw0StDLVR4d2nAVXPy4CoTseEpIQWl3aqlCM350W0O7Qgyj1yhKI5ltnlXJHmKE+QtSBgwHAm8+6phRPmFNg0WbqUjmBjyeGqzohzw1zVLdQMT9frcGSlqXflUcgCx5HsTjKitGTQcVnoeoyi9nqzKpvTkzQ12Eq/JPBs4jKh63ZIGhA1mTDKx3Q1CzNx2uuMtQgz9h2Em7E7aX8nSkuEXRLYvjFh7HXcls1xW00UqJBeq4nSoLdyySzPXGvTOk3asStwHQvftYmSkqzKSauMwppZZG0bP9ThPA2iBh2v3ewrl05xlO++443Go+v1p17L33nR99LbfhBLCE6triLTHqPpTEixCZ98BU1UtKJLnGjh+KTQJrR6ozicqjE+1P06DNoNPvUFuBmDrsfqYkCWVwyTCYUjsCVYlWSUjfEmLYiKrrWWGwB2UVHagkvjKyAEmePgFqmpIVYK24RCfSs0bMVcAetAn/T1fPTqnOE0n8vOSw4AUbWs2ZqOkGCYKOxyjomaDtSzsg9gogaV+vP6THZn7NegU93phFRRZHzFqjjC7vWo3vga/u+/s8bkDpWF2TBRkdYYLu7uzyR0tA9Z07bqyABz261IPQs3r5B1TSdw8KoCmjInVkno3TpXKS4SKg32gyo3jKjIUjLLZWdBH+DCnmGAAaaHdf0/9hcz39sC28exHC5PriGRHOqsMvD6rIZq83VkAAcxUTocfn1bza+GeXpW6yiPrrTj4I6jAyoNVIqoYBzlJsGncNpaqsNshESy6irAZ+lKA8O0AVF9U36rmoxnQFQ7r0FZ2jTC8tk22tMfTTHjNpwXU04jKgSFI+aYKFBAvfHWy2I1d6wwbEGU44FmonxrJpyXZSo7XVj7NFHNfD+2qvpre6zLhunfDjW7nWQlsnSptFdaElh4pdSZ0rrkjz5EWLoGbZ7aCF3ztV9Yf8NEvdAtNZuDw6K/YE5qVqdDqYswTtyAodRps5MRvjZ5yywXSvUAt+KxARDLwSKhEzBMW2Dk+hXCkvi0k6wxF3RLST2eP9k8ekgtaNJOlQZmDxM1a3HQeHjctaRcrc+PLqpFrCgRsubIgouNVE6+TkGv4xmvnGVPlb1odEOdwCEuEzzhI3P1W6NszCSbYEmHj51Utd3Gr3u58ugZDU04zw47qnYTbTX4pWJCZ5yyudguRkMrxBooLUO5eIi6bE6oxRyIiosUaoeu3WPUa0/XX1i4x4SjmtbQvu/6tiXee8eD6vvcnOWBb5iont/haMNEFeq59Qe10SYNuh4LPZ8kq8zJaRZEVXFszOdKv8Zz1antULhGqk+o+XhIVMT0tXZo6lTklaq1paV0pL6PcDNDYYPOyLJLU8sNoB+6qnwD80wUQC9wjU1Bc9KShdsyUTP6kbDU5oOavOuGDlFaGPYxnwFRlu/TCVzyomY4bZkoc9ionH0WEJaw+Fu3vZpkEtDruCzpgtvDGUbPZEPdEkTpcF4ouLHsUJ44hZSQ1LHub33f+nQ91MBgx2vZrswVCC9ldSEwfbUdjU0yhFtKxvkYb9L2TXZDiarXFlW/W6UCLZcmqgZj4rg4WWJAVGHZZuz5IkTYFZ4n50ooSUvdq9RhBr8uGE3zGZ+oFjylewTmG7r8Rug7LPTU2J1loj7/DXqj1ckjYQ6OXkd6Or28ARkAE78wBzC704WqQmYZsiyRmSra2nU7SEuYcdSAqIbRsmpJ7AvKNXXwEY5DfaitG1kLGPo147w58JWkMweP0LNUFQbfN6/vBSfmu6RiDhp9VlBnpti2yBIyy2V3oB3Gu30qvyL1BIWtdIaqg/dnf+5tQgh6btdEIhpT0KbZta80Ud582NFzLJwZPdN9p1WfNEzU7By9/VgLovJJxWia09Fp+bnXygaaUN6idRhZCyo7wraE8bDqez2zns4yUU3CgavtTKw4pR/XRP32GjLHYpLPJyY04by6MdRMUsrplNT2QbR6vVm/wSNdZSlT6qoGVhCS6X0wcgJEkePURVuLskyosxQRBHiuvc/ioJnvxzWIapiopExUTVVddDrJVAmbUleJm+p1oJqMcTSZUWn2SwTNOuiR6f1xMbeZ/g0T9cK2ZjFzhMdisIDdnKa6XfK+ejgTp8MoqbD7fazpeI6JqjI1YXfTkVmsOk7Ikr84F+cWusiwx0wasWYN/LxGTOcf9NNdLW70Um5b6yKcAiFts2DOaaI043X3ogJR50YXzcbv14WpcJ/bSsPRC10svfn0LU3hywjPtXBsi7hI8O0AqYHGKBszKSIcGXCmf5Jf+ZE1tld8nIUFylHLRHndjglJeX5AYbus5urabqw6xvNp6nSw7r4HZ3WV8o51pA43OX7F1owmKilTZOnQd/skvmKZzp702bGX9zFRlXbElJZAZmpi1nbCg3evGb3VQtBhZRCobEWhwWi/NsaMg65nFsFGVD0bzqvjGJkrJ+nKgtpRDvddN8TV2XfpUAHaXsP+eBajbEJW5URahJkHIQh10mxYgTgtsZw9IKrjGSZKuAWDmQW6G7pkeUVZ1YYCL3O7ZaKSGRf8xjVeF23tBqqAcaN3S+UME9XtmIykDR1u7Hc8kkoDj8oxTMzeNokL+h1XsX/AcDLLRD2/cF5Bwbu+fRm+74eg9CiYB1HeSP19205VmNmfAVGehfBSVgYBi/oadpOpYXKCwmKUjggmiTGdLbdU9umJQ30sWSNqSenApYkK88WOh50lxl+pFO39Ozp8ZrnzTE2UaxNPXezbrwuG02w+O6+aZ6IaHc6mdiUPfUeNRbsk9yyeeeDlvOfVa9zot+sTQGdmGnT1PEpnBPYTrzQJLY4WQlZRZMI3Vrfbhlo1wN3LRIES+acr6nRvDwZkYQtUbqwMKFyLidazYBdG5F9FkVl/8BrPn5zAP1gTlVWZcsLXmYJLdsXYMFEZmeWxM9Cf7Q3AyXnszpBH7uyp1DYwho9fqTUhPYAlf3HuNVH5CKvGcuY3fyGECYkDfP26yp69crM9iDXt9qMDk82aTQpGUcaSfrlwJbuaqW363a5DZB6Q1FNViFl7l/XdHsJRbGc1nZhDa6SlAovLp9V3bmzgF5Lhokf4wANsLjp85L4jBoQ2rQnnuTo5oU5i6jgisXxs6c6E8xomquZoT4GoyoCogLzSh7jG361KjRA81tl5lucr2UM+v2ak2V4mSs+HIjHRFtBMVOFRoZjziaf92sYTnDKnwqLWTJvwNYgqPXNNg8I2iTdf6/bXHkQFVsCit0CgdURWt0uqs6HGunSIs7iEm0zwq5aJyhI1ocbZZA5ELQeLpFVqUL3QwXBRtRtWrDe8IJfYkapCPfy6u3n36xeRWQ+BBW7G0RWVvSbqdoIGToBAEBeJMUG7faB0Cjfim2bjD+rcgD4FotRG11xrUKvFI5OR2TyTUg1kmevNMBsxyadYVaDYKSEYZSPswQJ1FFFN1OLp9joIrYnybZ/UCXG059Y0tHn2hM/u6jFKy6E4dBt3/MIvkS2sgV78B31rjonK60wxhMECCMHvfMcyH3vtYVzH3geiiqwdoj0tSsyJWer7psxHFAksS/Dmb7mDe29TJ/ogbCf3oOOZkNnIgKiZcJ7WRFWODUKQW4rJCZ0O/oI6DebaMb2rq89nnmCUj4nLmFgX+C21GLYQifEEirMc7JLQbsdHL3RNJqHl5gQzIZDZDL2GQSgym1SHdmZFw00IIdLPphs4JFlpxk0i23FVH10j1Kzaxm4DolySomWi4j1MFEBZ1SRZST90VRgK5sKijb/ZrdyDGxDVJAEsdbvIwqeydeq17jsr1idSV7Kd7JJ4CpSA6mvhpawsBGYzG6VTw4r0C594OsQpKq6vuVTCgh0VCj95qGfKLRV2exqP7QCBpNSFXivLMQygXWvAa89vUvefVhvOy+5XySmeBlH1TDhvrybqmD7pbyfqd1Q4r2VRn7n9ZVxYXvr/2HvzKMnO8szzd/cl9oiM3Ksqa82qUqlWbWgBIUDC7DvYmB1szGAwbrfdy/Hp9plxz/SxPT3H3afN2D02bjdmMF4w2GCbXUiAEEJCe6lKVSXVnmtExnr3+eP77o2IzCwtHIw9nH45nEpFRsZy77c83/M+7/PSCdtEcYQqAZoz9NZuOFqtBeLaqK645mZeMhDdAYjS3M1AlKy4Gyo+6dgqzYpMJRZLeMlgDDw9JoBES7ayQguyax51OhQlEEmZOUUPrpjOSz3PFMmCVIxYVrWFqFGAp5osjcnXGRtHMXzuPpLnGzsHnnxx8FxavQ7YUUCsMcMhGeBA2ejwnlboVYsW81vFvM8OYq7B//q+6/jIGw9Sypn4ki3qtz1a3YCSBAGBlWTp7nSsJZFO4tt0ow6lvIGXiMdTSwKtUCBaa420FwLYOi4qET3ZAaLhQP4D7+FPX1Hlkcn6hrWyLJkoQ7KZca9H0u3S10wMxRqk85wh01S7iqHqJLIAaTid15XAyY36WIaBqZn0wh6J56PaltDZrjt4pfN9qpZDUWClmWqiegODTQRDn8hMxVJvOVtDo9YaWhQIM2JfXIcURBGatKQOLO+BH/kE0cY168cdP7EgKl3MLN2mbBWz0nTNzbEmm7tetqo0Oz56uYwWhRQlsvVUk35bnHpaQStjPBzDoSI9cjI2Si606YAA6EgEnQ81jK6HXqnw9Euv5sK4SRIZWLgoZl+CHiHqTUNVVGzdphf2aAVtHN1mIjee/T7d+EtaBDIF5ak66D45WydRxefRAjGhAqVDzjYI4xA/DsgZTsZEXe4uEiURhCZKIBawhreGLr1x/MsiJWLmc6ClIMqkrw8AQdtV+cr1RU7f8U7x3/J02fNCEkm/5/MCFHh+RJzEBIlPEulUhxY418yN6IHSCPom4cIs793/do7tmB3cE2Bq3IAEXnpkDoA7rtvK4TnB9On2YHJXChYlCZzTBc6L/MGpuitBVKpFUMXru4ZDMV8l0AYgyg3TjV2l6TXpBj3WZEoyltdNMQe6qJ7vg5KMMFF51yCtJDSdUU3BMIjqhj1szabbjzZN5yly4WtpaX9E8ZxmT26aQ+C8P1mlKn3CVtY8XEtH19SMOTEwN2Wi0sfyjpGxQI2hKkdbszBUg+YzgChdEz0UFRTKbk5UUGohqCGd0qiuo2epXOhcBEUhyDvyWiuMjytcv28iYxTbQScrwy54Bqr0jlnL6bTNPFpL3K8tE3kMWe0TDYmeu6p47WBZgC3VsrJ0nhJLV2ddXN+vvnYX9x4qcd0LD/Nbv3Ajhw9I09s4EL3wUiZqk3TeVF6k71f7KYjSqBatLI3vewqJbxMTs+a3UA2TUBtUwIEQFoMAUc33vp6Va/dwqaajOIL9MwtiHkWdTtY0W83lyGWi/1Emam3IMaFrayzJNKFeKmVpMIDTJaEB7cSyOS5BZpIbdzsUU4sQuTkqerDBCTx7H3kg0CRILGsh7V6AL0Gfp5o0xov83WvmUK69GUWmdfX+wPIk8J/bdpWyo7CRiYolm7iZnibVaO2eLWMZ2ohWseCazNTzHN4tZBJ9mb5rNTpEcUJJgqrATFhuyfSpHANxoJMENgkJhVICclwV5AFELxSJOu2MZZ4MX4h/6mompwSA7J8Wra0aTpIBYh0zE+ankbVUsQsohkG4uoqSxPRVE1O1htJ5Ay8yV3coWSUUzwdFQTHNDER15BzJRX0sU8PVHbqBTOeZljQ9DjKgCWTMVM4Wh4XlNY84iemF/UyyAohiBQloF7pLdLMCniZq4Iu+fH15wLLTzgAmq7Ii2ZGVpf8c2KifWBCVDmBXtynbw0yUy+W5Mn/4mhoXi1totr3MC6Yeivy3pxqstQSg6YSdISbKpSIp03RRTMvXQ2+weLRlF/Cap2P6MXqxmFGpRDpq5KAYHq6tgRYQ+frIQMzpDp2gw5rfomDkKRj5TFyeUvolLcw21EA1hC7LTogVaWDXFQtJpPVxpB4KoGC6mSYqa/0Smti6ja7qNLxmVtbtS12Jnc9l1XmWZokcu4yOo2JrFmV5wmz1pCjRD0GCQ/krltb6A0fnSGcsN1jgcror01GjC0PPi1AvHOLY5CHefttVGKqebdiJGuIaDod2jWXPL8iNw5JM1Gw9x7H5erb5pkxUP/QINUhUNUvnRZqssoub2X0oWUV6tkoiRcuOZH/6pkLTE0zU8Tmbz161h94OcXJUjD6rLY84TujJ3k/DIMoyNGpFGzWySLT+SKPhzO+pF9ANeuQMh04/HErnDUBU+nNTFe+RnqSbfekNM1Qa3xzPUy8PToIF2acvnSemam+49jBoYO3aBrYpqgcbQ8JyRVEoDRnTro++L4T6/aiPpVkUHJPEk5uu2adV1IklwZIgANOF9mUAwqIUvRoqO7eZbJssZECuG3SzJqmFQMeR/ee6lk5Ty2H0O2hxxGTVxVbk3LeG2GJFOqMvizStblsDEClTraHsG3i+pvHY0QlUVaVWsgcNjGOfRssjCdN03qCMPAWn0zkBopq+GFOupVMt2hkT1e+pIO0lGtLEt28qWEMtYtKqYc9Uyc/vI3rVS8SGp0UoiZYxUVGnPcJEWZqJoeoDJkpucD0txJeaIC9ncK4EqCrmxCS9sM+Xri/w4NYtLCP0Uf2kjWNp9GNvhInKSRAlChgUkc67EhMlNztdtiopSHlAS3oeeaqBo9ucryjk8nbWumncHPhBeev9A64QI0yUVRz5XSjlAZv5mqUHuK0T4u/Hh+bLcDoPoC/XQ1UCjopkUnxdZakj9oYBiNJIvFRmIDyPNEXLQIWWL0CSEMhGxEFYJVqaIT8mrn/UEkxgK6dlvoGmYmcH1jTyRo63zb+BV+54GarjZBWXfc3C1mz6oQA0WToviLF1m4pVQvNDVNtGURR8meHImKiwj2WouLpD3++SBAGqJZioJBmk8GDARNmmWONWWx69QKRynfVMlJxni8MgqtWCwCdQDPr9UWuTJDBZlnuKLef7P4cKvZ9oEJVEGo5pULZKWF5CrGuohkk36tPKaxQt0fcodSWuyEXMyrs0Wj5Fs0Av6mSnRtdwqEgTwsxwU7IA/aEJ3pJouS73FbVQzE6mSagTezaKmhCbbVASkkjPTkEgKOg1v03b75A38yiKQk1Wl4Ry8SuqUUb/pizFxLhOkHgkoU6rE5E3cihmX1TmSTo9b7lY0r7hbFuAqMgzcEyDklkUJbkSRAWSiXIK+WzRtzST7pBg2ctZlKzigEHJmKgoY6IsRyy2y83+kJDZYKYwzoHaPvaUd3L73IvJOzo9T+iBsvsoDQpBbNhFs8iaFE53w97I6QYG6aXJcZ1ffssh/v17rsM29UEqqj1I56EoJLZJnDJRsm1JK5Ksk+FSsct0LRW9K1rg2FJI6ZkqDW9NnMxUhRPlSSq5USaq54cDC4sh4AnwG++9jqu3zBAm4chCMJrO6+AarmDx1I3pvLRSr6H4RHGUed20PMmoDoGopZo5CqLkppCOS1sXi/IwoAOyNjI5W0dRFMo5a8RvC0Qrh1YgLDPWhxdE2KaWnUR1TUUNZfNRq0egBZmFReLaJKoimCggKYrNzLe0bL6lYLgf9wikgLYQqBnT7JsGDU28fjHsUMyZVKVdgmYNnYQVmXqVaT/TFkxUkiTEQdq5QMyZXtjLCj6ArKLKjbwRTZRu2hvSeePuGJqi0ZYpMdvSydk6qi5BXy/BSMTnXfWaRLEQVBve4Foa8gDoGwolq0jdHbAzamxmOqq4082YKC2XkyLr/DpNVIKfePRTlqWQ57zVZduv/3uqr34t/dDj0Z0O9+27Gr8nxqyvtLPq3oGOsENeOkt7ioGeWJKJugKIkmxYCvjySFZsNT24mriGI+a0JZj1JFa4enrn4J51FZ5LpJooR7dHDi8AgZRpbMacbpUZir0ylZfOF01VNlgidCUINGJxDaqpJkpXWO2Je52OhSDQSCTTbzoeGJ4oXpBaL60oxlOwKHR8DV/F1FWsgosy1Iuv5apZBwtbF+756+frLTM3sKM0h+o4WcFDT7WwNYeEhH7oZUyUGaRMVBEjiEE29c6YKDlHclEPyxCgL5SWPaJQJTUoHexdqbDcNnWqRYs4SbjcFPd4gyZKZm8u9xazKuhwbQ08D1/V6a3DR0lostKNUB0HM2uN9U9fofcTC6K6YR8iXWgQrBK5fkyQG5xiAUpOjrWujyrFwyoJWqFAoZRjte1RNAv0k+46TdRoOs+TWo9eR+piopg2YnCUm9IHpeAOlZLr9GUpQkcRp4ok1EfEulW7QiL/ly4IaYkucgKUtCgTIu6QWg3HjenH4nuvrHnk9ULGeKVMlKu7FJ0cRHpG74aeIa9TUaQUpHdJOgmtwqA6z1wHol515E28efdrZYpqcJrr+2GmiTJMaRja7GVduYl0iq7NLxx6Dx89+vMcrh+gXNgoXE4NCtMoWQXWfLFh98P+yMSEwQLaizsc2FHLetgVc+s1URIIODZRr0viD0DUWrgqr5VD3anRs1W0OMEME8wgJEIh1IR3V0YnhwZV2dk+tTno9sMMgK9fzF1bz56/OtRGKDXcbHS7+HEgGvz2gqF03mBlSdvyeIb4LOl3XOvLFMkQiFpReqMgykmZKKnPsFz8MB7p7waDBTJlyMp5k7WOTxQPNvmiWcyqr9ZH3xsFUQBWIu6RYvbwkx6NggBRae+wCx3BRFGXYKFUZFVWxKbfMUj6RNJJPxeoWforNE2akomoREIPWJWMlW6J729g05Wl1qE8/ZuuTRQnoimy9Kzyk/6mqQjVcVAMg0LSZ6U1AFGmZQ9ZHAxMdMtWMUuJOZYAo7opmrp2+zG2Ij5vo9/I0syGF5LIa6zLjcmTIGrMGYCoJDQzG4ZRYbkAZnnDHdVESQbFL0iAUCyKA+fUOJrjZAyaqZr4PRMFhUjr4liikjNl/6JOB1eRur9ER0tMqYnaPJ2XmrHaRbF+urKvabcxYKJypkOcxKIq0vAhNDm4fSBl6D7H/TLVgm1I5cUJvnRzbQwVB6XxS285xK+87bA07h2AqLxroA5VacZJTE9ex9TTqCiLOwJDyQBaOhYCT8vYf8Xso+g+BhtBebAomKNVL6HgmqiqilYYMGmtnJZ5BzqaQxQnVywGSXVPAH3NxDUG1XWqM7A4cAybilXGDBJi2dLLjwIM1aCbehdGfQmiHLRwwOqmh7ZhXVTfj1AU0fKlKm0iLq9Jmx1j6BDjhZlX3kJ3iW7qkN5okAQ+sW7S6Y4CRDWyWG17aPkChhTV/3Oo0PuJBVH9sE8S6dimTsko4PZj+q5M10gGo5x3SBLhtJ2GtW2OSt7CD2Jyeo5EiVCkT4Ujq/NgkM5LwUnq89fzwkwEnJftAwJX5KMNxQRU/I4Utsdi0hAZI95Cw73JUlBQswWIUmy5OKphxkTZ0jujHbTphT20xGKx2aNolIUBnhVmn9PRbSo5i7g30A34PR3X0ihbJRIS/GHqWtNQLQvdEJPH0iw6Slqer3N427Xsq+3JNuU0T9/zokzrpRliwVlaG2ai9Cz9lH1vWTW5Iq9F2utrWGdRkp+x6a3Rj7wNTFTmWLyOrt+oiRL/Ko5D1G6ThCGhBFGrvgRRhkPdGctOSU4/RvN8mc6U6bwhL6cJyRAodjcDUSkTZa9jomBQft0Y8h1LmahhQ75OLyDRdNC0dek8yTiZKg2vSUWC0JSJSiKTS1ffzD/cIBjGUt5El2avKRhJ70dJilGHxyEMFsj01FkuWCSMur+n7F9qrZBGkiT0/QjL1CTglSBKtvNWrB5B4rFWlFYYUlx+SYKo5JbrmP3Vf406NU7TXyNOYplSVAgVj8iScyEgc5KPbZs1XfbHVHsi3Sg3fk2ySXriZCAqPSiYsmqs0wsJ+rIMO+5kbMJpAZ2HAAAgAElEQVQwWFcUBa1YJB/1WFkbCMtNy9mgibJ1mzGnhpd0QR2wqqou5sdax8eV1gmrXhMv8uhbov9Bdq/lPI8tQ4KyEroidXiBkfXUHEnnydL5vJkXjYqjQDBRcjymqVJTmok2vFH2xNZsSFTKdonE6OLaOv2wn+kI404HW2rNOomGGpugBVhXAFFp9aZbEOuYnYqXG7J1k2lnwmNFD1F0nyQ0mZscmFy2u9EG5mWzSNfM9fYGfT/MnPmHDy5plPMW++cGFg+pPUbJXZfKCwdFKU7koyjgKmnvTYVOmIIouf57Crr0HewpTRQtRgkH64Em2TniGEXXafRiijkxJ9K2Uomi0HHUzPamKIHQ+vmahjU9SIP2VZOiJcZIN+wPQFQQ4+gOVauMGSZZlsOLfUzVoDMkLDcNDddwMnNbxbKy9bs9zER5EbYpDgqp19aiLFAaZaKiIU3UgIlKU5CJYdJoQNwdpGZLOZtGy0MrFkUhSpL8TybqHzP6UcpEaVj9EDWBtrxRnaCLq7tZamBxqG+YvW0u24xMxGBTbbkAyFOlgpIxUSmr1ekoWSVTTzI1dkP8znfEKc6WguxUE7Lky80i1IUruozq0Akqze+np89EToY8QbbIOjmxWCz3VvEiH1MVKZccJfk3nSyd5xoOpbyZObmL97ewLT0TJnbswakrzZNrEkQZikFHfj+tXM4o6fVMVM8PB74ukskT6TxJByfGhhYR1WIqfJZtBQLR62uYiapJgHlOpiLXM1GGJrQV60GUY2nYppaZv/UliFJdJ2uYHKY90aQ7tqM71JxqdkqqBAb0evRVEzW2aXprA/YlNCi4ohJUsSSI8q7MRMEwiBpmotKTslh4UiYq55porjtitjncob3hrQ3phQbArnvD7VzYO07Da6IqSrYxrNdEVWVlYWPdopwxUfLUOV6RJrRDruwl2SJpfYrED4XNhGUlUhMhF9UFcT3r4wle3CN0U5OYUZG9ky/j7pmnbJWIEyG8VhSFckEHNSaUzFIh1LN0HrZDUxdje0qKk4vpHpiCqHjARKVhy3ZGnX6QVea2/HZmEuiuG2d6qYQT9PD8kLDVRjFNTNMVXe4le6WgYGkmdVdo9hSrOxjLapiV7BcNMe8aXnO04EECovQ+j1dnURQFVVGz9H7k6yjy3sXdTtb+JfUCGlTotUfSy6sHt1O88Sb07XPivyWQT5liS96rolkC08OxhN6rP+StZkrtTDtSITJR1CQb7+sj80Yqi2thpGBTbrDYdtY31EtEq6SSVUBTVfZV9wAQ9MwNTOlmkYKoVHqRRrcfZozQZiBqfYyXxTUsrNND9cI+PbkmOJFHvexkjZgDQ6Efd6UeUn7Hnool2calQEgkIn/wmikTBaDYNmEUZy2ZUkfzuJAjVpXMgLkqbQyG22kNh7VtbvB5NYuSBE69sCfMkwHTF3Ny3KygxeDJoelHPqZm4pviecNMVFoRrFr2iH4zjVQDCYP1fLmdgqjBnBvWRLWDDpGmkNhWBqIU08LzY4Lzu7K/qRQsVlseWj6PEsdYQXJFLeaPM34iQZQfBURJJCrAijaxpBPXZEl8N+jiGk6mkzk3JAq3ts1RkQhajSQF64iFyTUcNFWjZBWzRScTjIcGzbZPz4tGhNcA7bxOLxqknhJPDM7LfTGhiIyRViGbM1Gy5FZWnjhxkDFRRdm0NwUWtjxBhD3xb6S3Mjo9Z+Qo562spyBIV/chENXMaajSWTpNVaRskoaegUR9qMN9YZ0mqu+FmU9UTICmKiw3+xl4sdSNzMx6JipdMN3NQFRL6GbWM1EggOd6EKUoCuMVh4VGlyRJ8MK0o/mAkQuV0cXS1R0MVc9c2muhRdTt4GsmamSz6jWzRS32HFxLZzxXR7X6XFxtjjJR+sbvm7Kaw+atKYBf6YnFoWDmafcC4QHmuFkKD8RGlugakewJl6ZD05QMkU7BNai7NVb6DfwoyFIUWd88udDX5EL+bEzUZFWM3eHxWpROyettDvry/mmWBGJyQ7/jyC6IFQqlkE7YJc4NAMowY5eTm+qA/RXXqVJJS/7lidrzM88sxbVZk+8zlpWSSysLmd5UNwNRefFanV4giJ/QZKW/OpKWGw6tWEJNYuzYI2i10AoFHF1UYHmRlx2aVEVlwpEgyu5m6a5ICbJDxlWzU6iKympfMlGZoeUQiNJ1fuHYB7L3zw5VgUlfdkGIOp3MVDhjooZsDnpeiCYtWZItU0y+9wOUcuJ10jGYjp2CBKg2eRQlQbcDemEvK2yJOm3UQIyVtUjNGlh78UbrABhUCBYKVVTbRu9IQ9i2NPJ03Owap7qf+WmRyvv5q9/F4eBtJL5zReZlOLYUZnjV9ju4bcstI493vRASFSOxN03nrY+pMRfH0kRz86HoR8Mgqs90LTfoJ6cLd/3Vlkcv6mOqBn0vxlFdNEXL9H5Bf7CmDYOoxJQ+SHJ+Zg3OK+LftE1XTWYfVq4Aouy57YPXtB0K8vAt0nmyMCJIcDSbumRCe6nvYORjaSamZdBTTdyoh2mouLqN04+zz5yuCevTeSmISpmoRi8lIQYpxp4XZq1k0lDyeWKZ0lFkEUi8OsG0tptXzL2UasESDbQdqXnrxyOejf9U8RMJotKTOJHOWMkmbIoLvWpGtP2OKPXX3SylcWaoh5S9bY5pafGfihAVLRLWA3KBr1hlGp7oxN0NeihokGg0OoJ98BWdRBlc2kVXnEzTTSHxbeHaPOQjMgqihsCJBFHbilspmQVsQ5TwW5GXaaJKJWkMJ40E8/IE0WqI7+epLZb7ggau2ZWNTFRg4lh6Bt6Woxa1179RflZxwlJN2chYzdOT1yFt8QJC66EqyoCJ8iKIdDRFoxW0qRSskXTeZumt9UxUbzMQJU/g5zMmahMQZQox7Xqh83jFzRy7U/bHyg00BwGi2iSNtI+hKV3Yaz0VoojAsEn6OYI44MTqKZRYh0AILetyc1vpr4oqtsyRfnQTBqhIi4fhU3GacmtIcWpOz9Hth+RtXXRf740yUYqdWlM0qchDgR97qOiQqOQdg8ncBAkJl7uLQyBKVnumAmgpbl1tj25S7YyJSkGUmBtpewwY+N2srUvnpfcPUzw3HV9vvW0PNbfCir9CL+yzvG+a3MFDzHzsV9gljWVhsOiWs+sk5nG6r3R9g1BRUfpdKtKWoGX0WdNdEqAgQV1WORXmUFDQ/MEYBtFP00lbQfVE2ksPcyz3VjKmcf04SytY82GfpNNCyxey5/RCMc7TBs7jrpifqt3BtXWiOCJmcMi4du8EJbOYMVH9dUxU1Oui2c4Im5mBqNCgqwyBKLkJpWLzgRlqh74XYVpigKegPl1rUq1NOh4q6eEiEONFtcR3CgwVFEUUY0jg0AzUTIx/pWqpVtBGVUSFl16tgrQM8WQTZ91xsuu30BUHk5SFNzSDybzUol4BNAyHqqj81PaXMDlkDQOD8WgrBVa9xrOmBnO2wX/84I284YU7Rh4X2jDZwinx2D9XyUxbA0NBMTwurnSkls6h54c4lpEdAAH6ncHBXR/SPSVSUlBI03nyd1plkGYEqMsU4BWZqNkt2c9msZitP92wj2KaxKqCHSQYmkFeFkK1pVheMFEGjqXR0Rxy4YCJclMQVSxm7PR6YXlaoZlqotZktbA7bHHghTi6g0hcI19zACY1O32uwqtnX88rd9yetd5JMyFuP872tX/K+IkGUUloUC87hA2xSXUclZONU4DwfEp1MmeXBhNfr1aZrcuFpzUY6I5uZ6mrql0mTuKsxN1UUr2NL07fikIktUuBBmeUBnES46TCukTNxKQgNuthEDVMQ6cLSckq8B9u/nUcdgNghN4IE6UrGufa4pRTc8RkXbwkmx0nzQyxV+0K5ZxFMqSJIhTC8tQY8ELnEuVbb6Nw/Q2MvfEtAMRGlyRWMXFoGAUSRcGaHvTZUhSFvKNnmihRpaFQsUqs9leplx2abT8TPW8GKtJJtyJTbikgyw25KG9M520OotLegMMxMZSKWuwtkzNczPxg4nroKL0h7yr5Ge2a2ATHL8n0bK6E35LMRdhFD/NoqqioGZepG+wuT55vPqMmqiQZnGEQpSoKtZJNK61mUhwSeQ001xXO6lLHE/e6Wblyo9/E0DXyjkGIh556lTkGU/K+XuxcYv9cBVNX2T4p3rsX9jFUnbHCM2ui0gVzMyYqZTDXM1HpppUYYj4OM6w1p5ptuLZbZOYjHyN31QEOj1+dPcfdwERJw9OC9IjpqPRUC6XXpSQ9sQJbJVY02pqDKZuqliWz0+pb/Nq1H8FZ20OsDOZ24drrqZUkC9Lo0fNCjLhAmERclPosx9jIRAGUwxZKGGZMVHpN+9FAA5aOCSMnKs+GmUKAsbJDzalI89vWoB2RBERxr5+xB2nUh0BU24tR3RxhY5VweRnVzaGmovshJqrrhZlBbQrwZvLCnDZdOzIQJZmsoCslCIYABZbpoDqiV18K6Bv+wDrgSkLftt8hZ7ioiopeqZLIdGAGovJutiYs9ERKZ9jvKd1ALyz98ELilNnOaQWCOHxO5fF5x8h0hGn0wh6hrhAbOntqBrcdm83W4kgXDY4vLnXphT1s3cYPYhxTY0thsF76fSOzDzHq9QwshdICorgunWfWBsUEAFNlMf7StXJ9DNt5uKVCBmB6odAJ+qaKJIhJZPP1NdUnTmL8OMDUTMZKQjvoxB6WKtbDFETpxVJ2sErF7WEUE0ZJxkTlbB3L0Gj56UFktDrPtUy2Fmezx9LuEAC6O1jXZ8bEWExd0JvSRHgstP8nE/WPFcMuzPWyQ7Q2AFFPNJ4EhAdQms5rtH3+x8wdxO/6RRRFoV52MHSV5uowiBoMgHQBu9RZEIaI0pSs2fYGOXvpJdMs6DzVOiteQ7M5uLPGrtkSs5I9AqjmcqyseXj+oAIupeGHWxgArPZiQlQ0vzdoEOy4WUUfwPayOIUsLSckkUY7brLSX8VQDfJGjlLezASWIlQcS6PujKGrOhfaF1FUlakPfJDqT70CgEjrkng2nX5I08hz/0vfR+Xlrxj5bHnXzFoRdL0Qy9So2GWafostE9JWYXkg2l4fOVvH1NWs91z6b5riAqhKgX1K+W8GxlK2Kj3RpjFREZ/h4kqbpd4KdWdspIqlrVqYS1dl/23IU2F+Skz0ytPi1BOVa4Sdofvi5XGlBUA6NlSry4lzzWfURBmauB/DwnKAesnGl+X1qnTCF+k88V3T+x73euiuYFdSYXA5bxIrAao8XeZdIwPHlzoLHNld5+O/cisTEgz1IrHQp9f4yiBKen7Zom3JaDpvc01U+reRJjbK4ZP48M8p4wdw9di+7OcUxKaMwnm50dvSMqPbUelpFkm3QyW2iAyNN80L0L9olqG5StRuY8oU8kInYUthBt9XMM1REFWXAPvpy20SwEZ8p7TX3maaKIC6vHdaPp/d424gqlBTEFXUyySJgpkXG1iqOyrYDh96nWiAvqUwQ0LCk80ztFzZiHdFjPG4190Aog7Vr2JMmyVuCOdqY3yccGmJYGkRY2yjb1qz36bV9bGcUSaqYOYpmcXsUNILhSlqTTJZ3Yb4Dn1tNatS1HI5onabcEXMh4bi0O+metPNhb6toJ0dCPWqmJ8Tup+1GzFzuWyjX1zHRAHMyIPt+cXN2ws9l0hBfV6XrKv3w23AWXFMziZut1EVhbjfR9F1XKsAhsf55bYAnZI1cSydbcUBO5QEJmcXZNNf22b7//FbTH/4oyzf8mpgAKIM6RrvTg/+FmCiVBCO4M/AzJk33EKIijtRz+ZYZrxqqeQkIEoBYE+LM+G6qZpsnyrSNHIogNlp4BruKBO1ThM17BEF4mA9WXNppyBKkgiiYEhUXR8dP5h9Xqs6GLemO1gT0gxF2o9vQVr0TPR1Vr0GUbyxOfOPM34iQVTKROmY5Gw9a+3QtVVOrAomyjVcxkqDhemcM0Fh314AVFVhquaycMEgliZpqdklkE2G02tP0Q0GdvaNtp9NVFXe2H7ZzTaXvJnnl958iH/99qPsKAk32t3lHWzJi9dL23HA4NS+HkStdX06ugNrTcJmE1QVLZfLgAPAvvG0VYJC4rk0wxVWeqtU7YqoVsqL6rLp8DCH8i8AxCTXVI2p3AQXO5dHBqYX+cSqR+I7mZlmWKmjmqMaorwj2gBEcUzfi3BMLfseY3WxeF9oio0hZWGGQ1EUKkU7O12tyn+HQZSpGSPXZDMmakoaHKZVXmlMVMV9Oru6RJRE1J3ayIntoeIucuEUt87exE3T12WPz87uI9BADWSLn1p9RFMW9Qd96eqZ/qXD8lr/GZkogIpVotFvjqQWxkoDs8G0iifVRIF0WA8CkiBAc3MUzTxNyWaVCiaJGmSVkQXHyK7HxXXXA8SBw9FtHEucGjcTlisIf6M0Jqsuy81+1sG9YOZRFZUVqddII/WMCVSxcA8zUen4h1EQlTdyHBs/xJ7KLlSZEp9w61iayVMS0BhpX73QwNNt6PeI2x2sfJFdNQF4L9rSWfrMaQJpGnvaswijGC+IsQyN6iteRf6a6zBnZ6mXxDh66rKYqzlNgKSzMkW+HqxnIEpWcmqFYvY9lvsrI0L6pYZH4jnEhrgOKdtz7Z4ZrtkrAOLWgvjcJ1ZPZU25g8UF4sAn8f0sPZdG1a5wR+3NJJ4oPDDHx0Xz4SDAqA8OaHk5Vy40VgijhGpJmhUOzZvZwjQNrylSfpHQcqX6uoULpqhgThYGXl+1MaJmA//iRQLDxtPMrFx9M3YniEN6YT+bt0ZVHDQmNA83tVQoFgZMlARR+aF5Pl5x0DWVc0s/fDVW2vamZI4aJj/fyGxaXJdIiqYTz0O1HSp2EcXwuLAsqknNK4Ioi1MXBulv1bLIHz5CQwK8NJ2XO3SY6f/lI9RvupVthaEUnW5QKVjPCKL8O97Ab+98O+VqYSDV6K8QRAFNV8H0IqJeb6RAJQXTpiZA1JIpWGBtZYGqXR5iooobNFGpBnLYcHXndJFEHVgEgfCOi5ME19I5Uh+AqNz+A9nPujMYn2kGaKLqoijwlPTcqrUTkRHyR2UEP+74iQRRTzXEwlcwhFFlqonquwYXOmJBdXUH19az9ASI/khpzIzlCKOEuCEWufTvYACijq+eJCEhJzVIzY5HT6JxReaBlaE8776qSMUpisKrd9zBf7z53/FLRz/IbFUM1OHT/Y3T13L95LENJ+BGx6dlFojWmgSXLqFXqyjaAKwUjDzTxWp2Gkj6LkEc0Am7mf4hZeDyzavYYwqwkFYNzeSmCOIwY3oAVuXmmHhOZgpq6BuHTsExSBD0rtABDHRWhXIkX0umWKyNIAqgWrCEL1IQZQLzVHCeRmr3AINU0nBMSebiUmdh5PGMiWqLdEHdqWVpD3vHDpYTG8vQePOe1/Ize9+U/d3OynacqQEVb01MkHgumiKuWdBxsgVlzKmhoGQtOVJ7jM0+J0DVqeLHwUiF3ljZydpepFqTnGNkFVdxr5f1NdQKBcpWmYa/RhRHlPIaiprgeRqqouBYOgUzT97IcXFoDKfRk81FRdWbtUET1e2HuLY+4pMzWROao3S8qooqwHf70ogOLS0y8GihoGQaMIADQ4zTMIgCeO+Bt/PRIz+X/beqqGwtzHK5s0A/7GcAMwlNTDm/whWRxtI1ldfcNMeBmw8D0D99Cv/SRWJVY1VzubzSxfNDbENj7A1vYvqDH0JRFExDo1KwWFgV96tsiHGbAk93HVhP03l12YhbLww2qowxk39zfqlD0ssRKn0aXjMrrhg2YN0mQdSFzqWsjZC/sEC4Iuaevk4TA4NKzlbXxxgf6H9S9gIGFaDn1wQwKRZlaf6QsH42L8rhz7Uv0A1Eq6GUCel0EpJenpXocpaiNOV7BUuLhHl5T8Mra6JSdipl19PvMqX7FIMOvqJjl4rZZ0291wpD6TxNVZmuuVxc6hDHz25zsFmk6bPNtIjPJ9K9QMsXSHyf2BPSCsW2RPW2mmRrjJoM0urD6bwkMEdAVBppU+b0+iuqSv7IURRd58hQqhuE/GG1NerZNhyNtmjlUisJW4z0oLPmtzOD23B5KdPWBobKPRfvA4QkZPtUIQNR6tIlxpwqbl+2TxtJ561jooYsaXZOl1DStmlyL0vBrGPp1JwKR8YPcnT8IO6+/dnfKdIYdziVaugq4xWXkx0dFIVCU6wDy73Rw9uPO54VRM3Pz6vz8/Mfn5+f//b8/PzX5+fnd637/Qfm5+e/Nz8//535+flX/eN91OcWSZLwlSfvJokVJnUhCIzW1kBRKFYns+el6aTtUwOQM6y9manLzugr4m8yrQtiQ6xYZU42RE+jki0m+2KjnzFRihQamoWBvmlvZXf2s6ZqWc5/siY2kXNDVPUtMy/gnfvfmqHwNJptn75bhCQharcwauJzpemRLYUZVFXNTrjR2mDxTZ/jStfkiyvd7PNmIEr2+ko3AoBleWIbro4x9I1+MJnNQTegJ/1CUuAWaR2h11F7JIGwA9gs0oqOhZVudsqqFEdZnECWVheMfFb+PByTrvju65mXgital6Qi2ro7RuGGFzD+s+9k8qP/gjCKM/C5PuzJwQLoTk0CCgVVXM+g42RMlKkZbC9tRcs3QAtQc2uUzfIGoJBG2lz6VPOp7LGUiVLRUosg8o6BlqXzulkrCK1YYCY/SRiHXOhcJi8P76GvkXf0bPxM5SZY6q2M6MSCOCSMw4wxqeRNWt2AIBwCQv1gg1vzjmkBCB89M1i8ZvPT+HHAQncxe+wb9wvmyFc6lKwiujp4nTQF+Fxja3GWhISzrfP4iUynBAaF2mB+paXbr7tlB0dedAwYgKiwPEaiqJxf6uAF0aZ+RsNmpPuG7jc8ExMl2z/l8tn8SudO+jcXljpEa4J9eXT5iQxUDLNBdXcsYytDXSEp5AVIkSk9fZ0mBgaHoeU1D6M+kT0+DKKqdhlTNVj2xH1JsyTD1aKzBQGiHl05zqrXYMKtj7Q5idtloiQtkLAx6kOC7bJYX9J+nJulyNJK2ZSJStN5k7pHKWzTNHLkHJO6PICkkTdGWfiZeh4/jFlsbl4B+EyRJAmPyPG6tZSucRee9+sEUcD3Lj9AySyQr4jrHLXbxP0eqmUzLdfPvikOcGkD9dl6HksbXNOinefkheYGcXtLyiHWt5kBODKU+gKxVsZJsqGDQBppj8tqyUZTNSpWieXeKmt+i7V86su0NKgsNBQeXn4MgPnKLlEMJFm7ZOESju6Q9xICQ0U1TTRVxTa1TBO1Pp0HMDedQ7G7kAzY+BTMpnvO+w/8LO878LMjWYEtBZVX3biN33jvtSPfabrm0vIT1GoNa1XMo/UM+I87ngsT9TrAPn78+AuAfwX8TvqL+fn5SeAjwE3AHcD/Pj8/v3ne4scUj516mO3feIJb7w647onvcPlP/hjv3Fm0YontlbnseTlZ+TM3NWAIhk/bV+8Qi1bcqrLDezEfOvi+kfeZG6JmC5bLRMXhzKW1bICoW8R7xVODBS3V2KyPXTMldE3hgRNLm/4+imNOnmvylfvO0e4FhPnBxpGCqNTRPF0QX3OTfP/G8IIqFnlFUZibKrKw2mNJdtlOS6+npdD09NpgU1/JmCibBZly3IyJSn2KFlZ7hFGMaw0YstV+g7nJAorZJ/HtDUabaWyT5nqPnVlhpeVh6Gpmn5DGTdPXY6g6P3/wXVnKZzhEP6jyBhClKApzkwWa0pG87tRQDZPyrbfRCsX3vxKIMifF4qhXq1Qq0swvmcHVXZJefsTLan91LyigjZ1HMXy2Fmc2fU2A7TKtdap5JntsrOSA7mMkzoiwO9XFRN3OAEQVimwvzQFwunmGTOIV6uSHTAKvqu0lIeGBhYeyxy62xYk63dwmpXg31WpAykSNXv9Du8ZQFPj+iQFgSk/ZZ1sXWGr0uPMHF7j30cvsnCnQjlojqbw00hL0mdzUFa9PGmkq46nWuYztSEKTsanB4UYd0lHo5TJ6tUrnwR+QeB7mlJgXD59awfPjTUHUcK+0I9tnM0NL2Kjh04ZEsACrkZ4xpKmOKm+4BGHE6UtrxE3xOR9Zfpwn5b1OGSAQbNvM0H/r9THC5WX8BbEZG9WNTNRUTaQ3Liy2M3YIwKgPrkmSQNmo0Vea5F0NVd+o0UtTid88/x0A9lZ3o2tqNkfV/uDeVe3qCOtVmhH3LvFclETZwP7CkL3BunRepbeKHQc09Tw5R8fQjBGDzGEmCsgKfs4tbK6L6vZDHnxyia/df56/vPMUf/bVk/y/XznBn37pCX7/84/yxNkGh3eNcXh2B7ZmcbJxZtPXAWEA+d1L3+fLT3+Dz578An/+xOf4syf+mk88+il6YY/rp67JqurClWWhTyyXs2upFWW1Y0/sKalNwq9e84t88OC72TVdptn2NwjD12RHhbyzca8Yc6q8esfLedf+twGDQpk0Bb0+0tR8Taaqq3aFpr8m2CjJRAXyswMUpFWOqqjsLM2hKArVLdP4ik58WQDOnJfQsZUM/A33OxXp+5ievsC3LtzL35z6e/763F+gum201ky2VqcFQ5s1qx5/x7vF9z94kDe8cGdWUJBGul/3cxW0dhcjiP/JQdTmO9lo3Az8HcDx48e/Mz8/f83Q764D7j5+/LgHePPz8yeBg8C9V3qxSsVF34TF+FHF8hce59jjPaAHrNA8KR6vHT3CO4+9jrvkQjE1VqVeL3B03ySf+vIJAOr1wem4Xi/wb959Lf/pU/dzx1VH2b9tVNh3aHYv9y+KDalaLLBvR42v33eOs4tiwdjxa/8S9fQJ9l5zgO/d/fu88/CbRl5/fRyZH+feRy8ToDCdsmBxwt/efYrPfPnESNPX0pZpOCN/3jZDvV7gtsr1LEWLvGLPbVSdAvV6gQ+/+RDLzT6fbdwJwHStnn2GAzvHeOT0Ck+cFZT2zFSJer1AuXo1n3gsz/cWHuD9178FQzPoX8T1XHoAABhESURBVBTfKfEdllvydFN2NnyffTvG+Ou7TnNepnlKRZtd07PwAHSVDi++foonT0XEgcXkeGHT6/GCwzN88ktP8NDJJZodn7Gyw/j4aCrsTfU7eO3B264ISgG2VaZ54NKjuCUtS7cC7D2gcvqcWOj3bpmjaIlr/Ym/Pw7ADQenN/1cye7trAC5mWmmt0rAGl/LL9z8Zj7yrW9SLbvZ392sHeVvTv89lV1P0wlg7+SOK977UnUf+gM6T3fOZs8xbAPlUR8lyhGr8iQ7VaSqTLMI2EEXXZbBl6fHObZ9H598HC54FzgwdxQeFEUVlaKdvebt7k189skv8ODqw7z+8MsA+MwpMU1fOn8j9XqBY/sm+Pr957nY6HH9oRn8ICII45HXAagD+7fXePT0MrptUCnYHEh28ucn4K++9wCXHh4saq988TR/8ETMdKm+4Rr8/NhP84r9L2Jr+cogM41r3P384SPw0MojGaD54GuOMhst8MSXvwiAWy2PvMfqwQMsfl2M/dkDu6ifcvj2I5eIE9FWY/3nmZstcddDF5mbKrJrrs7+M3t48LI4mW+ZrG8AUmfHx/EkyFkIDa6bnsDSrUx4vLhg8suf/xadXkAhV6GWG+N44wQ1r4Kh6tyw62pMfQB0f/rwq/nW2fu4de4GtEtfZOHUGZKzQsM5tmML5U3G0FQtx8WVLhN7D3JWPjaxZzv2WJ6v3HuW//6FR2nXVfSxmPndNokuWMbZ8RplR7xenQJ7T+zk8SVRdPOCnYepVwpUSw6dfotpcw61sMD82E7ecej1cH6BlKee3rMVLsWQqOTUCpe7C4yN5UcY9Mc6ArhNVWvU6wWioskZwLz4FCGwpue4ZlKsP7PlCVYvN9BVnS2T9ZHXOXbVFJ/5+pM8dGaVl9886Km3sNrlk3/3OHfef44wunKqzzI1PvTmw0yO5Ziv7+QHlx7FLCSU7MH68sTSKf74/s9wYuXMFV9HUzVeedWthE/fSQMwVsUYyE+Os237XngIVAmiuj0FTVU4tG8CQ9eo10XKqrN0iu8/sch9J5d5+8uFFvf8YptLqz1RUTtZ2vS931F/bfbzDYdm+NzdZziz0OH2Gwc2DFEU85dfP8k3HxTAZ6zkMFZ2mKlMcKJxioXgUgaijO4aiTS53Tm3j++1vseu6hxb5OH/dz72Ih6+8EV6Z89SqzhYvYiVMR2jkFBxipSLFmcvt6nVcpx49JvYh7/OPb7PPY8PXfe4SOPEXi40+hzeM86nvy7G2bF9kxvmYP1Nr2bX61+RtYBaHz910w7+6s5TXFRybANqbSjkN+5FP854LiCqCAwnj6P5+Xn9+PHj4Sa/awGb330Zq6sbc+Y/yrjlFW9m9dgN+I0gE0dquRxasUTQVvjw4ffzjXN3U4rHWFxsUZCb0VTNZXFxFNHvmizwnz96C6qqbPjd4dIRZvJ3cb59ETvKMSO1VadlnjtQbax9h4k78LHDHwLY8BrDcfVclXsfvcwX7jrFa2/eztOXW/zx3z3O6YstXEvn1iMz7J4tsWU8T2X5LOe/Kf4ucIrZ694x/TKiNixKsePRneJkcfbhQ9y38AMKSSl77nhJXJu02qXf8bLfXT9xjC8//Q3+/pG7OTpxiEcviUGfeDYnnhYbpKFs/D5FWwz8B0+kegBIOmKIXWgscsseBU4Jnyxzk78HcFShTfv+8QXWOj6TFecZrtuVRZU1Q5zGv3fqUfbX5gH42tm7+Ielz6PaCYXuLvrNmFbY4NNfPcmd959nx3SRYztrm76fX5TplLFxEikwv7TU5fKC1AUlSfZ3uaQkmjlLwWNV3fw109iSn+FM4yxnLy5i67bwnlJjui2Vs7LqLvQCejIFtnr6XJYS6Skmbl8YFT52+SRXFaWuIDIwteFxa7CzNMejCyf46mP3kCQJdz31XcbdMaa1LSwutpiQY+L+xxe4af9EBtyNTcb/1durPHJqmY//+Q+4/dotfPZbF6AEK8ECV20/wtU7aszvzvHpk58U90Mf2/x+U3zGazMIg8P1Azyw+LD8TAbX7Z4kbA6ATaAZI6/lvPAlIEFUVBrjur1j/O23BcNazpkb3jcnHfR3TYvP9MYdr81AVGvVp6OMumWb23dmIOqhC11uWGpTtcpcDAUDete3OxS0Erdfu4Xr909wX2uVr527i3PBRfZWdtNc9YDB4WhKm+WNc4LJWC5IX6QHHgSgozkEm1ynyarLhaUOTzciFMsi8X2aWPzeJ+/ja/efxzI0tldmOMsFrjlo8T053zvNkKA9eL0bxq/j8aUnyRkubiC+f04yBRP5Kj937b8AoLcWExtDLaOcAuV8j0bbR/UKtM0VTpw7l9m0+FHA3zz2VQCsMJddcy1fEIUxQNPI4/d9FhdblHTxvfNGjqWlUcapnjeYqrnc/YMLvOHmZYo5k28/con/8Q/H6XkR02M5ju2pM1lzqeQtTENDUxUURRQLFV0TPYlZXGyx1d3KD3iUe558ONMa3X3+Hj79xGeJk5iranvZX52napfJGTlMzURVFBQUckYOve/Qlk3Blx57AoDQyRO1NYpmIbP7WFwKmKy5NNbte0d2VCm4Bn9950mu2lbmkVPL/OWdp/DDmJ+6futzmhM118A0VO577DKLMvPQ7gX87l88yMlzTQquwVtv28VYWayhOdlu6dHLJ2lJELV29kKWzts2dxTlofvYV5ofeX99cprk1Cme/uZ3UZKErq3yxPmn2VGao1awePJcg//rG3/Cdxa+A5rGLvsgN8zNU7UruIaL33L4ze/dzyc+/wjvfWXM1+47y1jJZq6ee45zfxA6sHOmyIlHDbYBPz/1asbGXvC8X+f5xjOBtOcCotaA4VdQJYDa7HcF4J/cuGHPgf1XvKj7qntGdDSmofHbH7rximmctIHt+jBUnV+95hd5fOUEeyq7OK8O8vSqomAaz0+zf2TPGLmv6nzu7tM8danFg08uEycJN1w1wdtu2z2SIw8Y0PX6UDnzleKd+9/Ky7a9mC2FQbpg+9QouzNcfXXT9PV89ew3+dPH/5zPPvkF1vwWk84kp30HH3GSHRbkpzFedjB1VZT2IwSGhmZQNAtc7ixkvdVunN820hNrOBRFYX5rhXsfF5tTpbC5durZ4sj4Qb5y9k6+ce5b7Kvu4W9Pf4kvnvkyRbOAce4azp2x+LRzkkfOrHB+scNsPcfPveaqK95va8tWpj74IZxde9AtHdvUhCuxTLc5Q+lJVVF56/zr+P2H/jvAiKB0s9hX28Pptaf43Km/Z3txK396/C9QUAkubeW7LbEh5x0DIydOh8HiAoou+xIWCqiKyvbSNh5ZfpyHlh8FRCuhlXWVdq/cfjv/9cE/5OMPfiL7nK/afkdGs9eKwurgxDlhRJimTfLuRsbvRYemuefRS3zrYfF/gMKRAlq5wbtv2IaiwH996P/hYmuB6yaPcuuWm5/xGjyXePncSzIQlRp8ptokANUcVRLYW7ehlUpEzSbm7Cw32RW+fN859m2t8KZbd7I+Du8a47ajM9x+rWCdx5wqv3Lsw7T81qZpY2f3blr3fBuARxYClpo9zDgPXCaJNK7ftZ133bE3Sx2O1W7ja+fuAmB3ZeP7D0daYRfJyuLNhOUgvHO+/8Qi55e7lPfME3XafP6ec3zt/vPM1vN89E0HuRCc4uMP3suKv0wv7KMqKoY6ek8Pj1/Nlqe/wd7qnuy7lmR6fv1cV20HrVAkaq2h18Z43S0Gn/ji42wpTfJI7ykudRYyEPXnJz7HmbWnuW7yKPOVgZzW2bOH9veFiLmp5zIpwLisbi0Yo2kcEGvDrUdm+NSXT/Df/vZRDE3l/hNLWKbGe35qLzcdnBqRZDxT7CoLR+/7Lj/A1WP7+MwTf81dF+4hp7u898Db2Vvd/SyvIIAggHdWcIDpPdpamM20RUQGM+Mbv4tlarzihm18+qsn+fX/dg8g5vj7X7U/07M+Wxi6yp4tZR4+tZJpVf/PP3uA84sdrt07zjtfPp/5u8GgIOd082kSWwFDJ1haEvexUmFbfRe/8YJf29BzMH/0GGvfuoulv/oLQFS5L/VW2FESxtTaxFN8Z+Fx8kqFpYcOcttrrufQ9NC+VIAju8e4/8QS//YPxHd9ybHZK661zxa3HJzmayfE+Pr+F7/L9MRVHNz57PvgP1Y8FxB1N/Bq4M/m5+dvAB4a+t13gd+cn5+3AQvYBzz8I/+U/8iRmjw+39BVPasy2jKuYegqQRizZTy/QRD+bJGzDT72lsP8zqcf4IGTS4yVbN5xx3ymzRp530oFFAWSJNNEPdvnHAZQIPRL42WHhUYPU1dH8tPj7hgfPPhuPvX4XxLEAS/ecjOv3HY7v3jnt4llLjztoTYcqqowNZbjqUuyV5IsdZ2v7OLey/dnG/yO8YlnvD5H99QzEFXaRGD5XGJ7aSs7Stt4ePkx/vMDf8Dx1ZOM2VU+cuTn6e0x+O1PP8A/3CsWv9uOzvDW23ZtKpYfjsI1A9uDct5itdXftDUNwKH6Ad60+zUsdBc3tXMYjpdtfRH3XX6Ab5y7m29wN6Zm8trZN/Kp77ZAen/lHANNs1DdHMHCAppUkKdtIV48ezOPLD/O3Re+i4ZOvFajMD26Uc5Xd/HhQ+/ja+fupmgWeOHMCzIhLIhNavdsie8+tsD9J5b4qztPoQA3HdioWbJMjY+++RB/fddpPD/i8K4xwlKRP3nsz/ijR/6Upf4yLb/Ny7beymt3/tTzng+bxZbCDO/a/zbOts6PbMhauUzUaOAvbLRwmPuN36R/+hTW9AyTwO9+5OYr3mfL1PjZ2+dHHtte2nrFz+PsGmy0a5HGb/zRvfgTAfoEjFkTfOCl+0e+d8HM8y+v+TBfPP1lbpg69ozf1R7qfablCyOi2+FIvXMuLHbY/+GP8tiZFT7/mYcYK9n8yk8fpuiaJD1xjx9ffYKz7fOMu/UN98NQdf7Vdb808lg699LCl5HnT0wQtdYwamO8cGuOvdsqPO0d55FH7uFi5xL7anvkeLyHmfwUPzP/xpH3zB08nIGo9/z0TZkGKC3gya+zdknjloNT3Hd8kYdPCT+jndNFPvDq/YxXNi/cuFJsL25lW2EL9y8+xKlvnaHpt5jJT/FzV78r05c+W6TtWrynBbupV8TGfqh+gOOrJ9D8Ev1WhT3Hypv+/cuu3YJr69x3fJG5yQK3HZ3dVFD+THH19hoPn1rh9z77MKutPstrHi89NsvbXrp7A6BMbXASElAU9GoN//w5kjDE3XfVyHOGI3fwEObUNN5TZwABopaln5Rb6mFseQJTcZheu41Fv5N5eg3H+1+1ny997ywnzzU5uLPGbUdnNzznucYtB6dYaVxP41PfZsulx+m12sA/bxD1V8DL5ufnvwUowHvm5+d/GTh5/Pjxz83Pz/8u8E2ESP3fHj9+/Nl9+X8CQ9dUfvENV9PuBRybrz/7H2wSO6aL/PaHbqTTD6gW7CsidUXX0StVwmZjpPXK842PveUQpy6sMV510NTRk/ZVtb38bzf9G5IkyRa/csFkZc2jnDdHvECGY7rmZiBq64RYZI6MX829l+/n62fvFq9zhXL/NK7bN87TSx2++K0zbJ3cfDF9LvHK7bfz8Qf/iOOrJ9lRmuN9B94uTlkO/Lt3X8vxp1fZNlnYIF58LrF1Is93H1vIWLf1FWwAL36O7Iupmbz/wDv4wukvkTfz3Dp7ExNuna9V7+HSSpeybAUDYIyP4587m1VrpeLWfbU93LHtNr789Dd41/63spircN2+jSfa3ZWdz8iCvOTYLPcdX+S//KU4K73o8HRWjbc+iq7JO4ZAR5yMcef5b3N67SlUReXdR97MNeVrfiQAKo3rJo9y3eTRkccm3/N+zv+n36bysjs2PF/L58ldPahqejag/HzCHHLsf/n12/jq989RtSus8TQHJuc2/d5zxa38wqH3PvtrT01jzW3HO3ManuHEnoKoJy80uW7/BH/wheOoqsIvvO5AViZfsytsyU9n1cQ3TV17xdcbjsO7xnjqcpu9WzeuMWNveBP+xYuZf9V42SFsC7B2rn2RTtDlk499Bk3ReOe+t27QLw7fk8qWAZCfkJW169mQNGxT51d/5giPPbWKY+psnyr8UONLUzU+cPU7+K3v/Re8yOPGqet4057XjFTQPVtkpqbSYsCQTNSN09fygikhHb5wtMtkdeOBE0TG4paD09xycHrT3z+XuPXIDI8/vcr9J5bQVIXX37KdV924+dibcOsoKCQkqIqKNTND57I4eJhTkxuen4aiqtRe+zou/t+/B4rCpZrB5eXHuX3bi/lO+x9Q1Jgt3gtYXBSFObVNSAnH0nnNTds3efXnH4qi8LoX7eJS6+WsffbPmV46Acz9SF77h4lnBVHHjx+PgQ+ue/jxod//AfAHP+LP9f/LOLAJa/R8w7H0kUqvK0X1la8iarVQ1B/e6mui6mbO1VeK4ckozN28TVN5aWwZL/DtRy6za7bE0T1ikdlXnRddwSMhSn82ZkZRFD70xkO8+NDUphPyucbe6m7+w02/TsNrMuHW0dTBBlopWNxw1ZUXjmeLw7vG+O5jC9z9kJDYrmeinm9M5yd5/9XvGHns373nWp661KKUHyzsxlgd78xpvP+vvXv7abOM4wD+fZ++LT3SA+VUCvREgdEBDgYCQgdGYYThsul24SFmUaMXGg8x0cQL44Uxaky80ujFjPHS+BcYsxkTE3UuY9MmC3NsmoGTboyDU+KoF6WlHW0pL7Tl8P3clTxt3zS87fd9nt/7e36/CkmjiW/UCQCj3iEMugaiPwTlUKTOacEzo0348tQ4OveUY6TLlfVzhSTwfOtTmFyINuarczpzXqsAAIamAOo+PbmpYS0bkhBwvPAisBSBv9WHYwM+XJqZwAc/n0vZemO9TPva8O/E5WiLljQcdgOq7Ab8ELqOP/5awK2FRRzr9yUt10uShCN1I/jw7CdQCxmdle1pXy9RQ60Vve2p63P0/nro/cmzduX6UliLLPjxz7MI/3MDtxbncMgzFL9jOJFsNi/vBXk7vuUJEJ2JejrwOKpN6WcqhCShyZXdbFEmVq0Fb3W/BiGJlMu1a5GttvgsKADIlpWwGftfjIXcXFHLAs8dDuDc+DS8Veb4smgqJo0RAXsDzk+HsBRZQvG93VhYng2M3b2a9rntHTC27kMkEoHp1y9wIRzCR2MnMXn7Gu6EHZibL8FUeB5uh7JQq0TpQD/+uxhK6tBfCBv75qeCsQT78/6eNpMWlzCbMXgFWx3Qa2V0Nq4s2WlUahxw9uDrq6dhVBuSem5lkthRXim9Wpdyi5mNal4u2o/1RjHplS07ZlKkVsFfnbwUELuV/c7sLOSSklVfWOu5kk5nf0MZ9mdZl3E3naxL6kaeL/kOUDHG5takx16LC+/1vgl9mr5g62Huvx9/h0Iw9/alHSOEhCeHG/D252dwbXoBXU0VeLCjetU4v9WHUc8QjGpD2p5lG6USKhyvP4yPxz7D+Mxl1Ft9eKAmmHa8+533sbS4uOpCsPWuppK5lNi7bL0kSYLO68P8mZ8AAMKofNZ8I2SVQFt9dudrb1UXzk9H67WMzS3xv2sq1m4zIskyJAB9zi5cCIcQunERZo0JmGvDlevRoO0szd9noNIb4Hz51by9XzoMUZS12PYr5RnqD3RFMvpaVl/VPOQ9iEOe6HKLkqu+rUavVaOx1orQlZvoaCxLatqaS4mNFBOv4Gnr2IwABQAqnQ7OV9b+kfA6zHjpeAvUKoH6FEtvMYOugU05rkz22vfgqG8EkiQQdHZnPNdVBsOq7Wy2G63HGw9RhQry69Fo86OtrAVucy0kWYb9yMOYOfUNihJq8LJ5jQPOHqiECsGqbnx1cxJTy/WIuZ5524oYoihrsYJBpYFhJ4SnRCeGGzExNYt7/KsLdXNF616pKxDq9H2yaHcJuDdeSrBZBmrSz5ztNFq3Z+1BW4iQBE4EHo0/tg2PwDa8vo1GhCTwiH+lX9XRoB7f/xINUbGmorsJQxRlrSdQCVdF8a48UVIpMWvj3YDzpai6BsX39WH2u2/jHcyJqDC0bg+0Xh9MbdnVme1EtmIt3n22C2O/hVFXnfpOxJ2MIYqyJoTEALUFlD/2BDSVlTDsbVl7MBHljFCrUfP6G4U+jIKzW3QbaluwnTFEEW0zkizDNniw0IdBRLTr7awiFSIiIqI8YYgiIiIiUoAhioiIiEgBKbK8FxoRERERZY8zUUREREQKMEQRERERKcAQRURERKQAQxQRERGRAgxRRERERAowRBEREREp8D/eruE1Y4PQWQAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -379,27 +349,29 @@ } ], "source": [ - "des = np.array([POP_GA.bestdesign.Xconv,POP_RN.bestdesign.Xconv,rnd_median.Xconv])\n", - "labels = ['Genetic Algorithm','Simulation','Median random design']\n", - "plt.figure(figsize=(10,7))\n", - "for ind,label in enumerate(labels):\n", - " plt.subplot(3,1,ind+1)\n", - " plt.plot(des[ind,:,:])\n", + "des = np.array([POP_GA.bestdesign.Xconv, POP_RN.bestdesign.Xconv, rnd_median.Xconv])\n", + "labels = [\"Genetic Algorithm\", \"Simulation\", \"Median random design\"]\n", + "plt.figure(figsize=(10, 7))\n", + "for ind, label in enumerate(labels):\n", + " plt.subplot(3, 1, ind + 1)\n", + " plt.plot(des[ind, :, :])\n", " plt.title(label)\n", - " plt.tick_params(axis = 'x',which = 'both', bottom = 'off', labelbottom='off')\n", + " plt.tick_params(axis=\"x\", which=\"both\", bottom=\"off\", labelbottom=\"off\")\n", "\n", "plt.savefig(\"output/designs.pdf\")" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "des = np.array([POP_GA.bestdesign.Xconv,POP_RN.bestdesign.Xconv]+[x.Xconv for x in POP_JO.designs])" + "des = np.array(\n", + " [POP_GA.bestdesign.Xconv, POP_RN.bestdesign.Xconv] + [x.Xconv for x in POP_JO.designs]\n", + ")" ] }, { @@ -413,27 +385,27 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "# create datatables \n", + "# create datatables\n", "tp = des.shape[1]\n", - "Y = np.zeros([tp,sims,des.shape[0]])\n", + "Y = np.zeros([tp, sims, des.shape[0]])\n", "\n", "for i in range(sims):\n", - " rnd = np.random.normal(0,1,tp)\n", + " rnd = np.random.normal(0, 1, tp)\n", " for lb in range(Y.shape[2]):\n", - " Y[:,i,lb] = np.dot(des[lb,:,:],np.array([0.5,0,-0.5]))+rnd\n", + " Y[:, i, lb] = np.dot(des[lb, :, :], np.array([0.5, 0, -0.5])) + rnd\n", "\n", - "ids = [0,1,median_idx]" + "ids = [0, 1, median_idx]" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -449,7 +421,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD3CAYAAADSftWOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXm8HcdVLvpV9x7OPpN0JB3J82xv\nx0kcx87gkJHhQQhzHvAIcOEyPx7vkXBvLpAQLgRIIAMZIHFCBhMyEDI7hITggOdBHiVZsqQta7Rm\nnVln2lNXvT+6q7uGVd29zznb0pH2+v1snd1dXVVdXbXqq2+tWsWEEOhJT3rSk56sLvHOdAV60pOe\n9KQnnUtPefekJz3pySqUnvLuSU960pNVKD3l3ZOe9KQnq1B6yrsnPelJT1ahFJ6rgsbGZpfs1jIy\n0o+pqYWVrM6qll57JNJrC1167aHLudAeo6NDjLq+KpB3oeCf6SqcVdJrj0R6baFLrz10OZfbY1Uo\n7570pCc96YkuPeXdk570pCerUHrKuyc96UlPVqH0lHdPetKTnqxC6SnvnvSkJz1ZhdJT3j3pSU96\nsgplyX7e1WrVB/BJAFUAAYBfq9Vq+1aqYj3pSU960hO3LAd5/wQA1Gq1VwL43wA+sCI16klPnmPZ\nNbEH9x156ExXoyc96UiWrLxrtdodAH47+nk5gJMrUqOe9OQ5lo9s+xS+tOeOM12NnvSkI1nW9vha\nrdauVqv/BOBnAPxsWtqRkf5l7XYaHR1a8rPnovTaI5GVaosNGwbBGLkTeVXIQmsReycO4prRK850\nVc4qOVfHyrJjm9RqtV+tVqt/BOCRarV6Q61Wm6fSLSe+wOjoEMbGZpf8/LkmvfZIZCXb4uSpGfje\n6t1O/dePfghH5o7hT172P3DR4AVnujpnhZwLY8U1+SyZNqlWq/+tWq2+Lfq5AIAjNFz2pCerUjhW\n95GAR+aOAQDGFyfOcE168lzIcpD31wH8Y7VavQ9AEcBbarVafWWq1ZOePPciBD/TVehJT3LLkpV3\nRI/8/ArWpSc9OaPCz5HDuM+Nt+hJlvQ26fSkJ5EIdAd5i3NkUujJ2SU95d2TnkTSDeT9T9/djd/7\n4H0IeI+S6cnKSk9596QnkfAucN73bj2GejPAQr294nm7pYf0zwc5r5X3k6eewtMTu890Nc4pqTfb\n2HFgYlVSBd3kvFdfa/TkbJfzWnl/esfncdu22890Nc4p+cS/7sQHvrQNj9fGznRVOpZucd49oeXB\n7cfx/3zgXkzPNc50VValnNfK+1yUM414t+0bBwAcPjV3RuuxFOlq2z2Hn2W1oPxPf3sX6s0Aj+0+\ndaarsiqlp7zPIfnsd3fj//vQ/eD8zA1fL9pefqYnkaVINzhvKSvdHrPNOTSDlquwFS2rJ2ennLfK\ne7I+daarsOJyz9ZjWGi0sdjsrnFs+/hOHJg5RN6ToUFWo890N+u8kvNpwAP88QN/gXdufu/KZdqT\nVSfLjm2yGmXX5B58ZOunznQ1Vq18/KnPAAA++gO28ggDO4lVCf66yXmv5GooiFYI040Z8v4qbPqe\nLEHOS+Rdm9x7pqvQVTmTcfHioHyrUIN01dtkBfMWq7Fxe7Licl4q79Uc9vNsF9m2q5M26SLyXsH2\n6GY9z1YRQqDV7sW9U+X8VN5nFJt2X7ppr8xCkB6T6bpXh25JNxHtSn6TrG9wLiLzD3/1KfzO++9F\ns9VT4FLOU+V9bks3PT2yFIOcGM925H1sfN5SBF01WK6g9ubnoT/6U/vCMLcz880Vy/Pk5AKeqK1e\nN8XzU3kbtMm5tgztpt4MMtqKxcj77FXeJyYX8I5PPYL3/8tW7Xo3Q8Ku5MSw1LatPTuFuUWHe+GZ\nlA5eZyV71ds+sRkf/cYOzKzSTULnpfI2sXfAz62lWFeRd6byln7eXavCsuXEZHiq096jurdGNxHt\niiLvJTTu0bE5vOeft+Av/+mxFavHmZBu9O1WsDrB23mpvE3aJBDnlvLuJuedtUrxVgHydtFm3fU2\nWcG8ljDJTJwO0eXY9Co/L6ULn8j3PNz+nV3498303oWzVc5P5b0KaJPt4zvxka2fQot3vuGmm4oz\nq61i5K1c23lwEndvOdq1OnUqLmejc8Xb5GyeOJcr3ZhgGQMe2XkSj68y/vu83KRjeptk8bhnQuRG\nmJ0TNbxo9PkdPdvNsZs1eOIdlgr8l9zy62666Cxx06Tr0NVJ7zmkTVabt0knte3GJxIi/ParLeR6\nD3nj3KNNuqmEsg2Wbs67m7REoxVgfHoxV1rPMX90dYdllwyWFArvIe/ORAgRK/DVJOel8j7XDZbd\nBBBZCi6N8w6C7g2OP7/9Ufzhxx/GfD2HN4WTNlklyFv5Bm2i76425N2JdKMP8Uh5n+3uraac88q7\nGTQxsagHoTrXDZZdRd6OteXE4iS+d+ieuHEpXRV00ZJ6cipE3aeX4QfcXc575fJSPX7ahE2Eeo+z\ngq1aAekO8g4nvFWmu899zvtdj3wA4/VJvP81f4FKoQ/A6jBYLke6G5aabqsPbfkHTNanUB6+BZgZ\nBcVkdlN5dyIu3r27Oyy7w3lTwGO1Lf876bDd6EOih7zPThmvTwIA5lvz8bXVYLBcjpwJb5M4xG6h\nEdWBePY5UN55DKJuV8EuxvNewXdXJxkKeVOT0CrTS07pRh+SWZ4l2CK3rHrlvfvQFLY8k33kljow\nLYPlucZ5n0E/bzARpVt9yLu78by74ypIuZKeaytJVYIV2lCjGX2jfrmSE+xzIUtS3tVqtVitVj9X\nrVbvr1arj1ar1Z9c6YplCRccXHC894tb8Pdf256ZXv1YNvI+t5R3d5F3kvfbPrEZdePgBxYpb8qw\n5OLLn2txIe+ubo9fwaxV5UzSJqvMYNkKOA6dmM3Vb4MV6tttZRKQffp8oU1+GcBErVZ7NYAfBfCR\nlatSPnnn5vfh7Q/+Ve70HKry1uW5ok32HZvpWmyJI7PHAD801lF9sNEM8Pk7azg+MW/f7EDUtjo5\nuYCpWSMuhBcW3iYQ0tmCvF214KuE886kTYiyzmaD5dfu3Y93fuYxbN8/kZl2pWiTVltR3hJ5nyfK\n+ysA/lT53d1ztwgZX5zAbDP/Ibc6beIZ99KRtxCCVEadyKnpRbzrs0/gnf+48rEl5lrz+OvHPoS+\nG+8HQHfCu548gruePIq//dJW614nYqJT2fHj1YxE3sQgyzPw9hyexoHjp5dVxyxxDdLuIu/uGCwp\nV0F1Egp4gC/VvoGTjWMrVn63ZP+x7O+eBwA8dOwx3HP4wdQ0zTaFvDOzBhD2n/HF7Imm27Ikb5Na\nrTYHANVqdQjAVwG8I+uZkZF+FAr+UooDAIyODi3r/tq1FYyOhGkGp8ravcHhcurzf/7Jh/HE7lP4\n5vt+Ep5rh0eGnIhiS0ycrmfWVZW1aypkevVaazYMtMSKIapfs7bfeoZFbT891+yofFOmvT69fiMD\nGB0dgu/5aPM2vGhe9HzPKmd4jV0vU379b+4CAHzrb38qd53UPNevG8Do6GBq+uHJZDOP+uzgUHo/\nWI4MDfetWN4TSL7B4HDJyndgILn22NFtuO/owwAeBvB6ANlj5UxJf392+w8Mprfj/sln8YXdXwEA\n/NzN7vcNvATADQ9XAISrkzxt86Xt38LXdn4Hb3nFb+L7LrslM323ZMmugtVq9VIA3wBwW61W++es\n9FNTC0stCqOjQxgbm01Nk3V/YnIOA+0wzfyc7gs8OTWHMd/9/BO7w5gHh45MYbBSzFNlS9T3z6qr\nKjMzixgr6enN9pic11cgk5PzGCvrE+XCgvQCER2Vb8rkjF7WnXvuxl333xmvbHiEBBfrLauc8fE5\nDBTyTX5562i1xeQ8ihn0x/Q0/S2mZxaW1TbpZS6uWN6TU8k3GJ86jTGm5zs7m5Q1MWWX2a13XK7M\nzzcy6zY97f5G+2cO4W+f+Gj8e2xs1qk7To4n9OFkFGWy3ea52uaufQ8BADYf2IprK9dlpl+uuCaU\npRosNwG4E8Af1Wq125dRr+dM1F1pS90eP7uwjEDwz+EBCXRRK0N6mkbH/zzxXY2SEgZtom/lPjs4\nRXV5rNVvBTnvNm/jf933ZyhcWovKTPKeby3g9h1fwLG5E0vKWxi0iCnqe3hs9TiU5Wn9NNrk2Nxx\nPb+U/tZaBm1ytshSv+zbAYwA+NNqtXpP9F9lBeulycPbj+H9/7Il9Qy7zKOhNG8TXfIaLGcXlm5s\n7Ga/MPNObYtlViRre7zkjaWNQNtQ0sXt8Z2IWidVEa6kwWqiPoWF9iKKFx4Iy1Q0w38cvAtPnNqG\nf4iCj1FydGwOn/zWTizUKVfA/AZLb5mWygMzh/DF2tfPGnfaTmwH7RRQpsbwpoDGapClct5vBvDm\nFa6LU979mdDIt23vBF5y/UYyjRDpFvU01MdzdszlIO+u7no0MqfKWilng7wR7eSAUBX2c+EqqNau\n1Q7wjfsO4LU3XYRN6/qTNIJW2CtpsDSVndpuTR6CgHrgPsHlA1/ehqnZBkbX9uGnX32VkVf69vg0\nt9hO5f0RDfGC9dfjhRtuWFZe2ZLDVTBFeZvv2grc43UlkPeZdslcPWsqAItNt1NLllJRPUrM5XFe\n5H16Wch7aR86z3Pmpoy0tlhud8tqK4nM24HtdfJcuAqqiuvuLcfw3UeftTxs1OZR23clT9IxqThX\nmS6RqzxVyVDPU+iyG7SJOhkFPMDndn4Zz0ztX5G8pcg2OjI2hw9Gk5ddj/x9SE6SlFCugmcLrZdX\nVpXyrjfcCDlrOaUpHWHeO3uRN7WU45zj87u+gtrkXgCUougiv55TecudcOpgWyl3udPNWecyXi1i\nPvKpH5/RT49xIe+VHLzmN+E60Q4gHRXLelG7QbORt9stthPZeXBSySepx87JGjafeBwf2vLxJeed\nJh+7Ywe275/AN+7fj0Yz0JQ45wKTp+t49+eewL5j+jF2ZnO2AjfYUynYpfp5L3dVs1xZVco7D/Ie\nn1kk/YRV5W0in9zKe34ZyHuJeoEyou0c24OHjz+Gv9v6iTCNoVDP5AHENm2iKpqUFUHOSs815/G2\nB/4SH3zyY66MMvNwoeCVnPRM/2tyYkgZ+zI5RQXqgans76Ej76UrmN3PJtE4VUWllvnNff+OAzMr\nc3yYfC1pL2kHHG/7xMP4nx9NfLYDLvC9xw9j79EZfPBL21Lza/IU2iQgkPfZsQE4t6wK5V0qhm5v\ni40U5R01/B9+7GH85T89bt9XFLSJHrMUUqkYNtPs4jK8TZZKmxB1a/P0+ndzh12nyLsdZCPvf33g\nAH7jPXeTxjlTJhuhQjlw+llH/dS6hGK+eqj8BOA3NUWYRpuMTy/if3zkATy1bzyzjmEZbuSdpyek\nIW/1G2QdxrAcdKg+q9Ivao53Hro75sWXK3IiVQ/0mDbcegPO0d8XuusuGPrA4rxTaBO12WQfWG0G\ny1WhvAf6QrvqYhptYhnthHFfRd7GsxkGy6IfNlOj6U536MRs6tbzpTIGFGIzx7NlHFtaUbmkY+St\nTDQuvvKOB0KPjP3HZ8j7RgGd3zbaiwuBwkX7ULnlLtSm9irX3e/2X08ewfRcE7fdsSO7jrCNs9Sr\np9ImxToAYZ36wwXXd1CSIWGTslWl6w1OAX6i0GqTezFVn3bWQe1nOv3SJbogXm1I5U1RhgJD/a69\nFnq9moFbeWurly5y3k/UxvC+L24hbRfLlVWhvPsj5W0GQVLFRHXmZ0inTfId7ZW27H/nZx7Dn3zy\nEbteUQCtpc7qZGD9jMBazx3nTWkk3UVQN1imt3M7hythlrFPf3c6rRBAIXLh2zG+0/Gs/QyQL+Qs\nALSF3lf1/pn+DqcWxlF58T0oXbNVoz1u3/EFvPmet2tgg+ofrjg+5RseQfmGzQCA2eYc/m7rJ/CO\nh97trIf6rp6GwrujvGWt5YTlOtCjv0w7yZm1SkXeSt4J8l75sbN17xh2HZrC1Gw9O3GHsiqUdyVa\nJi0LefPAeW/P9L7U8mVnWko4ync9+kH8r/v+fMluHkvxNiHp1RUacHmRt9TTmqtghnJuE+hkod7G\nW/7uftz95JFc9csz9oQQcQwWdci7Bu7cYgvPHJk2UqeL/U1Ubt0sWZdnTx8GAPjrTmro94lT28AF\n17wosmgT8428Srg6bKS4KUpR65fXW6rF20tXgATyZgPT8Dck355z4UbIRh9vpSBvKiSsUoWc1c1O\nXY9W632llT/3ZlUobznTphosTeRteZS4kffOiRpOLbi5TJk6DXm75MT8SdSD+orSJlkG166GhNXK\ndtdNEMg7y9uECv6169AkTi+08Lk79+SqX54BFVbN5pRdnPdffOYxHDg+G6XPVQ1rkuPkioDObNuB\nk/Hf1KSrGkNpg2XG6gj5XAjVorXAbo56t4IW3nLP2/EP2z+TmXeucgXQ9/zNKF21A/DCdw64flxZ\nWl8/ddoduE59Sl0QrvRhD41YeS89rpNLVoXyrkjlnWawzNiooilv4oMvtpNgRfuOzWCHEp6SE54T\nncsSDZaEQjE5bltR2Pms1EJXo03ITHXapJ2D85bSIttXLySbNqFyMI+9S5C3prwdqwrV1TCvAdB0\n4aOUgms1tHn3MSUNkbdCyWQhbxdKzeX/rRSu9jFXvU9HUT63j+/C2MIEPvDEbR2FAIgNltFvasIL\nlXdyXTVamrX62v3PuMtytFEnuCdPX6g3AzAGFAsrr2pXhfKWkfzSlbf+2zZYKrRJRnnv+uwT+MCX\nEzckqXTycLIumTidvUylhBp8lhsaXzryXmzX8Y4H342Hjj2aK32QwXnL2CZSZ88156EOvNS8ifY1\n9UTWq+mozJ1G5qsOwDwGq7zI23YVzPccADAveXZO2KFH1YmBVN6q+6OT98/xrsrfeZC32jZf2/st\n7Js5iM/t+nJmOUmdZD5hRk2CRuNcaEh5PsVDiadEqtY4b5492ZF5GG07M99Es6V/93ozQF+psGK0\npSqrQnnLjpamPM0jjFINlsoHKnnFKL07b8r41qn8y3+5UUCa0K6Ceqe0XQWJjBx9Z9fkHkw1pvGF\n3V9dcn2MFADCNpttzuET+z+EUjV03cxaklLI2+7znRgs6TzUAarxujl22uY2WKYg78xe5CcK4L76\nlxBwjvf+85PxNfXoM8rbRFNArgksx0pQp02ScpzKW7MfyLbsfMzIcusqWFMCngnHDG3Wi3nu7+lG\n3ksb4wHn+IO/fwBv+8Rm7Xq92e4KZQKsGuUd/ps2+DtzFVRdqXytDDLvGHnTnaGrZx8Snd9Edcvh\nvNOMOpRoEwUjylGunVoIzxb114ToMWvyo46mMpVl1pvleXO9eVTOe+W+o+VtohkR08tRkTcAHBtf\nwO5nE5e+TOSt+a7TZZl9ttkKMHla94hgHdImWh0yU7hF5l8nXHMDw2CZ2tW9NAcHPc/4egfMqDpZ\nNFvhg+aW/kYrOL+Vdxw4hhz89D2b86ZpEz/m/ty9gNotqNVvicuuPEIpYht5u+NoSHENN1PJZNcn\ny61SbQv9XqarYNteHXV69gXl1ZGWhjmuuyRvfcxvRNkrnZyplz4Zq3lTbarvGqXb3Mzzz//xMbz1\ntoc0alLV0XnaJk/fb/E27tj7HdJBQD4u21hzUIjpOE5uxCIlBXlr5WqroqUib/q5ejNAudgd5b3y\n/itdEPmx0g4fzeS8OU2bSMNNGjcYb9t1fCA1v3abxztCV0KowWfGbEj3bIjEgZaoY7TSpBPkbU6o\n2QZLHQGFe6PMemfRJqm3iTTZBkst9VJpkw6Qt0qbZOXNRYCHnz6Be7ceAy6U19yeVcl1/V1PRAcS\nnF5oxg4Cri3xEmWaQref3l73HnkQ33v2HuyY2AXgxUadhPaMHstIwF9/DKeFDyGSwwm0iZiZtEk+\n1+KDzZ0oPe9JNHe/jASIQojM706f2crRavPzG3mLpSBvI5XLVTBW3kTWXOhLNJefsgp+lmPUJPMm\naROTT81G3i4JiMBGYR7C8mp5cPtxnJrOOBGJub16MoOHEbSJvcOwc87bFI1/VpLniiqY11XQMipT\nXLyDO7aQt36/ZdAmn/zWTuw5PK2kXzpKVi+7OO/TC7TxPU/7jUVnP5Lnz6Ygb+ZxlK5+CrW+bxuH\naaQURoEL4rltzbvgD03DG5ixQODUbAO/8Z678e2HD6YURO9RaDTDa93w8QZWjfIO/6UGgL/+OPyN\nz2a6CmqxJnIi79CyraDqLM7ba4enuK+g0LRJuqsgabRz5O9C3rdtux2/f8/bNDT16W/vwr1bj6ol\n2Q9qtEmnyJtQ/B3TJkSVLI+V7BWUS/JWp5XCeWeKZ3qq6N9Xo00yvE2cSjqHF4rL24Rqp4ePPaat\nEl35z7fCyX+g2G/di3G3l8Q2se+6DYw2DZWmvNPf//CpORwdn8fTB8LIil+7d78zL4A2tssd4ec1\n8k7jvEtXb0fpip3WPUtxqMF8lI/qe9JgSSvvQFPeDuQdPVu6Zhs+vP0jOBTtkNNFxP9+ZOun8NCx\nR/HZ7+7GY9H5mC6hlqJL8jZxiGsL8c7J8PguiSATZapCM+JBpg4s/Va2wVKnTcIiOtPeOrXs+l70\nA/lcBfPSJlG78UgR5TSEBTyA16+fo2jWK8tgmYs2cbyra3WkjR/i2c/v/grp5WJ+v4UU5Z08Q4ja\nrxwrp7RnrKIct+T7/9ntj+JPP/VIajA6La46oRsakdtg+XxW3rKjyeahOo91zULe9OhJM1hyofuU\nugxu8oP7a0Pvin3TB6w03shJ+BsPgVXmsGtyD76w+6u4Z+sxfCwj0FGWn3fAA8NgmbJ9mJBnjobI\nwmd0B0t2TEYXmEPzEdesCbSD7fHCMZIzoxrm8JPUD2BQ/87DeWcmAaAoWBE+QHHeVFb3HX0YrKgr\nDLMdVdqkxdvwhiZ0ukr9Li4l7TRkKmkYHUPF1b/I0MrGS0rl3V9Qlbcc31G7UI3sMISnT9Ypytux\najRf7b6t+VbSuqcUx77pg5hvhN+xW8h7FRksE/RNKm/L28RE3nRsk4Q2sYXzcJnnjz6LYPxiCOGD\ncxFvGjLLFoKBMRHvNFOlfG14mkt9+yvpl3RIlp93IAKD87Y7YJrsOjyBwgVAwaM7WHwq/JKQt7Ea\ncqA6xsJv3CZiLJuSucPS+UO5rFxvazFvcijvzBQyX6m8w/5Fu7fZuR0kQt2aoEH9/lvHtqP8PKB5\nIDmiLI+roHtVon5fXSE1mgH+/utPYf0ldPRHtV6u/Oci5d1qRP2tWEflxfegdfhaCHExAIdHj9qv\nQPcxa+JO+Vj0GAl1i5rP3KLblZaBod5sY6He1qIGbj7+BL6w+yt44fDNADZ2zdtklSBvoO+mu1G+\nYTMCzjXPESnmWLfc1DTaxA6ZSdImQuBbB7+D0pU7Ubg4DB1K8d5xWa0SAGC25Y6p0KmMn17E0bGQ\nf5OiKpw2bxseIA7O29WRo0FRYPQ8LpV3kmc68mapnLdj9RONVi1AfvSo7a+fobxzuApqdoyUgGWU\ndOxtIpE3wdVQOa3rG7HzCnRES7l3spJy2kwGP21eV//WfJ6VfALB8eiuk9h5cAoP7qC3vLcI47dF\nm7RD5f30vvDAFH84XPkVL33G6dsfXlQpNfob50Xex8bn8URtjLwnhNAokCyq7w8/9jDeettDMUUC\nAPtmwpX3gflwY17B746aXRXKmwsBVmrCG5xBOxBkg2b5EGvLROVxGerSDKgEhJ1kbDH0Ry1edADe\n4BRZdoy8W2UADks6VXgOafMAt92xAx9X6BWVp26ZtAmjsRY1hhvNIEZXBc+lvOWKB0ChgeJFNiWk\nSYqf9ynsw5dqd1iPyJWMSqsItVxFMhWsuuyPlYE7jzx0wFIkPluSQN5pQqUzPVcoJakaOUXGBAvo\nAEbtP9o30GiTIPMdyHoZ0pCHAst+omSZqigdtpTUk5AcnPc7PvUIedoWmAAXQFM5Ii3Le0wic9U/\nPqlH2PG6FEF3dShvExnQtEm6x4Ue20RdGhJBi5S/+/2Emyvf8IgDeUvlHSHv5qyVJinP+DkwjXuP\nPOROzhgWGm3MKss3PapcO5efN9UFZxea8UYGl/IOFNqkeIm+xZ9l+HmrNEThgv04ULoX9x19CPVW\nHe/41CP45/8MIwX6XtgNqaOprO+YMfm5ds6pIrQ06sHU2bRJ3ljWEnmLGHnneoxcVZr7C6hzK5lP\nKY98yFvtPzp3qypvPWIKJW0FVKQdXKLnoWypj96T3ghFr+jSkXfnIoTQ6p43GF3aYQvdin++SpR3\n8ncQcBJlWwe+pizZKXcoypecc4E+v0/Lh5qJ47J4yG1RnHdSoP583/M348t77nCidc8LO7Ua8EYd\nvCFtYiBvog9Tg3h2sZUDeSfeJqzYWXAttcjiZUlI10AIHBufx38+HsZplrSJvsPSziP87R4krDyP\nxXZCL8lvaQ4d/QzI9IMN7EKykwDKpCBsWi4xxtqZURNvy6RNKISrKG/dCJvNeQfajk1aqWtt40C0\nKvJ+5mhG/HMmJ2d1I1BCm3hrT6FwQbLKYy7krf2t14sEF2nCQtdglQLJm0OLMLbHlFGXkPcqMVjq\nyJsRCMlCxEaru+N567SJGX+6z6/o+VB8e/xM+G8zcLsXMUYjEtchyALhUk7tHDrnbRgsHZw3pdBn\nF5px8B63wTKa1ASInX8kQaM8S2ZpIWJJm1CxTSz/fedwEuh70f347NH78fLqe8ly4pQa8s7mh1XJ\nOw6zwIQrL2oCma/rRjMaeaunoWdPQmp92iptoobwVbj1zccfx0LrQZSuGwJfHCTzpGkTR4vFtImy\nw1VOtoyhfN2TRvqkXt98IFHq6cbZzpE4F0DbsYPUlKQvCkw2xqPymD2JdEl7Lwt5V6vVl1er1XtW\nqC5O0bwDAk4qBYs6MO67aJP41A6ZjxGnpOSV9XJI5C0zSzqfU3LEW+AG4pH+5vGp2iryNmmTDpD3\n6fk8yDuhTVjJOMopizZxKBGTw6UNlg7axIWOWcqkanLeKursEHnnNViaylo3shnILOU5APjC92ra\nb1JJKsh7x4EkjKybNlGUNKc5b7U9Zpqn0RIN+GvHUbzwIJlnZ0HObNokUd5EcgeKVq9SnPe/3r9P\nM/Zn1UkIHXmnieS7/U2H8F9auCMgAAAgAElEQVQLX4C/6ZDMJSw+erdO4/PklSUr72q1+ocAPgWg\nLyvtcsU8LJRCv+ZOwSSwUfiKrpCwsoFlZ9aVt7HcDXyS8949tROl6mOx0Sh1pnUobxdPKUTC8cuY\nEibyVhUQYw6bAIW8FxXOO/I24Vzgw19JYplLHlhwAVZe1DMgB5SAt/YUilc9haMLR4n79kQb0yaa\nwVL/N7nuQFNKu77lnrej3m44kbfmu6/UJe3MQyl56UszdghZFSIvOi6NgKqmSOTtqVQavSFNr5+a\nn9qf1Imts6BlbaL9srycNORNz7V6ekNSzyxlwCfv2IE//ZR9tqwUf/1RLT0XworJ7ZJte8NJ0h85\nqf2rZYj8E36nshzaZB+ANwL4XJ7EIyP9KBSW5u+oIoDhNf0oFu0PWRkoYnQ0CVizbmQAo6OD8JgH\nLjgKJS++33coOX1annCxZk0Fo6ND8JWwmB//7qMYujY5P0+0yhgY6sPxmTqed8X6+Nmv3/UV+GuS\nuviep9VFFVewnEKfHz+jIphiyYu75NCaCtYN9yHYmQyqweESCiV1DhYYGChb5VcqyTvH9zwvRqz9\nfeEzB47NYNu+CVTWh0nWrq1gdM0QWNG3OUQH8i5dtR2s0MKWKfrQ1bVrQyrK33AEH93+SRSLLwhr\nLtQ0/RgdHcLg0cQrYHR0CIP1svY7/ldp1xZvY6E4g1IUU4IxprVHpVIEIjCmskXC51a7mZNFoeA7\nv60qfkHf/FUsJs+Vo8BPvh/2E4k4PY+hVHaMEaYqVaIP+aqiFXFZQ7NlK+no6BCOBwnmGh5J0vQr\nfafY5wOL1uNOKffb6qQYtdeD245hzWApvk7x0bJt+/qo0+Fp5b1mTX9c34Fp812TZ+hvJlC6erv2\ne82afrQE/dIyD9+nN/axQgvFK57GbDusv+eHSntwyB6PKyFLVt61Wu1r1Wr1irzpp6YyAhqliIpG\n/uHr2zA04AE6FY3pmXmMjSVeHuMTcyhCxLN4vd6I7y8sJoa3dltEzy9grDirxTQeu+A7ULKEaJXw\nhX/fhSdqY3jDrZfjZ193NVlfIaDVRRNieQ8Ax0/NYAjhB1Y583q9FS9lj5+YQdBoaVEFJyZnsVhX\nOHYmMDdbt8qfn0/SyHunZ+sx591ucYyNzVrfaXxyFuXmIMZniO9HrSKYACuEk0+zTSPZUxNh+aWr\ndmDnGDBYvBRAKY4FAQATE3Po88LvotZ7xvg9OjqEsbFZK/D+s0ensSC3NhvfY24++caNZlLHucVF\nq912HZrSfvOAu7+tIk35LjLIUr0VP9eI3MqCKK//+dEH0Vfy8a7fuhWLxHZsxoSGlJsEPaF6m4AJ\n5RvbimhsbBbTSoCxsfFkgty1bxxTUwt41Y0XYm6hszE7pZ0ZGda31Q4wNjaLv/nsYwCAysuMhxTk\nXW+EbdRstoEBI50DeU9NzWNsLJwUrHdVnqG/mQ1GJifnMT5FK2+Zh+WBEpXj9c/B659DLWKtJOZc\nmG/m6jMucSn+VWGwVCHZjv2TgNdG5SV6EldMa0bRJko6uaKJT+tJ8zUVDDsPhpsKnj44iZ8FrbxT\nxYG8A8MtK7nO47pRtEkjaOgccuSralWdWI632yKeTJyxLoReZjCzHjdffgW2TT8BRkxErkh0qgSG\n94QMUaAaZZNNOmZ9XLSJEayL85Q4HUGsVNV2b3Bbcb7vi1u0353TJrYh3ORE1QD+zsiZjh2Gsfg0\nxUEbr4VGp6ht8J3NIW977aVrOo71vtjSQUT0B73BS7kf14NLIzUNCuI/K7MQ7SLQ6ov7x76jM3ho\nx3HAXmi4hZgQhEBuzjuv+fq89vO2/G+JRjf5TfnLi14xcO6k0w2WqWFLmdAMOvP1FunszwVPUTIO\nI57KvQaqcTVRQvJMP5XzXGjXdc670ML2xr3R2ZGJUNVpBTyuj6u+ciDFsdQVpORaRVDvpOepl+V5\nhPIm/Lxv/94WfH3Pd+jCPJNj5kmfMAaPywXO9BLKEyfFJeY7zswleasWF+s5ytecCSfyjJN4lGKk\nFf1vvfce3Lct4XopGqbZ4ghEZ6csNdqU8gbGFqbgrT2pv0P8t2JjkidWgV59SOl74YOovPge7el3\nfe4JHDppjMUsV0HjvrQX5Vfedt2MO8r/V15Wh/LO4cIViADb9ianc8QW/Wjakx108nRdMyZJ44Q0\ngqbt8mJM3zr7zn98DH/5T49b6RqtAL/5nrtxiqCKXOfqqe5+dWUpr26OkHVVkfdie1FTRsWrtuNg\nezu+8sw39fypnXsBjw1dLuQtJ73E/YzFI8YbmiafScp0IG/D4OxH34jylVWTPrrwXZxu03E1TFsC\nF+5+4/IwsZU39XR6X/zSXc/gb77wZIKumQCKdUysfQgTi5NaxqSrINX/GLIVkaOOZKhjIfDEniSa\nJRUW2PcYWh0qb9XAKVdlDMBfPfo+lK/bAtanAgqiXrHyJspNMVh+/s4aeS/TVZCw4XTibZKVv/y+\n3TJYLkt512q1g7Va7daVqoxL8ijvsekFfPirT8W/E2+FaNkqOLbsGcNbb3sIB08k/NOhEyFPt/dI\nqIhCPstdXlwXAYzP0AY5ub32qX32UU8u2kRFXGrnUX12Zb4q8l5sL2puX17fQpQm+4CGVsDj5bbL\nf1q678UKVyC2JJg7Lk1x+a6bJyLx4jy8kRP67lZZnHLNK6dwsKby5nQYBQDgipLRaBNDeZOhEDK6\n4n88ehh7Dk9r36142W5g5Bg+uzM8ST3OgtqkQ+7yFMhURKoo2bp91xXaxKG8O/U20VwYFVpEtjEr\nEMiciIXDO1LewF1PylWErYxThVDenAvnSUFS4vGZqZN72+Mttyvqo5xe1Hf/mTxbIAJs2xdaEk5O\n2kpgcraBbz98EE9MPI7Ky/4DrEIYGHKjnzTuzkWbKMi7pSqXpMyE81Zpk0Vychsq6RspqEHcCgIw\nX6dNzH4mB3ZAIO8scW03N5XF5IYHUL52q9bmZhjg8FrKKGA2bZInNrXpKqj52KfEscmSJF8Rrwpm\nG9kGQKer4JKRt0OU/ChumwtBI+AUaZPKO6V8a7Uk8IlvPY29xyeJBxzKW+PRjSIy28y8H9qLsrb2\nJ5EG7QmIkrPRVfA5k3zHOumDN96xHhuMAlCNLeqDwPAUHq+dwqNTHgZe+j2AAf6GZZyIIw9LpW65\nOG8FqaleF+p7NRTaRLpAzjYWSNQ8VNTN9VQTNnky4bmQt9x9FysjkV95u8S1A5AVm5BeWumHThPP\nEsjbvT3evTGnGbTQVwitXjTydtFLHLd/e5dWviw8id2SvRwXjvftZKu3vpU8B+VIIG8uOvfzppE3\nLV5lDpWXfA98IQEZnAtsfvokvGGiXAfooaI15hYLeYfOATML4QqhUvax2NDb5vQ8zeuT2fc4bwJ5\nkzyeobyjNAltElgK7Hdv/LW488gOLykBddNDLFkWf7OW1MBxKm9l+d6ilXdLMVgGjdA96sjENKj2\nKBd0szu1WUNT3tp2dHVJLSc/dZPT8rqji05RRQ7KLQv3onil9MWlyxVCEAZLEa9arN2OSn+ylLfi\ncZInbryUpw9M4uGnk00aKvIuRfsbks0zKZy3y2CZ1t+4PYy54Hjg6GZMNqaIB3QFT30PwQXaHXLe\n2iadKP+xacXtTrV1RwdOeP2Je2HcPNQBzA5FmUZxsPICvYKW9ynaRAhMzzXAGLB20HZdqZN8uOPb\niO5u0lkdyjunwVJ/Jv4rvM8DhWsM/7l48EKYQ4hJxUS6XqV/JCWTqA7UQKQVV9tBm3CNNgnTtHgb\nol2EEIDwm053MO03oXRaIuHsNeWtegpMz4euZVy6FLJlh051omnlsixib2MrCqNHrfvaYwLWEnxy\nbjH2x7WPyFN3IOrPqUZLkjZxvLvqTaKVwdSY8Vx7DQa7Len8M2gTYWzsYQJbTz6NL9a+jv969j7X\nQ/FflFcQFwIBloO8wzxVN8gsZCyBQhZwUkUzLpreI8UWylXbocCZZ+RmOzPXwJqBUrwJTxW1T8TK\nP0M3d4vzXhW0SR5XwXCwJI1NGSwTiToJIyiAKAoco5S3LLdYR7NvAUAYLtaDZygBieKzkDeNfqZm\nE6V64HjiXdGIkXcA8DIQFNESDXDYu/LsMLF2VVrQvVoAiX6SxF++Zy/Y7CZs2iQd4lnu8xhd4nIh\nVIVWYg7kDWHRUd/efBB8emOYl1GcGTtGFdVomRa73ZQ5I3iUulJhMA651gyzxiTreu005c19wNfL\n/9i3n0TpSvcjWUbNgItl0SZZ4YIpietBIG8XbZTpGVJIWT0YVAxjAoILTM81cdGGgThsA4p1+CMn\ndfdTveauAqJ806u4VFklyDvPYDc5b6lAQwlEYBuj1dc3Yy1QS7dI+m66BzOb7gMKjSgfE/nIOtnP\nujhv9bSUqTnVi8VG3u2gDSEYRLuAJm84kDfdHlqZwua8TeQNJrB177iiTFmmx0WWZB2cAVBKzC70\nwMyhJK3pxcN4NDjto61chzEAeZA3Xd+5hZaRTiYUMfI2y2KM6Zt3hHBQShnIm9vIm6JSrDzjv+gV\nRtChwTIgkLfOleRF3vlpk0YrgL/+KLyRE2SacLzR395OLzBXb6HV5hgZLKMQKe9y9QmUrtiFx09u\n1XdXZnLe0b/nNW2Sw1jjok3iUK8iUHy/5b+Ajeai2TIFectvIdMwqxmF8a8iasdUFLmKRicV5K12\nkGaLgwsevhP3gKCIpmiQ5bgMuEBodBFCoKVshoiX9KbyjmmnxFUw78ECLgnfNf2bmgoXjFv01Puf\n+ChaQZvkvBkTqLz0TpRv2BxWW8lK47yjv0teGI9CQ94dcN6zi6bylrSJiIPxk0pSKqz+GbzjoXdj\n79xuKw3L5LzNlZewqTwrU4dCk9c4OqdNRIbBMmNTV2LkdblL2tJoBihdvT0+I5YU7SzOlHZkIqZ5\n1g6W4hgmXn/Im8+15o3nM1YSMtvzGnmr2oIFKF35tJUm02BJWNSp6H/CxXkLBjfpqjdj+LEEuflB\n65iKIlfrN60ib6WKrXaQ5Ck8QDBwZVJSxbUSAYC3/P0D+Nyde8BhG+c415U3YwKMqfktnzbhnOca\nyKodwOUfP9+ogwsbrbHI390bDGknE+Emf4f1KEahfxtZyNtFmxjIW4tcyXTaRM1Btru//jimG/QG\npGzkbQxjJiBE/qHtQt5ctCE4g+D5tA9lsNSqlQHCYgrEETOHEs1g6UhTvGInPvTkxwEY38/sg0xg\nJvImGeovWWdPlr2STpuw5DlK4ttnYzzv50rUJvY3HIW/1j481KYJon9V5C1vqnG3Y4Si0yaWMgBL\nGUD09VabmDDUfJmKvCNf4IWmEX84ybvR4gkPKbyQOoEgPUnMa6bOuWfLUcw1E08AoaYzaBMG9WSY\npdMm5cULAUSIlqSPkk4uBNBSN814NvIGgIVmnUTe3pDuK6xtACKQ9+xseL/eTibOTlwFTc5bP+Ra\nDzusKsskhnUaIkSq8ra8f5iwAIWdZwZtwiPahPvZeUWS6eedMWHHLrId8OWqcd81Dr3hCTwzvd/m\nrAmDpaQmiwUPBV9v1/1H5x2uia5v0+O8NVdBVqCXchTSNM/pM8edNiNKexynkXcaknG5d7Wo8+8U\nJcMI5P3NBw5YgaakNDXkHU48AoJE3haNlGE85YLjf3/6Edyz5Si0zsgEwJjBeSvteto+7dwpkVcE\nFzzzUAouhIaCXaF051t1kvP2BvWt+9rxdoQiF80Qec80k/gYgljGu5T3Qt3sL/LZhPM2g1UxMOsU\nJlpEunInkHc6baLTMHT898jbhPvZFEwk6mYf0raTibyl8s7/bKPlPrUqfjSyX9XbDdpbRCnj6fI3\nULruCfgeU0K/hnLvlhMGcpffOL388/wMy6TBBvsdx3UZnV8IA+EITg4e5YnoH8l568qgwIh41vGT\nNEdHHdygdWqC8z41tZi6RIwPtuUeZK+hFLPlKkhmqaL6No6MzeOx3aeM94yQt7JJR+O8O1ies4ib\nDQSnIxL2n0bp2idQuOAAhBBoqstwj4MaJX/zwIfDmCGm54Dx/fSDpW2PH9EM41ur1EXABbzBSVRe\neid+/meLuOqi4SRIWNDEx7b9I/ZM7Quft3zJk9++4W0ilDHvCp5lGfqY+3vafvc5lLca/ZE62k8I\ncLQhuE9VjhQ6CmEKTWGKXBF3oPgX243MNIhcD+tBXY8aaqQvXHAADW8G/toxeB6zkDcEc3ibuKRb\n23NCWR3KW/noG9bSMR/TON44jVSy0uDIGMwGdm1AKRUIr8r441OdDZnIW+O8I6R8eqGJYoG20Ddb\nyqk5wovHBeWhcHLKjCpILUWTP0lEIf9mhvJTi7OMZSkSKXrOOclhFzY9C39kDIVL9oALI261Z3sL\nAcBscw7/dui75GSQvAPXYouTk10zDBA/3UiQNxci3ml734l74bFk4nr85FbsmNiFD2/5h/B5I0s1\nPANzGSzVFY3po2x5aZgFKG6x3LS58FSUW7yspuVHb0aKDJbcy4286XAQyt9ZRwDGSJaY2B3ft+6I\nGa8960lKrOGgPfR0QHgwRsGzVzT0OKHb+rz3Nrnz4N0IhpPTbFyzd7M4DW8w2U3GQaFPYoebmoRx\nml4A4DHfOSBobxiBVjt9m69Gm0R1m11oYaCiThRh3v76ozi86SsYjyPTJRMPhZz2HDEOEchA3jML\nNILx153A+MCTSRkG520qjlRRkDc5QKPARcyLAgRZtAk9CNLtEUDlpXfiLx5/d1JnQsmIdglMeBby\nVsVTJjFTUclBXbxsF0rXP6L1o4Ifvneat4mlSMyE5vsJFu8OlqsGZ1pDChcc0tKQm3S4CPcudECb\n0JJCU5gilXsn3iZKGNqs/OtB3Q1SDCkQyJsxM9hZBm0StdtZd4blcyX/dfg+iA37kwse3eCLw3tQ\nvkE5q07Yg8VG3p7yQ6DvprtjtyBTfObD6kCpyFvQBzu4XAV56DVyer6pK++ojNLV2yG8AI+ceCIq\nMkFE1OBrGsZSCnm7O7uivNdMYKayG7NRKFYhmD4AOqFNMjhv1Z4R0iamwZLOt+SVMhWWmhc5QQsG\nP6hgup4ob9OzRJ5yv2N8N75Y+7p2Tyr1wgWH4A9PJVQaEyjGylsHD+FziNPpkk6bQHhoPP0KfH/5\nv0G0SsajRHozd9VgSfTTgHMIFkBwLzMcQnP/C3KVk5c2Ice4i/MOsjlvKYvtRiptoopHcN4W8o6F\nzmdO2kHOV+U9WDTPQ8rnp2YaLAHYvKjxDCu6l2A+84gHouWs4+O0CW+TNNpkodFGwAX6+9wbX+X5\nlqEBNULehPI2N8Jkcd6WkdKQeqCe9qLccCBv0r2MS+Vt74g0JeDcpk0cDV32y5nKSquGw9eRtSs4\n3ZyN77uU98eeup2or1l+tLpjSJS3sXFM47wt5E2HXEhewgOEj6IYtJFxnrZQ+p5FmxSa+I/xr0Y3\n05G3x4vgi2nnM+ZTlkBCjVAUydWXDJPPtLTTjzKQdzs/8k44b32MBFwxHme8jzRin7e0yXDJ6BhZ\nvBnkstb+lNyiTQiDpUOcyNuFJhzeJioSYYa3h4xY1t/nk+kBJEa8DM7brFcW563/bae9dzI6wcY0\nWLo4bwqRi3TaRJW2aBu0iTt9OQfyVoU8UV0AQduDgEjC4BptluY1YCp6lT8tRoGpBONYaC0qyF9Z\nxaSNb4Lzlmg4NIqbyjt7E1Sa8i5etA9HGwejgpTVKVm1EpDmB75CnPeFGyrWNUA/rDsL4daDerqr\noCK+x8LYJsbZoLfdsSP5GbscOzhvv4XSNVsw1TpF3l+unP3Ku2zO6lmDNEEy5vJYyPgjqsEyJ5/n\nMY/42GnLU8cmHS1T3VVQKu+KorzN/GOFpnLeDkOR6u1i6u5y0ZyM8iIkph0F5+S8ieszs8nBu1kD\nuRk0DdokcC7ffa+I7H6RCO0dxNCKDqOWBzzrbmUsQt50OWk79yTyBoA/efCvlBJV5W0of2YAC4I2\nARB+Cwp5Z6FcX1Xe9maVuJgMg6XHi+nUmaqIM2kTLjO1brlWS5pHUibybhiHB6cpbw+lgm8d7Kz9\nmyHewCz8dSdxz8R3c6XvVM5+5W0i74wO4K2ZgD96OETeplHJcKqn/LxdEvLj5gBLQ95Au53RWQ3a\nZG4x7CiVko1mpW6IO6syqFwHti422ti+fwKHTsxayqVcNCYjtSnS2jivq6A54JXJpt5q0ZHjFGny\npkGbuOsU7tjsQHlT7SWSibwZnx5EIO9iw3o0rEOa8k7aqMlbWjdSY6CoovbNcJerqbwT5G1Oaozl\nMQ7ayHugQqwuM2gTxovpyl0J+ZpZpxTkTfbxQgPiCiVqYJbBsl0P3zV697R+7nsMJRN5W5tycirx\nLpHeZ31UQVN5iwzlXa6GBj3Of9SmTSLERbvwZNEmjOa8U5A36SqIkA9mns77BuCxkdEvEChYhB4V\nCfJOFEIgOBg8A1GG/NwHv7wNAPDCq9ZrdSgVfSxqV/IrP02pOV0FCeUtDaycg5VoJSilLVo6bcIC\np5Lg4B0dVuCMxR7lL3fGmqECPI/BKy+Sj6b5/5rbrKVwIVBvSF7UfD5516GBIi7fNIg9RF1JoziQ\njXIV5R2HA37ht3F54RIcO6J8U+6lImvGC/m9UTLq5K87juLFD0K0bbVEKe/CxsP6hYzVXD1oYMfU\ndlRe8j00nrkpk/MuFV3IG/q/GWOn5HVypH1+WXXIm17y2mIFNlKflVwVWO6DBUJFn582YcxNm4iF\nyPiioh8exFtz9d2Eqnkr8X0WIql7mwfwUbTL12gTvZ59JbfrY+ogEwzqnOSiTex2TZQ3FxzMoQSl\nNHmT2KRDS8CDDpE3nVbWmaJNgMjly3UGaQptYrqcycnj0IlZvO9f6IBKGlVsb0eIFWo74LTyzFBk\nKm0SCB4jzFPtI3pCkU6bMF60rqmn4+iJ079R8eLQq4zaRU0pbxEYSj4H8n5y8lEAQGH0SKby5l4D\n/nrlRC3LrzuHvQLAQjCXnmCJctYr78GScZxXFqKIxDwRBgAWvXGwUqI0NOSd8eE9EJw3E6lLL2qH\nJaAoPMPPuxEF2REeMdtHA2iiHvl5azssOZoNm/dUg/aYyuVF12yI8xaCGS5dKW2xVFdBRQFwLsBK\n9OHNUkyDZZq3SR4DqCrkElyhdeSka7aZ57n9ydNoEy/PPiZzB6XSdz2PQOZyFeNS3ln0ohL7RQih\nIUx14hXc1zh7S4IiREtHlsHUJkeh+b+RVQz5zYjNSSmyGDSSby/S9wYUPIb7Z7+FwqYE3VteJhmb\ndKTMn6/Ku+jps2t+5B1YXgXH+zej76Z7ARh8dw7xGIujBcbChNPvPDRYOurKw3cyvU0k8hYUH2xx\nyJ7eZ0wlyoQWqN4EhhvW9OEVz99E551hsMzjKmgrlAR5t3mgTaKUtHjT9jZxIMCOkTeZNqmfPGvS\n4rw9lnKMXVr5hmI2vTuu3gp/RPdI0Jx/PNjKnUvkLUBNalmumJbB0nVoAfdQLrrZ1dLcZYDwsfjk\n9yvPOJR9BxOsVQ1CeVthm3Mg7wCK8k5RuowBp5pHjauulWpqsWjwum6/WSE565V3YYnKuzb/lO5G\npIgMUnXoxGxn3iaWZBgsXcg7iDq3ZjQKYs6bMyo6G6G8teNQrHU16k2b14yzZSxBd1FHXjNQip91\nitC9TfJz3kl9A87BynWSspL+4S3eyk2b8BzxwbUyXDFtYyOgwnkrwsBIdBfuKUgpz1E3+f6F9SdS\n6xtGcaC9TZy0SUcrEQGmncSj5Md9R98HGjtfDm9xJE4XVy2g+0Qndgm7jsT7GKcHZUYtbDeUb5+O\nvOFxeNYhK0tD3gAw35rPTNOpnPXK22zAvMr70dN3498O3EneCy30wHu/uCW+RnUs1XASUyymh4aT\nN05xFXTQJpLm4NQJJsYAzXLhMpG3CQw9xhKFLkJj7Mtv2BQ/q0qlPar9zuUqaDJMCrJt8AZYoQVR\n77cfi5bgpsEybYAEIh/y3nFgIsqJSCugrQwAG02fnFpweEKkl53nsGpbkm/reSJxc40zlRMNjbw7\n27QkAIVnZso5q4J7xGEj0b3ATyY4dRLvAvLeNbnHumYj7yyDZT2mX0QGbcKYCDd/aRd1ZW2GPqGE\nN/pw67rXYG15TXbiDmXJ3ibVatUDcBuAFwFoAPjNWq22d6UqJsX3lqa8AeDo3HHyulTUi402vIpb\nAYr6AFgUzJ9EHxneJu02R4m6RdEmCPA0/08ULiyAQw2zmhhXjcJ15U1QH41U5A2d/4NAqegn76WI\nL5K3EFFsk7g1nJy37W0ikeY8j7baN/qBioFIWiWgXA9PLg+M4P7mBBZx9VzkcxX8wJe24a2/cJND\nmSqct+Pg4v3HTsMfJZS3TOd0f0zrsylLcQnwGCBcB1cv0WCp1c5E3iqFIryUzUlqlD2FJzcNiXHy\npSNvUkzDppPCDKXebiQTrWnniSSY2gh/5BQYC3fuLgYLyU3D2ySOWZLyXmJhGLdueFVXdlkuB3n/\nNIC+Wq32CgB/DOBvV6ZKuhTY0mgTADi9kOaOlt2YvJ4YS2PlrX2odIMluZMPLtqEY9I/gOKlz+Cx\niUeVagq9fHm5kBXTIZ3zng9mcGpxPLoZbv0vF6PDly3lrXoUmLSJR1MGKauCBR7GjxENe9ecCMKy\n2sLYpMMIhBlRLGGI2XyKYXymTnqbrBvqszhvE1H/4M2X0MibA6y0iMpL/pMs04z3rk0eDu8Vdax7\nKco7NFhSGXSgvDkHUxQ2KyrtnkKbADYoAIDXvPASOvEykDeZXYS8g5nQDTbLYFkP6on+cCFvGRKa\nCfSZyNvyMsnR5wTr2vb45fh5vwrAdwGgVqttrlarL0lLPDLSj0Khg/ChkbRMlzJidvVFGa2GD69v\nQbu+0GjSb6iGF42zI2iTxUR595WLVjrGhPN8zWsuHcbeY5PkPUQKSlv2EUhJ5Q59z9NVQGBunrCR\nd7GUvLxf0AfgNydvT81//U0AACAASURBVMoRDAwCI2v742dVKfmKkhVGS8VeGmY7MONXslKYrE8B\nfQCnaJN21DYFAc4ol0n1kgeAo1DM4C8VWb9uAJQuGuwvY8PICA62n0VloIjR0SFU+pMVh+95+H9/\n4cUo3n8I957cpT07sm4A3shJZ5llI1ZNoaiMA8dB157HIJmSQtFDoShAHSnJPHr7epbB0qqf0hdV\nYCC4h6JfoBcPgkEQZQ8PDACUM1EGMu5Y5GpBIv0cnHfFj9IKe9MdkNgh1oz0YWhsACdU9ROFKYh1\ncQ6dLISHkZF+jI6mxX9ZmixHeQ8DUA/dC6rVaqFWq5Frx6mpBepypszM6+h5omEfgXbJ7Pdj71wN\n3kUHtOvOU8r9NpKWZ9o/qsgYzwDQlm53pkudo8NYgdzVfCWXrgwYNbRlLEGBDIJzdeEl2DG5Ht6Q\nclqMyTEzgXGlzZuSQvECFK8wzgCVOwsbEn0ZFEurhNj0oGy2AcLOCYp2JZF35NpYWgjVfcNW3pIv\nbTRbqHvmQcym0S7Mb7HRzK28Z2cXyfNMBRfg0YpicnoeY2OzOH06Kb8dtDExMQvO7e59amzWGY0S\nABbr+rdtNmQezHlCkBrpj3Me9w/BPU0xLzZaumtf4IeeJB2g3Ie3H9NoExN5p51hSQVfa5tuqzLf\nLiFvOeFn9QEBgUYgv6k94TcPXQ9vIFRp39n7H3gmOmgjKdDhNZThWjszvYixlP6RJS7Fvxza5DQA\nNVfPpbiXI2lLNikFj97C66JYyJPhDcXQqN2i5emT1omE8zY9Jwp+inWdQN7UKSRCNfwoKPQy/8UI\nOW81NUMwPRo9xyzOW05k/oYjKGw4Bl3C9KUCRQ0BJTGkp9W8XNIDF2nPxeeDRkYjAnlLYy4HR5O3\n4InIPkDZF2R8DxEgj8UfCE8jojhvxljc12I/b0WBzjRn8Z7H/i6McW1WmQt4FffgtEITq1SDQ3nr\ndUNSrmEMtGKbSANyB4pybrGl88cqJce9lDFIn2daZM8R5+23Q4M5l6e8Z/tTB3L5YtAmfH4Ywckr\nIPvykxOPW89afTCPtwn3zsozLB8E8AYAqFartwLYviI1MiQIst88jLtLKW/Fm0IRVmiTBj5V+Myo\nppBpb5MEeQcnL4NoF8EjHtdPQ96BjbwD6ggppYNpE1FMp6hKFGjuuRmLj/1wNMB1zrsVxVkhJ66o\n85cKtMGyzBXlTcUsoVB2DhdMc3MHkExYXHA0gyY8YdNVcVq5Y7OD2CaNZhC7Aqris4TbDRzeJkfm\njpERHA/PHgUbOG1dT+rpUN4C+ZS3JxTlrU+wZlTBeMLvZEMMA5gSs4Vp9AYLwyFTIvTV7SVzr0Pr\n8LXu7eArjbwLrWgsLEE7CkbXJ/VwEXP1F9EoaXSQYGel8v4GgHq1Wn0IwAcB/MHKVEmXv/n8lsw0\nPvPIRpfK22MpXLsglDIitzlFAcngMtrOQJbEJ+H1AdSf/EEEkxcAABELWClS8rraFmXXxpwwDxXx\nSZ2io/0QEZeLRUgkfaK9D8WrtwKMx8qb7udhOQUH8i7CQMjqbe7l2/BEKXnKKyFSPvP1ZqS8JZ/p\nRt4cHSjvVhAbJFXxmR+vrmRMGvJ4MAJ537bzY6kDlBsKX/VZNs/apMTzEoOlMJB324G8XTFYaBFg\nfS4/ZAHP6ROnG6/76hejffxqN1KXK64VAuDMDyB4IXeICzsDUxEDqRMBE53PEyLn+FiCLFl512o1\nXqvV/u9arfZ9tVrtFbVabfdKVkzK1Ez2ziQXbSKtLMNsA3EvHXn/1Kuu1NLIDtn3goeUVCJBOHLy\niLLxfeb+0IQfbMN1Fh8LM+Xg8BvDYE//sBLW0i7gPb/zCvQVCwAT2F++G4X1J+ANTyhBshwWdgZM\ntI+j/PyHbArAcklMfl+wZg184pwnK9Kd4dqoHqCsSdSOMwuNiDYJJ7pikZgM5RbxnH7eiDYuUcjb\ng6cg7/Cg54BIZyriPGJ6HSXnVsKJvDWqhSkGSAOkWLt4o77lDc4grzAvgFd2hytwIW8GloACJC6W\npodY8oD09MhWO7kVvGW4zytEpEaAzKtRuyX8w7S7pLoKR9mdpcj7OZE8bja+w+IuG3bIH7HvxW1O\nI++Crysbsh5MJFx0PKjCdGE4CMeHJZQ3efJ2hLwlKvJ4BUGzmOzcVLKXytLzGMwzHb3KXBKe1tlh\nBR6evBvewGktnkN4X+0mejCvP//V76M3caQYLAE4N3JIZCndBKXyvvriYRQKRp4x553fVXB6rkF6\nCPnMjw7cCAP8v/met+Px9r9Z6QICeWeJFZpYPZw4B23ie0iUfBbn3cGxdFJk/1rPLrXu8cVBp/Iu\nFXyth0uAUPLLWFd/nl2OEacnVfIebC3Sox46hTKAA7TtTB4zZ/Ubt8OCml/aIR7LkbNeeVOozk7j\nR8eCGRI1NgOLfUEtkSDI+AgFX9/BSCooJpSloK/l53tu5G0ufQFYCOxnLv05SPqj78YHwiTw0A44\nuTEizobJVYKivAenFdokxT2quFa73jp6NerbX6l7Gxidu+gXHBOsec2gTZyHOIRtI7l5qbwFuI1g\nolXAzHxOioAJTM02yDbwPT/uawvRxoxpmIbdpSFvM6iSttU7h/Ku9PnReZJ2FExzkw7Zt8z6nF6n\n/faijVIbvEtxYd9FAELf/ktO/J9Au+ykHYuG668ECB5juLCReA5fVXph+AejVw+k5D3YmqDj6ltf\nA9HUt8e1T10K0VL2KzhQM0XBjAxWyGcEC+ywtFaG3pIo+Txy1itvL4fyLnoeyKOYYk8QoLnnFjT3\nvVC9aSTWP6RnnLJDzZ5M4bw7Qt5E7Ac1+4JXwPVrbeTiMQ8BF4kiJvy8GWPhRMNEogj7FpTlreEG\nKL1HiO3A7ZOXQSwOQdU1wqBNYP2SCW3axIxWF/5rPB0b3KI41xHnTUWJlPnOLKRHKFQqhem5BonS\nfSTIe+cRd6wR8si5rFKtk+Yj4zETRrB/WvrLfrg9nlDMYfya7BWNJmb/izboFFHBNcPXhUlYC4wX\nQmbHMQaLxt6BdiBtTPrGlDg+UYy8c9AmOZF3uEdBr59ola1OKdpFtI5dnVxgDjsJobz/8BdukTf1\nZzyO4mW1jAp65+8ZlnmWHC5vE62hhQc+p9An8UeiaZOw2AzaBLDRRJRv6ooho/P6zFOOaFNmei8c\nZKoLYHITcbke80LkKlGd30rMMZYXAgv7JAt3NWoSuTRaqxqjzy+pc0oFYgxSGStFxnRmogAhQuRN\nfmJ4udBrlDhE3pGoQc98rxAbLMfmVL5Yf1mX8m6PX+Qs1jR8qkg8z2aaSp+PtmiDad9B7ds5VjRq\nfRb1eNux62bg4YrBK5N0gOZCaUrZRN6BnJR0he9LDjxepeZQOx2EGiZDR1D2EcVAXhg9hsLGI/oj\njnKtyacTEQw58OeS5KxX3nlok6Ln0x87numjfxqVxKHflTYSzzOQt2ty8GgjjOfbecYivNSND6Hb\nml0v7oWKZ7Gh+KomlYnr7TGmBbTXttIbykLNocmNcALRO2m6R7BcCqdkxYA2DZaSZjK+m7zuS+Ud\nGqTIyIECoULL6RZXvv5R1MV83KZlT9lBqXibqG5z5md3KW9qq78UMyKelofTYJlIX8lHM2iBOfbU\nUSsal7RPXYL2iSvJezzwcfHAxQCAfj4Sxvlm7mO8LNokVt66kU4aMF1GV7oyeXdjM1hqTIBYWDP3\n2DfSmSKVN7nXYAn5rZSc9co7l8HS4KeTZxNuOHTdY+Dz0Sk2ckeZw1XQnM2ZIzCVNDixmPMOn+Ms\n/ZivtM7pMS+K+qfXIYh2HMbIWzNUyWdtpMR8nhhWDWUhrQIAobxlVZWmKRcLVihOaQ+Q2/kv6N+I\n512+zkiT/D/MVNImpvKOFKinKG/I8LXmwAlRV163OG9wBuUbNsf5lHx1+7sfG+bUHYbmhiYn552C\nFKW3CW/0AYC2w5PeMKZLqeihzdsRrSP7q5oiP23SPnk57aIJgLcZin4Bi0/+AK5v/RiEkIo4n/KW\nBsvYaB6Jb3LmeVB1B5y3bY8i6msg77T8TEnq7zBypmXH0wJ7LU/OeuWd12CZNcMNViIKINqSzXwD\nrVnIG/QmHU0SazOL94+H6R6a+/fULdNq5zSVtMe8hLZR6hVEyLvepAa85LwdE03Ea9reDYm3QsOh\nvNW2/aFbLrGOqZKDh8+O4Hdv/DX8wc2/S7SXw2BpDOQYOfqKd4VgIfVAfAIz6FOWeOV63Kaq8i6g\nEEew1LaHG0J6BQGpYzrmvKN3W2jK/HN4KyB8x5bcbUqVY/jdZ4pjrARBtOJrl8B4EUKIyABOpy85\nDJYM0KgCy3UwZdUZVzG3twlzrAzsPQHOaIea2Laa+P2XSJuct66CeQyWYbjRtMhnDENRkKG84SpN\n5eNleJvEvJ5qzxiecNdJi39s5x1y3rohs5+H/ur1ZjtU0kSdGNN3xEl6Jo4al4L06gFt+FO3ifeX\ni7HC6S+EVEElCoB16cZBvGDD8zBYGiDay0GbWMg7UqBRu6q0CWVo5FS0piyRtImveiSwcL8AoG8P\nN8RpsEzpf4EWejeJWhhquWzlLYQIfd7hQzRD9C7/VfMFcig9wuAc17OVKCouBHgG8rY476ifmM9Y\nB6qIHIo5L/IGI9rerq8QLB8VQ0xssbcNS48iSufnoVva++xX3jlenAfIRN59pegDBGZHkohV/yjm\nnOH0844Gnyd05A1kLIkzlXeSlwxkdX3wwwBCDwPfMwaVxs8ryjvagh67NFEca/SsS3mr27v7ikW0\nT12GYGojfv/Fvx3mHfHbI0OJQjHby2q9WHn79PX4d2iMDsMDEMhnKWiIUN4MDs7bkGV5m0glo/a1\nHMogEAG4CE92aT37PLSOXYXWs9fH92+8WtmElkPpDffT3G/Q9mKwJA/wZktA3h7T9VXBPMRzJTlv\n4aY0jQtkOAYtI9irYEDh/JkAolXZ9SPX5qyf6yiL5cvZr7zzfGeOdOUtWGx0W1MhgiGFibRfofJR\nFKKDNmHGrjH146fuclNpE6OjMlleTNkLjBRGUfHDuofK273tVuO8pfLe9CxYadGiTdSdfPWgDj4/\njObeG1F/6lXx9baCvBlj+PGXXYs3Xf0mXDp0cVRehJY17xyDd7dok4jztmgT0/jkJbQJANEquX32\ncwuNvGPlnRKrgopICNCDXop6AEBYgLpJJ1t5N6IThTwUgHYJ7SPXAW3V2Kq0WSafzLB2iFZiPorx\npMu5IDnv2GYEoGScbSn3HzADWPgmbZKD865ekvMbO2kTQzgDgiJe6f9iRn5Gf4RQxlNycPbz11+P\n4YOvR3P/C1CcvCYlw+7F8z77lXce5M2R2iEEwo5VLHjoL/bRiUzO20KOdj2KFx0AkzHEc1vHozqp\n6Ym6a5MH42BgKPoRt8xFiLy1OimThjLjacrRCxzxo5Vld1BAMHkRRD1xJ9t7JJmEfM/DG19zNV57\n08XJNWnoU6pjDShjMoyVNKGstfeKaZNoC7wWjnaJgyJG3mXlErMRIiFuzjtNeUdxSSjknUN5N2Pl\nTdev4DtcCMl6RgdPEPKLP3h9bGOamWvi8Kk5eCyhzQRnCCYujNObyFuKx0K6s7n/BQimN2Bd0QhP\nQSBvk2bbtHbQSkOLAfPT0gEoiYx8SdpEfrdEeY/0rYUX9CMYvwTXFb4vNb8e550inLPUwcMQoh+P\nMeNUGHkXBOdt1MPh6xobJeXAzKtQMmgTj8FAakwbpJWybyg59VkFKam76ZhjO7b66hlGHSpIkWwb\n1aXQQhsCJPK2OW/jzEQeeli4NuksR0q+vgvPPHKPEjfnnaK8zeiWUnkzwEmbCHVFFNI4vsNVUKt3\nRve7aMMg3vjaq6zrDAwXjgzF4612OIwVP19vo9FK6quujEoFekxIV8Fg/BI097wEvm9QlUR/N9F5\n0cvh1odwAs+FvM19HR1IvOdCUd7amZQpgVjC2CbnKfLO422SRZsIwcKYyx6Dz4xTJRVqQhWbs03J\nn6soeCnKm9hxqbx3aJxkSdQ/AJVywaAm1GVqkh+fW4v2eISWnIdH6Mg7TXyiI0rlrfozW+6Kpuuj\ny8/b2HQhD1oOz6lMR9vtsYvROnp1HJbXJYzwNhEACuqKpU23Q5s4jCHK1Vle3C5GOFdAYN2abCVV\nb4cKwwedVl8xpE9wb/7ZF2HDGht5F71itCHHfuaiDfJEKaH1VZM2kWL6hluxUYiVpjkx5VXeIbLN\nYQuRESgzI17R9xnCchLkvSa3Uj5/kXeON/+Bmy9O37UlJPIGCoI8Epg2fGloNi3/8N6F6/tzg0Oh\nuQpSaNb2ClBP5wmVtwt5q8jVSww1jN6lqG3WaznaJxIqSJFPKG9615tSjsvPW+jB/1mMvJNDFGLP\nLWsHTQHto9fqnhiUUN4mQsSG1zSRKNiSDjhv9bOVStn9u96OkDejFZp2UEiGAVdzfVNEtgWlkDSv\nEqWv9jloE3OTjgXA8iBvP6fyBsuHl6K2p87c1LNzK++Q826AgWGomJPWOZ+Rdx7aZM1gKXXwHDwx\ni6Nj8/A9hqI1AGjaBEg8NYaLWbNs+Owf/dLN+MFb7MhscUnCR2N3FLBHje1BbjCCpZB12qRgLBcd\nSEd4itLIRt5ItcgDHkEtxKFUFUrBQt6mwTLa0KMeNSdTavynNFhKbxOFQ7RdyQ16wiWkq6COvF0a\noc3b9O7YVFdVdyhUKj44APzApa+O/z42H8ZaKTiQd1HpF3xhmEwjxdy6LqUUKUt6vCWTjjrZFh3I\n24xtYk/4dhnmRp6Sgrxfc3EGp0wamPVrIlbe7qzCqrmUtxfOE16Akl/KRbHJJ7sEvFeH8g6mRlPT\n+B6tABOJOl8KbUL6b7b6UN/xffjvV/12Kq8mN/wM95dw2Ub3QaMXLtwKfjoy3sS0AV13E3kPVYra\nIO03kbciKhILaYfw9xtecRmylgZZqJWmTZLTb/T6m6LQIdERaO1jV6F94nIjv6T+s/OhsVbEm3SY\nG3nHnj9ZyjtMpxosQ9okGZCpW6k5obRSmlX6eVuUDxPOHZs/ftWP4M9u/UPtWsGBvNV686mNaJ9y\nnN4ON/KWFBIZgE39odAmpp+3FNNV0FLexFhL47zpIwgjcdEmEf0XT7SSNqHObVOr5ly5sKjeojN1\nLAiQsUKyKpR385mbMTL7ImeaJIiTQ6Lv4XuMQC9MT2Q+ujCMSqEvP7+VpuQpbwsFGWtpVYMlAEYg\nby0/Ja06WH7s5VfiygtC44pfAL3CUD04munImxpIuWgTY5KKgyPxAlqHq1pSlcufmw8SzhtC+0zW\nN8mrvD2pvBXOW0CjTVqH7KiOsRB2AYr6kihvoj7prJcrPjhjDBv7N+CN1/x4fK1gAg953ddXDPy0\n281OUhqqyx8AlKI4L5Se1NpZQd7lops2UScB36SjCBuPuQuzqBg508+xpZF3o/ZSBJOb0Np/I0Sr\nBFEPefvsQx5SkDcAMNHhdvfzmTaJECgL3IgwDCKV/oFlXkWvA85byT/PQchhGSnptEGgxkKx+WFr\nhydjFuftKquk8IVXXbgWN1+7MfolMjlR0Qrb+U0/SG9CoMpMaBO3wTLMXKVNSvR189lok04SmCqF\nNokHcfpgkass3dtE6Mi7WcZPXvrTdAYU8oZjwtJ+E7RJxqafCwY2xX+7jHjmEj7NqMuivtV4+hVY\n3PK6+HpMm5DIWwUdCvIuuZQ3oH5CFUz8yOU/AD631nrGRN4lI2iYUyIvEOvywjCae1+MYPJC1Ld8\nf6y8Mw2WaZx3HAqjA7V5PrsKSmNHmqHBY4x0P7LSecy9BEtT3owKO+nIJuVL2S5wcCJvj+mDkGW5\nCipSLiTo+aL1Q/HgFixwdCRlcEac941Xu9AbVVcCeVPeOk6lYihvdYeoSAyWiZ+3iPOsb32tUqZ9\nwhBdnI28w/dI6vH2X3oZNgwPgBJG0iYZkxX1mwm333gkMgQB4KZNiiayTVPe8TsyDQFLA6FpbLRE\n9TZx0iY68lZ59FdffCu5SjG30KsGS+cByAAgGPwUYBeKukJdmvIGAK+yAK9/zurb2Sbi8xZ5h/9m\nNnqGoQ0IJ4JiwUf96Veg/lRkEHJEFVQl3CJMN9Wl/BY09rw4SZvyoTwCwQgH521TArqrYL+JvJU8\nVKVULpQSP+xoiR7MrMcrNt6qPKuUE8cWcUwMhJGKok3IWDDCR2PnyzSFS4lvIG8Pnn4OZIy8GUSz\nAj4f2RliLjWbNmFgmsIQAqiUEoWxbrDfUihJnfJy3tnIO3C6HobSX0gUU9FJmxDhdx3i6p9qm9vu\nucnv512aTOqlFNrExXkXvALZ3wsGui6qsdZdZ2JG0rd4GX7iijekppGShbxdBt8WSyJXyokpl0o+\nnzlvqUSyo8elcd4KbeJ7EPNr4mVU8ng6beJC1BeLG8Gnk6VtKvJWbymHN5DxFAwe3wPTDJaWq6Dy\n/uVCMsiLXnJCTOzZIBgK2hKcKN/xDoN9NvqjaBNbou84ty72MLnpmg24ZNR2udL813kYcyR2FRSE\nR328czGnnybjIS+rInwApYISrN8rOJU3ibxB0V+GUJx3Bm3SX0zCOdieUtF1czWZC3nr6dSjzkwu\nW31G3eWp0nh6en2SUGkd12HhJuetepusrxBn0MpXEGEgttdd8ipnGlUy7JXg06O4YOKH8NpLXulM\n0wmSFo3+81d5S++GbOf6bPE8ph3d9JafexF+72eM8/Wo51JoE9mZ5QfKMq7EonHeREqmp2cG593f\nV3AaTspanOoEoQdIDnGgvEZUWTfch0s35vNlTWiTRBHJA4TT5Jd/+DqsH7ZXTBKpiWhXZsHzNc5b\nilQqMWXm5aVNhBJ2134PIOSXiw53MMYJJUp9R2MyueFynYoql1gmKKkoyLvksNd0RJs4+3Fyva+k\nK1L1CRUFm8egxXlZft4K8mY08vZTaJNN/SneZpEftTrB/N7PvMAw4irJs30FUQlGLUpNlTz2r8Yz\nN0VnaVbOY4NlzHlnx4BoHb6OvqEgb3VLb/XStbg4Qn5pp49TBxy4JG1WbrOFpEoa523nLUPCqvmq\nHXLTSL/OoStptTjVyqnosXIVTN/mLv3Albp7HsM7f/1lVr2oVvIJV0EZTClNXD78cVtHxsr4vZnQ\n9Hc8KJSYIeakRwnzODyTixSm8i44l+vyXE1Ncijvqy7QDXWVvuw+paL/kk9TgxZtkld5a8hbt6e4\nnvE15E3XP6QZVeStUjI08k5zFRwqpYAIweB5ehTQTev6sXaQVr48R0TXLAeFXN4mQQGi2R+lz06+\nFMkTnfyMShyiMsfWxfbxKyHaRZSufNqZl4oW9BM/MmiTFTBY+lAGn3rmpVG0ZlRy5LtpXb/BTSZ/\nlzQf2eSEmBh5g5EW/ILn41dfX8XR8XnnO1C+VhRt0jB3IhIDVkatA4DGnpuBtvR4kG3jx+8AIAoL\nq7SJ/EO67glPUxQe86wjyMIHOTymhxfQo8eFZboCVdEGS7kHT0lnHfBhnDyTwXeb4vKU6ojzdlBt\n6run0iYKdeNS3hbyZvo3obfH62Wqk1bWatbaFOSx5KhAQ5zIW/lWBc+zyrwUN+IwnopKzKML6HZe\nSVkW8q5Wqz9TrVb/eaUqQ4mc5bKXOwDAHJtMIuTt6Us9LTJfpsEy3wegNvP8yvP+L/z6838JI8GV\nycUM5B3eUxUVw4Xr+1EpF/CLPxLGcnYZLK2AS5LWgIxux3TFHz3rswJee9PF+MUfcqxgAC2ErBTK\n26QRtIxUlPJO8uLTG+MDomMFHE1wajzl8LRwEZUbXm89ez1G2RVoHXg+fIVaKjuQKjwOjzFcPnwp\nyu0RNA/cgI1rK9aAdXPeFPeczXmbE2abm22ULmWn8jYNo0ugTVIMlpcNhZt+bhp9geG/7ab8tAOI\nDSVP2XhM5D1QCFHrxYMXpitLwWLvlubB56F58HnwPYabrgk3w40Y4W837zzpzisSz2OWwf0y78bk\nPjGZvOriW/Xvq+1HyCxySbJk5V2tVj8M4K+Xk0ce8TugTcKEKciX6cibMaVhs1wFlS/wU1f9qFKe\nUTzxfF+hjFs2vUjr+Jq3SQ5hDOjvK+Ijb3k13vTD4aYWl9uj5QLn2QZL1UD1mhddlJqfKjRtYivv\nZg7axCVyEMg28sxVgkGbiGYFt5TfANEYgM8Ybr4u5EhdvCXzeMRpF/AXr34rfvHFP4TXv/wya8C6\nlLdHbFP/P265LHOCN+/nRd6DxdC4XvDp+phKNNXPWzNYqnVTlLehbKvrrsEfv/TN+O83vEl7h6KT\nNjFO0jHbJYfy7i9W8O5XvgNvveX30jnjyI+aMSA4dTmCU5fD9zz8yuurePsv34JXRn27E6EcFNTf\nVMTMN1XfiA+/7t1aveL8uqS9l0ObPATgDgC/kyfxyEg/Cg6/0DTpj44vS1Ouo6PqlnSioaKGLJeL\nWL8u8TLZuHEYmG+R+at5jo4OYThIrP5rhpO/K5XEP3Z0dAiDdVthDA9XMDo6hD7VU0OjTfRB4Hks\nKl9BkeWSVady0VYio6ND2Bis1X6PNMJ3jnWZYBgaTPyH+6J3KPoFoy0Tuah0FY419+Oaiy9Gf1GP\nRzJwODqaCzx+PoCOKk208vM/dB2qV4+iXN5vlVWWLnuR8q6Ui4A85EcJ9KMqmTVRjOpi0UN/JURb\nlWIZ0444UoN9/RgdHcIogCsvC8PmFucTg+vo6BAwT09ABZRgZvuGV12Dh+9icGyYDOvjOMGGEvU7\nfPQn/gqtoIUHt9DH6q1fNwAcUK+4lcXGDUMoxd5ISbqBSjkuU/ZpAHjRtRvCdhoNV3t9yr0LNtFu\ndevXD2DoRHJ+64YNSbrR0SFypTlYqQDK2SWbNq7BJoQ7g0/XU86CBUNfuYiNG4fD2CsCGB0dxPo1\nFVx04VrseHYq5Vla+itFDAwk43h0dAgD/WUgqkaxEI4TPwKCpTI1bpK23bhxqCtGy0zlXa1WfwPA\nHxiXf61Wq32pb6c8cgAAIABJREFUWq2+Lm9BU1ML2YkIaUbcVZob2tiY8nHTYkwEAeoLyYAcG5vF\n5GLE7xrKW81zanIO83PJcwvzLfzWC38F6/rW4v6Hw/cSQmBsbBbTMzZfPDUzj7HybPwuAAzaRE/P\neZiXOnu3mkFcp9HRIYyNzUKofk9R2rGxWSzOJeWMjc1ibjZUNYv1elym2g7zC/WoCTy9LRV5ed+P\n4dWv2IT56Tbmoadp1MPy2jyp43xTP1LNjCnx+pdcgrGxWTSJw5R5O0rLPVx36VqMDJZxWMlO0i1q\nl1hcDN+HQekzKdapEkrWu07Vkz46NjaLmQZ9LBy1vXtmejHTy2VmNv8YoL7Dwjw9E82eruPWgTfg\n3sfHwwspyHt8Yh5Fz86n0Ui+HY+OM7tkdBC//8YXanVpNtpAhF0mJ+fIMqanFzCvTHwz03q7UvVr\nNpJvVSlUtDLnWyntJhja7bDuIaEmMD29AB71q6Wg3nYrwMK8ricai0k/5UE4PoOAR3VvW99LXf2M\nj9PtlFdcgCpTeddqtU8D+PSySl+GeDl2WGqSYvX3jI0uQD7axDzUlzGGm0ZfEP3ao6WlJpn46Kz/\nv70zj5LjqO/4t3vuvWavWa1W0kqrq3XflyVbEpIsSz6Q8QFyfN8YG18YDDwbeIQrPO5whEfsQMhz\nnHAkj5c8JyQkJk4CMRAf4KMJfgSDTWxZlnVLuzvT+aOPqequqq7puXpm6/PPzvb0UVNd/atf/+p3\nkG+swvB4RhsY+9Bh0cTrrO63edv7laP56NdC19dYVEkmk0pwzRAsb5OOZA6vo6z1kK3vZ7gHeufS\nNa89VimBt+2Yjx8cfLa8AxEOTbujOdo45UXDvQyyyeDaiN88wzObBAt62G8WYXcxSv1L6rpc7xwN\ns9ILUDoanttF4/xHm03s7cVSiWE+ID/zbN50XvBgqgdGigXCZPXJsz7oayX/95DFDjRnxZjsJ5bw\nLh4eQCLPLw7OclDQfM9/OHUydBO0jqugdBUVlvAuCxV/9Q/3JoW5ClIr5oIbwxLerlCjjppMonQq\nh9KJbr6NkkpMxbITso/L+HIhl71Byn7e5PkmnclFlEMilRK5TgW9Ta5fdjm2jGxEPm1rDZbz6wd6\nMvjoDeXoTrcd6ZSOVFLHjRcsKU8yJXsbL/Ut7Y7mmlLKv03kocQW3nR/cm3eDFdBGVdSfiEHOXiu\nlT6v0ogLlsG+LDIiWjRNw8mf7cTJ/97BfQp0+DxUfO2+89LV8OP3EvJfU4R7et2bwMnnJrj/uLlO\nWAeVNUlS4f4ygrn6sJRQYi+8XQFlvT4T2UQW1y0VFxClMuS5n53gDQvBwAKZWVTXaTcvZrVq75oM\nzdvRuOhr6Tj99FZM/s4QPmzlvRnCO8HWMoPeJj7N26JzT7jtE+Uo5uWxANjeJkMdBfzBoos9jw/3\nan09WSqhkbu90JvDV+/Zjg2Lp5WFXElHKhF02/JelijPB935DXJunblEUHj7j/OHbLvoDP9vXdM9\nSTEvP4ZZXSNYNkBnJnQnybSWRT5ZjhqUrRrD1bx1zWeWklywJM9BhrA7fVkssjyLABRTwGRaqHmT\nX6USGtZNW4W9c3YBAEb6gzljRgb4vtyh3iY6oXnDNxFw8pMX3+AH/rCO0WOoeVfl522a5qMAHq1J\nSzgMD9gGtrmFabh724cBAA8+I/JOJDqtpNsFdzU3n7IlFELcM/o1b8HNY70al4U3p60+4b13zk4A\ndiAO/+XOr6EQi5uB2oy05u3X9D3hLdC8efUK7eMEk5m/fiN/R48Ja8JpZwJJv/AmE1OxNG+dMEMJ\nTG05Cc2bN5npHLOJy+yembh4wQX4S/O71D6ua2AulUI2mcRhZ47KJjKYkHAb5I07XdPoCORIEZZB\nV8FJxpqBnLKjUQIwl0niWkLpYvWrSHEQ2q0JRcRbyKY0b/axxVdm49SxXsxdeQAvT77ga4sWkL1k\nv4mUt3xiEIeLr4VXc6oBsde8t68ewR1vW42bLlgqdwA5cJ1Vbc3VvC0Ebd4SXWDXviS1Rf4xTJs3\ny2zia4XL57Z/DGfOsM0KqxaUtQPWICQrv6xZWMAnbzkDQDCM2m07z2xSlDGbCIS3yGSwYtC+b5lx\nOy0tb/4ioTTvpF/zLj9YpIJE2ry9wEvBuytLeHekOnCZcRHeve42b9vVS/YH9vMHlAD2BOb/Kd5a\nh4NrqhnI9UM02fLgad6aBubiNXtf9nfkBLx52TAA4LxNswP7yQhv23WPL0DZaYUrn3C8b73xYO+p\nh9i83eOs473EmC/3H+vtTdZssiu/3068Nil3T6sh9hGWCV3Hrg2jXC+IAOTA9Qq+kpo3Z8FSgD88\nnryRnTm7C/t77AczzXgFLpVYZhN2m8lsaqQ2xJowSG2lkO/AYD7nbX/z3D0Y6Rp22uuaTVxhQg9O\nmQXLlITZhMW+eXuxdtpKPPx3rwI4zB32pJj1tNCSq3lrzB2psG3XbJIo/zaR2ZFl8wbgTZwuG4bX\n4BvPPkxt0xkJojSNvK595Umf8N47ZyeKVhG7RrfhS0+WfQDIFL4ieDbvhK5RCZdkYwdISG3SGO3D\nV961jVlsQeZ5CUsry1IShNk4Q1LCuv2ia8E+CgtN9y96F51C5aI2i1LCpvQko7RffYi98Jbl9ktW\n4AvffpoShJblzJF6WRsO2LwlbVO05l0+Zs/GUZwaL2LnWjsKbf3wGvzmyG/x7y//l7ePp41zJRff\ndujC0iComou+r8+Zs4Nou72fF9Fn0a+FMpo3L4MceX7md3oCs3tmQcMB5vess7rBK5ajeWsBs4lz\nLNU/9oOY1Mn7X9mCJY/VQyvwxKtPe/8nWBOpZucdJyn6cnV3pDrw1oUXBtqeZdjfWZCa96fesRn/\n+39H8cQvD2BksBNPvUAa2CoX3v57yKuSI7NYFybgWeNFJKDDgnRIs4k/YImX2ph1bt0R3sw3HI38\nqPs3lc9Rr3BK1rUadqU6s2r+YDAZTUDzji68ac27/DmbTmL/zgUo9NqzbUpP4rJFF1PH2q/JlT9S\n5IPCdBUkBiozf7a7nye8CbMJQ/MW2R15eSwAoD9rL74NdQxy9/HgDG5S0E64ofWWjmRC8z3s5Zb7\nE/5fun0+9myaTT2Qly7cx7wey2zC4/qll3vrEP7rlrcFF4/9ZhMSsv+zETTv/p4s1iws4Przl0DT\nfAuWxAT3/g134d51t4eeW2THpfeTaKem4dRp/m9nKQm1MZsEo4RF7R2b3kO4CpPeKuzJxR2iorby\nTFv1oG00b4AxQ/tt3mAsvAn6+gt3nOUluCEFWyWz6/XLrvB8wrkahM4OJhGG5IL2hhBpJ67ZZIK0\neRPfu6/3PO8KQKx5rygsxX7jIiwf5Nd9dAe+/yysdnu26lIC/rzb9kHBBUtd07Bn4ygA4BfPlc0X\n22duwUP//DxSoyZ1iiwv7wkDTdMoTV1nPtxBU8GkpF+3bFtEgoG3YDmja7rcuaWFd/jY1zXgxGl7\nAmbtzTqHaPKoSPP2nYb3rH7l7m1IpXR8/vGfe9tczzZWeDztty5Y/2mg8G4bzZsJw+bt1yBFs3pX\nLuVp1HSQjny3rRla4Wll3Cs57fMLT2qFm3EY6Soo+h2uJkGZTSjN276+P+sdSZjN+6wZm9CbyXP3\n4eEtLrIsHM79Ix8ki2c20YN95UViMsxS3KRVHKggFuZrf9ls4k4+Qs2baPus7hlybRAJb8kFS5n2\niPdjb/d7eJxwom47snI+8VK+0wwsS/NMI3aZQ7/QZZ83k05A1zSquAjLT9xDKz8zorYqs0mN8Cfp\ntxAcpPJmE0LzjurDyTvM0ST9Zosw39KELqt5+8wmoLVEtxQXS/O+7aLlOHvdLG5+ZFnCYhZY37tR\nqPRrdrnhCZ/mHdzHPutb3zQ/cO50Qj7PiH1+se+wTowk97eE1ad0WTttJW5ZcS0mXjTEbRBq3uR/\n4eMzl6GFqrDIL9kGzjjzJ3xzhbf/OjwqUYh8RxKad7CPeEWSXUjvMy/Yh/lmQH4WPGtK864Nky/P\ns//+fgxAWRMb7u/A6gW2fVZ2oqxU8/74mffjY1vuo7bxJgq3cK7/AaLMJoxjkwxtk4V7Xm8h0Kd5\nTwps3msWFnDZrgXVJ9axgiHtPK5esh/WRBrF16c5xxAHkZnwSJcwhm+vuyvrrUE2MMY7P8iHPMTm\n7Vx5rCfoaue1kbR5JzJYNrgYVlEs6ERmE0vSz9vl07duxmduK5f6qlbzTidpRWPJHHudZ6tkVj+3\n4AK3bigPqxyKv2BmL4xZdMGLfJf8G1aHo4WzUt2S99w/vnj71Zs2s3nT/5eODOLk4+fAE1ROb3/0\nxo3EYJXrbNkgHZeedDCZDN/llK15hwUGkEn4hWYTrwCxGzBDn0smSKdaQqOFCeGzYXgNigdHANuB\nh+HnTefztj9TezjXdPZj9E3lmjd5L1jf64F7cN7c3fjt0Zfw/KH/CexPCks3Inbl/EE8JzCTi8Zd\npWaTbDpJlTur1uZNFTnRNGxZPoz5M/MY6pNzmxvrGcVlxkVY2Bd8SxJCmE1ufnMwFqQ3RHi7i+1L\nhmfhyEG7PxK65qVzcCF/tn88kROnRFblmtFWwhuA52M5+Zo745c72h3fYRotC53jKlgJvGevpyuJ\nE4iiecuF7AbyYVv0lFUqsTX/RsBr9xlLh73PLE8OgF441OkVJWpf1jVY/vgiyDbwcn54TXS+TulJ\nLBtczBbezt+klvC0zTULCnjueX4b/Hm26e+q0/hE3kokbok0vzki35XBwSN2tkI3SGe4vyNwPA9N\n0wI+9rKIJrV8iLlvz5yd6EjmsGn6OnzxWXtRW9e1QGZfyignWMNqpNmkrYS3BgClBE4+vhtsi5D4\noQOA4Y4hdlSdXpnZhN0+zo2VWbBkeZtQC5YVhK9bPi3R+Ziq9JU1AjxhLdLM6QolwTBuwKcZ+xYO\nWf1eqdmEqhI0zlGPvcuUfw1/UrW3V7JwKjKb7F4/ipcOHEdXZwaPPflS4Publ18tTK0qW6N1x5qZ\nGMznAsWpVy8YRE9HGgePnKrIXe4TZ36AXapOFkscEBRmNskk0jh79nYA5TGU0DXM7Z0LANgyYtdx\npRbHA1o5b+2lvrSV8HYfiMWzB/Dcb4JJ2BkKU+Cx3jW6DaM9MwP78SIsK2od5zDLtXn7hCeteQeh\nzCaCJgVt2Rp1wltWXIfvvfCIN4jrAU84y/QkNamUEug5PQ8Hk09gUX4xnoItkJjeJowcKC6V2lYp\n4T3BFt43LLsCDz3/Hewc3eZt42m07oRCR1eKe0N0j7tyKbzz4hV49OnfM4X3ioI4vYSs8M5lkti4\nZBrzu9svWQHLsqTs5/uNtyChJcXFhWXwJVnz090hv9DuniahaxjtmYmPbbkfPemu8ndO8WvxW64S\n3lXBnfmZwtuneXeyB2aC8jaJaNjiLfaM9+Nk7rdY1E/b+8K8TZKSppzAd74gnbH8KO5YI1UQKTqe\nCUP8PQtSeFslHX2nFuNdu8/DqRNJ/BV+DIDjbeL5lgfvV6ULsEUJ4b2wbz4+dMa91Dbuw+xs9meA\nFFGPaiwussKbB8skKeKsGWdUdT0PSxOaKioxY+iEyyEA5DPldSs65kL5edeENUPlwqA371uKGYOd\n2HfmGHNfZrg0cVMGxxdjLD/KPNZfjCEKPAHbfXwhbllxLd4y7zzu/sxXf2LRTdQmOysiaXrQILtQ\nW2/K5mm+9KZMHJaOhKYjn+mhMkSyvU34mnelkNkixznCmwVPKLqv3uTENDdve6dsmr6Oc0w4sjVL\nAueuso+ki6XUHLHmXdGZPLMJY7InPgv9vJXwlmPvnF1Uqsn5M/L4wxs2YhpnoYQ1vMiuzll9jD1s\nKD/vqDZvrhKmY9ngYkoY2/uLbd6U8A4RxuTkY1kaOp06lLIZ7aqFL5wdQSupeZMlyNIp0pRV3mVu\njz0Br/SqHVUPGXBzekLeRsvX0hwtj/h+uHMInzzrQ7hi0aWiQ+pCYFG7Qvxl7hqFFWLzBoDLdi2Q\nOhdp8/YT9iz6z9EIWtps0pPuZgpSrm05xGwiu+hXa5s3D3KGZ5lqZMPjAffhLEdYLh9cgvPHdlNv\nLnWFEx4vAzlJWaVyylfSt5jUeNZOW4WBXD9mupGLNdAK/TZv2QeHp6V59lWf0OxM8T006ikYqhnT\nlsVeT2oIITZvADh73Sw8/cJBPPPr14X7uadhac9UkI7vWSTfOlRuE2nYI4avhYq9TUQaNRXNGFkF\nquy4sNmedA8La1MmkcKpol1Q96pzFkHXdOwd21VRe2qCP8JVokuSpNmkpHsPF+lt4w+iGMuXA2Rq\nIVdIs8nEZMl7cO5Ze1s57QCDsLc0Wf9qAEhzMv3Vgqhvk7qmoWhZzTWbSAhMmfaJNe/gfqznuYGK\nd2sLb+6LeAWaN4loIZIUjtEHOu/kHO0sRCCzor54ZJIZYNzOiT7QI+9/WytCw+MFO6RJs4mV8H6r\nqE5irXEXLF1N+dRTW3HuptncNRKvXZz74iaSqsS3viuXwtuddR0e8rVeaao1BTZNdsOSEpgy7RNr\n3sFnbf/O+fjsXz+F8zfP8b5TmrckvIHKe2DckF0SWaEcJbBHGs7IotwTmbO8fJvIzHWVaHu1xt9K\nmZ4MaN6Mg8SvztVLltndtvvoummr8CgA63QH+jL8NRIXns275CUDq+xebFjM9obyM/7rpbhu7xLp\n80b1oNIdH7pSs6S3ZqGQD4/ilNK83Tc6lvAm93P+WzKnH197z5uY52gELS28ec8k6zk+f/NsXLA5\n6IVCO9/LaUGRg3QqfKcKC9KhQ8LDzCZl4V2tW1gUwp8dkbcJ7SrIQvTQRNVGSVYWluGetbdhZvcI\n5ky8iof+6ZdYu5BfxNZrV4jwrvVE6iaCyh2bizNG1ksfF1nzdvq9WQuWmmZh1rRwX3GZucVVAMI1\nb4GroFqwFHPj8qvwvRcewbrhVczvWYJu6Zx+YR1G+zi5AdyoBcswzZrlHseDTPjfDOHNXbHUqG+Z\nUF44ls7sf6HCUwO5YtvRbRPJ1pUj0gmXeAuWnuZd45QE52yag1+9eAg71gQDzUREHdNuvzfP5G1h\n+kC4GVCmedILliJvE6V5i1lVWOYVOGDB6lu5JPKSyXmi5jbhbL9o27zQ67A170oWLJstvG387ZTp\nS7+rIOtW1lvzjkqY5l3re5FJJXDlbnFqWRZRJxF3DDZ6wXJJv4FnXzeRHM8z/bL9VGI2CXMVFJmY\nlOZdJawOlFlISFiyOY2jRlgG2/DZ27Zw8y/QmnfwmoO9Oea+LOJi8w4gobmRQTq2q6D4LcRP80S3\nwOaN+phNohL9bdIxmzRYeF84/1xck7gKiTPl2i21YAlXeIuDdFpa8zYMIw/gLwD0AEgDuNs0zR/V\nsmHVUKlm5u1Tw1JQ7PNXdi46PD74fb5TPsAm02SzCe/hkenJgOZdwfn9zO8dwy4i90i94XqbOJkc\nRbEFjaTVvE00aOjMyScXk9O83b9hmnc8hHfUkXM3gB+YprkNwDUAvlSzFtWAMBMD/zhJm3ctHzhB\ns8LC40nCMrNlm71g6fzlu3HKh8eT93fPGXOQTSe8VKXiqwN3rbkFywflvTCqhTdWvNJzjXQMFhB1\nTIwM2G6LYalXa02lCpTM3JLw4geqsHk38HZGNZt8FsBp4hynatOc+lFLzbvaV8xkQsNkMVhQgLe/\n/zOLYklccosU3qxCEXWnAs8gP1RWxJJOJby/9ZKVuHTrmLB/mueDzL+/rh0+PmaTaO14+76leOzp\n3+Ps9bNq3CIxlT6BMmNg26oZ6MqlMdQbdD1syQVLwzCuB3CXb/O1pmn+xDCMYdjmkzvDztPX14Gk\noIhtGIVCdQJnYKAz9Bzrl4xIXWdwoBuDnZW3p9uxbaeSOiaLdsTe4GAXN21l7+kO4tgs1TZ/OzMd\nSWHbB4+UiwPPnSFXUbyW9PVk8ZtXjqI/n6Pamc3av13XNam+t0oJjM3so/YdGuoRHtP1RnniqnYc\nVcpBlN3YqGs71YA6cpmatynK+Qb7u1HIV35codCN+WODFR9XLX19ndLtLRS6kfB5mrH6qFDoxoYV\n7GLQva8e9z53dWS5fdx5qhxt++4r1iLfWfv76xIqvE3TfADAA/7thmEsB/AwgHtM0/xh2HkOHeIn\ngg+jUOjGgQNHIx8PAIffOIEDIdVGpudzUtc5dOgErBOVJfMHgOPHxwHQ2tjrB4/h1HH2uY4eKb/Q\nHD8+7rWN1R9Hjp4Qtv3E8fKgqrYvo3D5rgXoyiWxb8sc6vqnnMFeLFlS7dr/poXYvHhI2Bd+jh4r\n92Ojf/vhw+xru5P3+OliTdsU9Vl5442TyIw3flxE5eDrx6Ta6/bHhC8TZKV9dPjwSe/ziRPj3OPJ\ndMGLZ+YjXcsPT/hHXbBcAuBbAN5mmuZTVbSrYciYOmTdpapdZEpSWoDAbCJh89agwYLlFRHmcWzi\nuPD7ejOQz+K6cxcHthd6swCAWQW5pPw7V8+Wcg0jaa6rIPu+FevkKhiVmq7jxJDauDLa0aQiWsFV\n8OMAsgA+bxgGABw2TXNfzVpVD2Rsq3W2ebvmMLr2pGj/8BziCT2BydIklbKUxcbhtfjpK0/iovnn\nyze4AexeP4psOokNi4ek9o8k7Jpp8+YIRStuwjsm7agXjVr3iH1uk9gL6ogEy4WxieoquGzuANa9\ndBippI4fPXPKOZfcdXiad1JLYBKTVNY7Ft3pLrx3/R2VN7rOpJI6dq6VjwaM0vfN1Lx5Hkyx07xj\n4vUiS6X3tFFBRI3sxniMnAYg89DLZniLGmE5MtiJd7xlOfKd5QU0YQWckAhLoDzhTIZ4m7Q6Vy/Z\njwvnndvsZlQM19skdsI7Hu2oF42avutZqs5PW0ZYspDpUtkBXK0mRyd2F+0XHhjgFmSYDDGbtDob\nhtdEPrbmWSArgDem4qZ5N1LoNIUGvnx94uZNXoKweqKEN4Gs5l21b66kz6ic5m3fwjCzyVRm4/S1\neOq1Z7Bn9o6GX5s36boKgChar5E0c4JrBNWG71eisA31NSZffjym/QaQlZgJw4Tye9a9E5cvugS5\nZHj+YBF0EQXRfuFeKVudKtwrGhg12GrkklncsfomGP3zG37tsKjdWmcVjEqrCe9Kbdi7GxxE1Aja\nXvN++76l6Mgm0SWRByHsFXZ2zyzM7ql+EJACmyzlFdgP4WaTXaPbsHH62uZETSpCCRtTcVkojEs7\nwhjMDeC1kwfRl+2t6Lhtq2Zg3kgeH3jw8UjXjePk1vbCu9Cbw9h0cQSeS6PsfrIDgaqbySuVpmlK\ncMeYMKHYbJv3Tcuvwq8Pv4gOQeHjOHH7qhuRSWaEhZp5FJyw90WjlQl+wDGbWMTnGND2wjuOGoVs\nk6jq8DGc+RXhhGvezRXeKwvLsFKQGz9u6JqOrhS/hqeITDqBL9+9ta6FnBtJ2wvvGMpuaQ1fRvNW\nxJuwaNxmC+9Wo1qtN5tuH5HX9iMnjkJPad5Th7B7HZesgorWo+1HTgxldwWad1lLiOMkpAgnbNKN\nWsx6qkKW85vqtM87BIc4Cj1LstJ2Ulead6sTdt/iuCYTRz6y+f04cPJgpIXK2mHfK7Vg2SBk8sTM\n6GpsfuuJolO/MKRxSU1p3i1PyG2Li5933OnL9lbsHtjutL3wlhF671sfWkuipoxP2MI7lRS/MieU\n5t3yUCXcGMQlwlIRQjyUbYopILxl9mnsA+Rq3mHCm1qwVJp3S5JJpHHjsisx1FFgfq8WLBVRmQLC\nO35Cz63qka5A81YaWuuyamg59ztdMg2xQuGn7af9OP7A8UlX8xY/uJQPcAwnIUX1qEm5BYmJCSWO\nsq2mxFLznpQzm5Aom3d7olwFFVFp+5ETQ9mNiUnbbFKJ8FYuZe2Jsnm3BjOH5GqsNpK2Hzlx1Lxd\ns0mYzZtEad7tRV/GdntT7m+tQaE3h4yTE0X5eTeIBtYDlWZC0uZNEsdJSBGde9ffjt8de7nhMQaK\nKojZI6g07ybgFtzdvmpE+hilebcX3ekuLO5f2OxmKFqYtte8Yyi7sWX5dKxbNOS9hsmghLdCoSBR\nmneTqERwA/H9HQrFVKEnZS9aZmOSHKvthXccbd5RUJq3QtFc3rHyOmyevgE7Rrc2uykAIppNDMPo\nBPAQgH4AxwFcaZrmgVo2rHa0h9BTmrdC0VymdQ7h8sWXNLsZHlE17xsB/Mw0zbMAPAzgvto1qba0\nj8yLh3uSQqGIB5E0b9M0P2cYhmu0HQXwSu2apGBRtErNboJCoYgRocLbMIzrAdzl23ytaZo/MQzj\nXwAsB3B22Hn6+jqQrMCv2U+hEK1C+uBgFzqy4rScrUBXd4bqg6j90Y6ovqBR/UHTrv0RKrxN03wA\nwAOc73YYhrEIwN8DmCc6z6FDJyI1ELA7/8CBoxUdc83eRXj+xUM4duQkjh89FfnaceHQG8dwIGX3\nQZT+aFdUX9Co/qBph/7gTT5RFyzfB+B3pml+E/aCZTF60+rD1pUj2LpSPggm7iiziUKhIIkapPMg\ngG84JpUEgGtr1yQFi5IVu/lRoVA0kagLlq8A2FPjtigEKM1boVCQtH2QjkKhULQjSnjHnDtX34xV\nheVYXeCX0lIoFFOPtk9M1eos6JuHBX1CRx6FQjEFUZq3QqFQtCBKeCsUCkULooS3QqFQtCBKeCsU\nCkULooS3QqFQtCBKeCsUCkULooS3QqFQtCBKeCsUCkULolmWqtCiUCgUrYbSvBUKhaIFUcJboVAo\nWhAlvBUKhaIFUcJboVAoWhAlvBUKhaIFUcJboVAoWhAlvBUKhaIFiXUxBsMwdABfBrASwGkAN5im\n+avmtqpxGIaxEcAfmaa53TCM+QC+DsAC8AsAt5qmWTIM44MAzgMwCeBO0zQfb1qD64BhGCnYBa/n\nAMgA+AiAZzEF+wIADMNIAPgaAANAEXbxbw1TtD9cDMMYAvAzAGfD/r1fR5v3R9w17wsBZE3TPAPA\newF8usljSUkbAAACWUlEQVTtaRiGYbwHwJ8CyDqbPgPgPtM0z4L9sO4zDGMNgG0ANgLYD+BLzWhr\nnbkCwEHnd+8F8EVM3b4AgAsAwDTNLQA+ALsvpnJ/uBP8VwGcdDZNif6Iu/A+E8A/AIBpmj8GsK65\nzWkoLwC4iPh/LYAfOp8fAbALdv983zRNyzTNFwEkDcMoNLaZdedbAO4n/p/E1O0LmKb5twBucv6d\nDeAVTOH+cPgUgD8B8LLz/5Toj7gL7x4Ah4n/i4ZhxNrUUytM0/wOgAlik2aappvL4CiAPIL9425v\nG0zTPGaa5lHDMLoBfBvAfZiifeFimuakYRjfAPDHsPtkyvaHYRjXADhgmuY/EpunRH/EXXgfAdBN\n/K+bpjnZrMY0mRLxuRvAGwj2j7u9rTAMYxaAfwXwTdM0H8IU7gsX0zSvBrAQtv07R3w11frjOgBn\nG4bxKIBVAP4cwBDxfdv2R9yF938AOBcADMPYBODnzW1OU3nCMIztzue9AB6D3T/nGIahG4YxCnty\ne61ZDawHhmFMA/B9APeapvmgs3lK9gUAGIZxpWEY73P+PQF7IvvpVO0P0zS3mqa5zTTN7QCeBHAV\ngEemQn/E3QTxN7Bn1f+EvfBwbZPb00zeBeBrhmGkATwH4NumaRYNw3gMwI9gT8S3NrOBdeL9APoA\n3G8Yhmv7vgPAF6ZgXwDAdwH8mWEY/wYgBeBO2H0wFccGjynxrKiUsAqFQtGCxN1solAoFAoGSngr\nFApFC6KEt0KhULQgSngrFApFC6KEt0KhULQgSngrFApFC6KEt0KhULQg/w+3++dyASfgUAAAAABJ\nRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD3CAYAAADSftWOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXm8HcdVLvpV9x7OPpN0JB3J82xvx0kcx87gkJHhQQhzHvAIcOEyPx7vkXBvLpAQLgRIIAMZIHFCBhMyEDI7hITggOdBHiVZsqQta7RmnVln2lNXvT+6q7uGVd29zznb0pH2+v1snd1dXVVdXbXqq2+tWsWEEOhJT3rSk56sLvHOdAV60pOe9KQnnUtPefekJz3pySqUnvLuSU960pNVKD3l3ZOe9KQnq1B6yrsnPelJT1ahFJ6rgsbGZpfs1jIy0o+pqYWVrM6qll57JNJrC1167aHLudAeo6NDjLq+KpB3oeCf6SqcVdJrj0R6baFLrz10OZfbY1Uo7570pCc96YkuPeXdk570pCerUHrKuyc96UlPVqH0lHdPetKTnqxC6SnvnvSkJz1ZhdJT3j3pSU96sgplyX7e1WrVB/BJAFUAAYBfq9Vq+1aqYj3pSU960hO3LAd5/wQA1Gq1VwL43wA+sCI16klPnmPZNbEH9x156ExXoyc96UiWrLxrtdodAH47+nk5gJMrUqOe9OQ5lo9s+xS+tOeOM12NnvSkI1nW9vhardauVqv/BOBnAPxsWtqRkf5l7XYaHR1a8rPnovTaI5GVaosNGwbBGLkTeVXIQmsReycO4prRK850Vc4qOVfHyrJjm9RqtV+tVqt/BOCRarV6Q61Wm6fSLSe+wOjoEMbGZpf8/LkmvfZIZCXb4uSpGfje6t1O/dePfghH5o7hT172P3DR4AVnujpnhZwLY8U1+SyZNqlWq/+tWq2+Lfq5AIAjNFz2pCerUjhW95GAR+aOAQDGFyfOcE168lzIcpD31wH8Y7VavQ9AEcBbarVafWWq1ZOePPciBD/TVehJT3LLkpV3RI/8/ArWpSc9OaPCz5HDuM+Nt+hJlvQ26fSkJ5EIdAd5i3NkUujJ2SU95d2TnkTSDeT9T9/djd/74H0IeI+S6cnKSk9596QnkfAucN73bj2GejPAQr294nm7pYf0zwc5r5X3k6eewtMTu890Nc4pqTfb2HFgYlVSBd3kvFdfa/TkbJfzWnl/esfncdu22890Nc4p+cS/7sQHvrQNj9fGznRVOpZucd49oeXB7cfx/3zgXkzPNc50VValnNfK+1yUM414t+0bBwAcPjV3RuuxFOlq2z2Hn2W1oPxPf3sX6s0Aj+0+daarsiqlp7zPIfnsd3fj//vQ/eD8zA1fL9pefqYnkaVINzhvKSvdHrPNOTSDlquwFS2rJ2ennLfKe7I+daarsOJyz9ZjWGi0sdjsrnFs+/hOHJg5RN6ToUFWo890N+u8kvNpwAP88QN/gXdufu/KZdqTVSfLjm2yGmXX5B58ZOunznQ1Vq18/KnPAAA++gO28ggDO4lVCf66yXmv5GooiFYI040Z8v4qbPqeLEHOS+Rdm9x7pqvQVTmTcfHioHyrUIN01dtkBfMWq7Fxe7Licl4q79Uc9vNsF9m2q5M26SLyXsH26GY9z1YRQqDV7sW9U+X8VN5nFJt2X7ppr8xCkB6T6bpXh25JNxHtSn6TrG9wLiLzD3/1KfzO++9Fs9VT4FLOU+V9bks3PT2yFIOcGM925H1sfN5SBF01WK6g9ubnoT/6U/vCMLcz880Vy/Pk5AKeqK1eN8XzU3kbtMm5tgztpt4MMtqKxcj77FXeJyYX8I5PPYL3/8tW7Xo3Q8Ku5MSw1LatPTuFuUWHe+GZlA5eZyV71ds+sRkf/cYOzKzSTULnpfI2sXfAz62lWFeRd6byln7eXavCsuXEZHiq096jurdGNxHtiiLvJTTu0bE5vOeft+Av/+mxFavHmZBu9O1WsDrB23mpvE3aJBDnlvLuJuedtUrxVgHydtFm3fU2WcG8ljDJTJwO0eXY9Co/L6ULn8j3PNz+nV3498303oWzVc5P5b0KaJPt4zvxka2fQot3vuGmm4ozq61i5K1c23lwEndvOdq1OnUqLmejc8Xb5GyeOJcr3ZhgGQMe2XkSj68y/vu83KRjeptk8bhnQuRGmJ0TNbxo9PkdPdvNsZs1eOIdlgr8l9zy62666Cxx06Tr0NVJ7zmkTVabt0knte3GJxIi/ParLeR6D3nj3KNNuqmEsg2Wbs67m7REoxVgfHoxV1rPMX90dYdllwyWFArvIe/ORAgRK/DVJOel8j7XDZbdBBBZCi6N8w6C7g2OP7/9Ufzhxx/GfD2HN4WTNlklyFv5Bm2i76425N2JdKMP8Uh5n+3uraac88q7GTQxsagHoTrXDZZdRd6OteXE4iS+d+ieuHEpXRV00ZJ6cipE3aeX4QfcXc575fJSPX7ahE2Eeo+zgq1aAekO8g4nvFWmu899zvtdj3wA4/VJvP81f4FKoQ/A6jBYLke6G5aabqsPbfkHTNanUB6+BZgZBcVkdlN5dyIu3r27Oyy7w3lTwGO1Lf876bDd6EOih7zPThmvTwIA5lvz8bXVYLBcjpwJb5M4xG6hEdWBePY5UN55DKJuV8EuxvNewXdXJxkKeVOT0CrTS07pRh+SWZ4l2CK3rHrlvfvQFLY8k33kljowLYPlucZ5n0E/bzARpVt9yLu78by74ypIuZKeaytJVYIV2lCjGX2jfrmSE+xzIUtS3tVqtVitVj9XrVbvr1arj1ar1Z9c6YplCRccXHC894tb8Pdf256ZXv1YNvI+t5R3d5F3kvfbPrEZdePgBxYpb8qw5OLLn2txIe+ubo9fwaxV5UzSJqvMYNkKOA6dmM3Vb4MV6tttZRKQffp8oU1+GcBErVZ7NYAfBfCRlatSPnnn5vfh7Q/+Ve70HKry1uW5ok32HZvpWmyJI7PHAD801lF9sNEM8Pk7azg+MW/f7EDUtjo5uYCpWSMuhBcW3iYQ0tmCvF214KuE886kTYiyzmaD5dfu3Y93fuYxbN8/kZl2pWiTVltR3hJ5nyfK+ysA/lT53d1ztwgZX5zAbDP/Ibc6beIZ99KRtxCCVEadyKnpRbzrs0/gnf+48rEl5lrz+OvHPoS+G+8HQHfCu548gruePIq//dJW614nYqJT2fHj1YxE3sQgyzPw9hyexoHjp5dVxyxxDdLuIu/uGCwpV0F1Egp4gC/VvoGTjWMrVn63ZP+x7O+eBwA8dOwx3HP4wdQ0zTaFvDOzBhD2n/HF7Imm27Ikb5NarTYHANVqdQjAVwG8I+uZkZF+FAr+UooDAIyODi3r/tq1FYyOhGkGp8ravcHhcurzf/7Jh/HE7lP45vt+Ep5rh0eGnIhiS0ycrmfWVZW1aypkevVaazYMtMSKIapfs7bfeoZFbT891+yofFOmvT69fiMDGB0dgu/5aPM2vGhe9HzPKmd4jV0vU379b+4CAHzrb38qd53UPNevG8Do6GBq+uHJZDOP+uzgUHo/WI4MDfetWN4TSL7B4HDJyndgILn22NFtuO/owwAeBvB6ANlj5UxJf392+w8Mprfj/sln8YXdXwEA/NzN7vcNvATADQ9XAISrkzxt86Xt38LXdn4Hb3nFb+L7LrslM323ZMmugtVq9VIA3wBwW61W++es9FNTC0stCqOjQxgbm01Nk3V/YnIOA+0wzfyc7gs8OTWHMd/9/BO7w5gHh45MYbBSzFNlS9T3z6qrKjMzixgr6enN9pic11cgk5PzGCvrE+XCgvQCER2Vb8rkjF7WnXvuxl333xmvbHiEBBfrLauc8fE5DBTyTX5562i1xeQ8ihn0x/Q0/S2mZxaW1TbpZS6uWN6TU8k3GJ86jTGm5zs7m5Q1MWWX2a13XK7Mzzcy6zY97f5G+2cO4W+f+Gj8e2xs1qk7To4n9OFkFGWy3ea52uaufQ8BADYf2IprK9dlpl+uuCaUpRosNwG4E8Af1Wq125dRr+dM1F1pS90eP7uwjEDwz+EBCXRRK0N6mkbH/zzxXY2SEgZtom/lPjs4RXV5rNVvBTnvNm/jf933ZyhcWovKTPKeby3g9h1fwLG5E0vKWxi0iCnqe3hs9TiU5Wn9NNrk2NxxPb+U/tZaBm1ytshSv+zbAYwA+NNqtXpP9F9lBeulycPbj+H9/7Il9Qy7zKOhNG8TXfIaLGcXlm5s7Ga/MPNObYtlViRre7zkjaWNQNtQ0sXt8Z2IWidVEa6kwWqiPoWF9iKKFx4Iy1Q0w38cvAtPnNqGf4iCj1FydGwOn/zWTizUKVfA/AZLb5mWygMzh/DF2tfPGnfaTmwH7RRQpsbwpoDGapClct5vBvDmFa6LU979mdDIt23vBF5y/UYyjRDpFvU01MdzdszlIO+u7no0MqfKWilng7wR7eSAUBX2c+EqqNau1Q7wjfsO4LU3XYRN6/qTNIJW2CtpsDSVndpuTR6CgHrgPsHlA1/ehqnZBkbX9uGnX32VkVf69vg0t9hO5f0RDfGC9dfjhRtuWFZe2ZLDVTBFeZvv2grc43UlkPeZdslcPWsqAItNt1NLllJRPUrM5XFe5H16Wch7aR86z3Pmpoy0tlhud8tqK4nM24HtdfJcuAqqiuvuLcfw3UeftTxs1OZR23clT9IxqThXmS6RqzxVyVDPU+iyG7SJOhkFPMDndn4Zz0ztX5G8pcg2OjI2hw9Gk5ddj/x9SE6SlFCugmcLrZdXVpXyrjfcCDlrOaUpHWHeO3uRN7WU45zj87u+gtrkXgCUougiv55TecudcOpgWyl3udPNWecyXi1iPvKpH5/RT49xIe+VHLzmN+E60Q4gHRXLelG7QbORt9stthPZeXBSySepx87JGjafeBwf2vLxJeedJh+7Ywe275/AN+7fj0Yz0JQ45wKTp+t49+eewL5j+jF2ZnO2AjfYUynYpfp5L3dVs1xZVco7D/Ien1kk/YRV5W0in9zKe34ZyHuJeoEyou0c24OHjz+Gv9v6iTCNoVDP5AHENm2iKpqUFUHOSs815/G2B/4SH3zyY66MMvNwoeCVnPRM/2tyYkgZ+zI5RQXqgans76Ej76UrmN3PJtE4VUWllvnNff+OAzMrc3yYfC1pL2kHHG/7xMP4nx9NfLYDLvC9xw9j79EZfPBL21Lza/IU2iQgkPfZsQE4t6wK5V0qhm5vi40U5R01/B9+7GH85T89bt9XFLSJHrMUUqkYNtPs4jK8TZZKmxB1a/P0+ndzh12nyLsdZCPvf33gAH7jPXeTxjlTJhuhQjlw+llH/dS6hGK+eqj8BOA3NUWYRpuMTy/if3zkATy1bzyzjmEZbuSdpyekIW/1G2QdxrAcdKg+q9Ivao53Hro75sWXK3IiVQ/0mDbcegPO0d8XuusuGPrA4rxTaBO12WQfWG0Gy1WhvAf6QrvqYhptYhnthHFfRd7GsxkGy6IfNlOj6U536MRs6tbzpTIGFGIzx7NlHFtaUbmkY+StTDQuvvKOB0KPjP3HZ8j7RgGd3zbaiwuBwkX7ULnlLtSm9irX3e/2X08ewfRcE7fdsSO7jrCNs9Srp9ImxToAYZ36wwXXd1CSIWGTslWl6w1OAX6i0GqTezFVn3bWQe1nOv3SJbogXm1I5U1RhgJD/a69Fnq9moFbeWurly5y3k/UxvC+L24hbRfLlVWhvPsj5W0GQVLFRHXmZ0inTfId7ZW27H/nZx7Dn3zyEbteUQCtpc7qZGD9jMBazx3nTWkk3UVQN1imt3M7hythlrFPf3c6rRBAIXLh2zG+0/Gs/QyQL+QsALSF3lf1/pn+DqcWxlF58T0oXbNVoz1u3/EFvPmet2tgg+ofrjg+5RseQfmGzQCA2eYc/m7rJ/COh97trIf6rp6GwrujvGWt5YTlOtCjv0w7yZm1SkXeSt4J8l75sbN17xh2HZrC1Gw9O3GHsiqUdyVaJi0LefPAeW/P9L7U8mVnWko4ync9+kH8r/v+fMluHkvxNiHp1RUacHmRt9TTmqtghnJuE+hkod7GW/7uftz95JFc9csz9oQQcQwWdci7Bu7cYgvPHJk2UqeL/U1Ubt0sWZdnTx8GAPjrTmro94lT28AF17wosmgT8428Srg6bKS4KUpR65fXW6rF20tXgATyZgPT8Dck355z4UbIRh9vpSBvKiSsUoWc1c1OXY9W632llT/3ZlUobznTphosTeRteZS4kffOiRpOLbi5TJk6DXm75MT8SdSD+orSJlkG166GhNXKdtdNEMg7y9uECv6169AkTi+08Lk79+SqX54BFVbN5pRdnPdffOYxHDg+G6XPVQ1rkuPkioDObNuBk/Hf1KSrGkNpg2XG6gj5XAjVorXAbo56t4IW3nLP2/EP2z+TmXeucgXQ9/zNKF21A/DCdw64flxZWl8/ddoduE59Sl0QrvRhD41YeS89rpNLVoXyrkjlnWawzNiooilv4oMvtpNgRfuOzWCHEp6SE54TncsSDZaEQjE5bltR2Pms1EJXo03ITHXapJ2D85bSIttXLySbNqFyMI+9S5C3prwdqwrV1TCvAdB04aOUgms1tHn3MSUNkbdCyWQhbxdKzeX/rRSu9jFXvU9HUT63j+/C2MIEPvDEbR2FAIgNltFvasILlXdyXTVamrX62v3PuMtytFEnuCdPX6g3AzAGFAsrr2pXhfKWkfzSlbf+2zZYKrRJRnnv+uwT+MCXEzckqXTycLIumTidvUylhBp8lhsaXzryXmzX8Y4H342Hjj2aK32QwXnL2CZSZ88156EOvNS8ifY19UTWq+mozJ1G5qsOwDwGq7zI23YVzPccADAveXZO2KFH1YmBVN6q+6OT98/xrsrfeZC32jZf2/st7Js5iM/t+nJmOUmdZD5hRk2CRuNcaEh5PsVDiadEqtY4b5492ZF5GG07M99Es6V/93ozQF+psGK0pSqrQnnLjpamPM0jjFINlsoHKnnFKL07b8r41qn8y3+5UUCa0K6Ceqe0XQWJjBx9Z9fkHkw1pvGF3V9dcn2MFADCNpttzuET+z+EUjV03cxaklLI2+7znRgs6TzUAarxujl22uY2WKYg78xe5CcK4L76lxBwjvf+85PxNfXoM8rbRFNArgksx0pQp02ScpzKW7MfyLbsfMzIcusqWFMCngnHDG3Wi3nu7+lG3ksb4wHn+IO/fwBv+8Rm7Xq92e4KZQKsGuUd/ps2+DtzFVRdqXytDDLvGHnTnaGrZx8Snd9EdcvhvNOMOpRoEwUjylGunVoIzxb114ToMWvyo46mMpVl1pvleXO9eVTOe+W+o+VtohkR08tRkTcAHBtfwO5nE5e+TOSt+a7TZZl9ttkKMHla94hgHdImWh0yU7hF5l8nXHMDw2CZ2tW9NAcHPc/4egfMqDpZNFvhg+aW/kYrOL+Vdxw4hhz89D2b86ZpEz/m/ty9gNotqNVvicuuPEIpYht5u+NoSHENN1PJZNcny61SbQv9XqarYNteHXV69gXl1ZGWhjmuuyRvfcxvRNkrnZyplz4Zq3lTbarvGqXb3Mzzz//xMbz1toc0alLV0XnaJk/fb/E27tj7HdJBQD4u21hzUIjpOE5uxCIlBXlr5WqroqUib/q5ejNAudgd5b3y/itdEPmx0g4fzeS8OU2bSMNNGjcYb9t1fCA1v3abxztCV0KowWfGbEj3bIjEgZaoY7TSpBPkbU6o2QZLHQGFe6PMemfRJqm3iTTZBkst9VJpkw6Qt0qbZOXNRYCHnz6Be7ceAy6U19yeVcl1/V1PRAcSnF5oxg4Cri3xEmWaQref3l73HnkQ33v2HuyY2AXgxUadhPaMHstIwF9/DKeFDyGSwwm0iZiZtEk+1+KDzZ0oPe9JNHe/jASIQojM706f2crRavPzG3mLpSBvI5XLVTBW3kTWXOhLNJefsgp+lmPUJPMmaROTT81G3i4JiMBGYR7C8mp5cPtxnJrOOBGJub16MoOHEbSJvcOwc87bFI1/VpLniiqY11XQMipTXLyDO7aQt36/ZdAmn/zWTuw5PK2kXzpKVi+7OO/TC7TxPU/7jUVnP5Lnz6Ygb+ZxlK5+CrW+bxuHaaQURoEL4rltzbvgD03DG5ixQODUbAO/8Z678e2HD6YURO9RaDTDa93w8QZWjfIO/6UGgL/+OPyNz2a6CmqxJnIi79CyraDqLM7ba4enuK+g0LRJuqsgabRz5O9C3rdtux2/f8/bNDT16W/vwr1bj6ol2Q9qtEmnyJtQ/B3TJkSVLI+V7BWUS/JWp5XCeWeKZ3qq6N9Xo00yvE2cSjqHF4rL24Rqp4ePPaatEl35z7fCyX+g2G/di3G3l8Q2se+6DYw2DZWmvNPf//CpORwdn8fTB8LIil+7d78zL4A2tssd4ec18k7jvEtXb0fpip3WPUtxqMF8lI/qe9JgSSvvQFPeDuQdPVu6Zhs+vP0jOBTtkNNFxP9+ZOun8NCxR/HZ7+7GY9H5mC6hlqJL8jZxiGsL8c7J8PguiSATZapCM+JBpg4s/Va2wVKnTcIiOtPeOrXs+l70A/lcBfPSJlG78UgR5TSEBTyA16+fo2jWK8tgmYs2cbyra3WkjR/i2c/v/grp5WJ+v4UU5Z08Q4jarxwrp7RnrKIct+T7/9ntj+JPP/VIajA6La46oRsakdtg+XxW3rKjyeahOo91zULe9OhJM1hyofuUugxu8oP7a0Pvin3TB6w03shJ+BsPgVXmsGtyD76w+6u4Z+sxfCwj0FGWn3fAA8NgmbJ9mJBnjobIwmd0B0t2TEYXmEPzEdesCbSD7fHCMZIzoxrm8JPUD2BQ/87DeWcmAaAoWBE+QHHeVFb3HX0YrKgrDLMdVdqkxdvwhiZ0ukr9Li4l7TRkKmkYHUPF1b/I0MrGS0rl3V9Qlbcc31G7UI3sMISnT9YpytuxajRf7b6t+VbSuqcUx77pg5hvhN+xW8h7FRksE/RNKm/L28RE3nRsk4Q2sYXzcJnnjz6LYPxiCOGDcxFvGjLLFoKBMRHvNFOlfG14mkt9+yvpl3RIlp93IAKD87Y7YJrsOjyBwgVAwaM7WHwq/JKQt7EacqA6xsJv3CZiLJuSucPS+UO5rFxvazFvcijvzBQyX6m8w/5Fu7fZuR0kQt2aoEH9/lvHtqP8PKB5IDmiLI+roHtVon5fXSE1mgH+/utPYf0ldPRHtV6u/Oci5d1qRP2tWEflxfegdfhaCHExAIdHj9qvQPcxa+JO+Vj0GAl1i5rP3KLblZaBod5sY6He1qIGbj7+BL6w+yt44fDNADZ2zdtklSBvoO+mu1G+YTMCzjXPESnmWLfc1DTaxA6ZSdImQuBbB7+D0pU7Ubg4DB1K8d5xWa0SAGC25Y6p0KmMn17E0bGQf5OiKpw2bxseIA7O29WRo0FRYPQ8LpV3kmc68mapnLdj9RONVi1AfvSo7a+fobxzuApqdoyUgGWUdOxtIpE3wdVQOa3rG7HzCnRES7l3spJy2kwGP21eV//WfJ6VfALB8eiuk9h5cAoP7qC3vLcI47dFm7RD5f30vvDAFH84XPkVL33G6dsfXlQpNfob50Xex8bn8URtjLwnhNAokCyq7w8/9jDeettDMUUCAPtmwpX3gflwY17B746aXRXKmwsBVmrCG5xBOxBkg2b5EGvLROVxGerSDKgEhJ1kbDH0Ry1edADe4BRZdoy8W2UADks6VXgOafMAt92xAx9X6BWVp26ZtAmjsRY1hhvNIEZXBc+lvOWKB0ChgeJFNiWkSYqf9ynsw5dqd1iPyJWMSqsItVxFMhWsuuyPlYE7jzx0wFIkPluSQN5pQqUzPVcoJakaOUXGBAvoAEbtP9o30GiTIPMdyHoZ0pCHAst+omSZqigdtpTUk5AcnPc7PvUIedoWmAAXQFM5Ii3Le0wic9U/PqlH2PG6FEF3dShvExnQtEm6x4Ue20RdGhJBi5S/+/2Emyvf8IgDeUvlHSHv5qyVJinP+DkwjXuPPOROzhgWGm3MKss3PapcO5efN9UFZxea8UYGl/IOFNqkeIm+xZ9l+HmrNEThgv04ULoX9x19CPVWHe/41CP45/8MIwX6XtgNqaOprO+YMfm5ds6pIrQ06sHU2bRJ3ljWEnmLGHnneoxcVZr7C6hzK5lPKY98yFvtPzp3qypvPWIKJW0FVKQdXKLnoWypj96T3ghFr+jSkXfnIoTQ6p43GF3aYQvdin++SpR38ncQcBJlWwe+pizZKXcoypecc4E+v0/Lh5qJ47J4yG1RnHdSoP583/M348t77nCidc8LO7Ua8EYdvCFtYiBvog9Tg3h2sZUDeSfeJqzYWXAttcjiZUlI10AIHBufx38+HsZplrSJvsPSziP87R4krDyPxXZCL8lvaQ4d/QzI9IMN7EKykwDKpCBsWi4xxtqZURNvy6RNKISrKG/dCJvNeQfajk1aqWtt40C0KvJ+5mhG/HMmJ2d1I1BCm3hrT6FwQbLKYy7krf2t14sEF2nCQtdglQLJm0OLMLbHlFGXkPcqMVjqyJsRCMlCxEaru+N567SJGX+6z6/o+VB8e/xM+G8zcLsXMUYjEtchyALhUk7tHDrnbRgsHZw3pdBnF5px8B63wTKa1ASInX8kQaM8S2ZpIWJJm1CxTSz/fedwEuh70f347NH78fLqe8ly4pQa8s7mh1XJOw6zwIQrL2oCma/rRjMaeaunoWdPQmp92iptoobwVbj1zccfx0LrQZSuGwJfHCTzpGkTR4vFtImyw1VOtoyhfN2TRvqkXt98IFHq6cbZzpE4F0DbsYPUlKQvCkw2xqPymD2JdEl7Lwt5V6vVl1er1XtWqC5O0bwDAk4qBYs6MO67aJP41A6ZjxGnpOSV9XJI5C0zSzqfU3LEW+AG4pH+5vGp2iryNmmTDpD36fk8yDuhTVjJOMopizZxKBGTw6UNlg7axIWOWcqkanLeKursEHnnNViaylo3shnILOU5APjC92rab1JJKsh7x4EkjKybNlGUNKc5b7U9Zpqn0RIN+GvHUbzwIJlnZ0HObNokUd5EcgeKVq9SnPe/3r9PM/Zn1UkIHXmnieS7/U2H8F9auCMgAAAgAElEQVQLX4C/6ZDMJSw+erdO4/PklSUr72q1+ocAPgWgLyvtcsU8LJRCv+ZOwSSwUfiKrpCwsoFlZ9aVt7HcDXyS8949tROl6mOx0Sh1pnUobxdPKUTC8cuYEibyVhUQYw6bAIW8FxXOO/I24Vzgw19JYplLHlhwAVZe1DMgB5SAt/YUilc9haMLR4n79kQb0yaawVL/N7nuQFNKu77lnrej3m44kbfmu6/UJe3MQyl56UszdghZFSIvOi6NgKqmSOTtqVQavSFNr5+an9qf1Imts6BlbaL9srycNORNz7V6ekNSzyxlwCfv2IE//ZR9tqwUf/1RLT0XworJ7ZJte8NJ0h85qf2rZYj8E36nshzaZB+ANwL4XJ7EIyP9KBSW5u+oIoDhNf0oFu0PWRkoYnQ0CVizbmQAo6OD8JgHLjgKJS++33coOX1annCxZk0Fo6ND8JWwmB//7qMYujY5P0+0yhgY6sPxmTqed8X6+Nmv3/UV+GuSuviep9VFFVewnEKfHz+jIphiyYu75NCaCtYN9yHYmQyqweESCiV1DhYYGChb5VcqyTvH9zwvRqz9feEzB47NYNu+CVTWh0nWrq1gdM0QWNG3OUQH8i5dtR2s0MKWKfrQ1bVrQyrK33AEH93+SRSLLwhrLtQ0/RgdHcLg0cQrYHR0CIP1svY7/ldp1xZvY6E4g1IUU4IxprVHpVIEIjCmskXC51a7mZNFoeA7v60qfkHf/FUsJs+Vo8BPvh/2E4k4PY+hVHaMEaYqVaIP+aqiFXFZQ7NlK+no6BCOBwnmGh5J0vQrfafY5wOL1uNOKffb6qQYtdeD245hzWApvk7x0bJt+/qo0+Fp5b1mTX9c34Fp812TZ+hvJlC6erv2e82afrQE/dIyD9+nN/axQgvFK57GbDusv+eHSntwyB6PKyFLVt61Wu1r1Wr1irzpp6YyAhqliIpG/uHr2zA04AE6FY3pmXmMjSVeHuMTcyhCxLN4vd6I7y8sJoa3dltEzy9grDirxTQeu+A7ULKEaJXwhX/fhSdqY3jDrZfjZ193NVlfIaDVRRNieQ8Ax0/NYAjhB1Y583q9FS9lj5+YQdBoaVEFJyZnsVhXOHYmMDdbt8qfn0/SyHunZ+sx591ucYyNzVrfaXxyFuXmIMZniO9HrSKYACuEk0+zTSPZUxNh+aWrdmDnGDBYvBRAKY4FAQATE3Po88LvotZ7xvg9OjqEsbFZK/D+s0ensSC3NhvfY24++caNZlLHucVFq912HZrSfvOAu7+tIk35LjLIUr0VP9eI3MqCKK//+dEH0Vfy8a7fuhWLxHZsxoSGlJsEPaF6m4AJ5RvbimhsbBbTSoCxsfFkgty1bxxTUwt41Y0XYm6hszE7pZ0ZGda31Q4wNjaLv/nsYwCAysuMhxTkXW+EbdRstoEBI50DeU9NzWNsLJwUrHdVnqG/mQ1GJifnMT5FK2+Zh+WBEpXj9c/B659DLWKtJOZcmG/m6jMucSn+VWGwVCHZjv2TgNdG5SV6EldMa0bRJko6uaKJT+tJ8zUVDDsPhpsKnj44iZ8FrbxTxYG8A8MtK7nO47pRtEkjaOgccuSralWdWI632yKeTJyxLoReZjCzHjdffgW2TT8BRkxErkh0qgSG94QMUaAaZZNNOmZ9XLSJEayL85Q4HUGsVNV2b3Bbcb7vi1u0353TJrYh3ORE1QD+zsiZjh2Gsfg0xUEbr4VGp6ht8J3NIW977aVrOo71vtjSQUT0B73BS7kf14NLIzUNCuI/K7MQ7SLQ6ov7x76jM3hox3HAXmi4hZgQhEBuzjuv+fq89vO2/G+JRjf5TfnLi14xcO6k0w2WqWFLmdAMOvP1FunszwVPUTIOI57KvQaqcTVRQvJMP5XzXGjXdc670ML2xr3R2ZGJUNVpBTyuj6u+ciDFsdQVpORaRVDvpOepl+V5hPIm/Lxv/94WfH3Pd+jCPJNj5kmfMAaPywXO9BLKEyfFJeY7zswleasWF+s5ytecCSfyjJN4lGKkFf1vvfce3Lct4XopGqbZ4ghEZ6csNdqU8gbGFqbgrT2pv0P8t2JjkidWgV59SOl74YOovPge7el3fe4JHDppjMUsV0HjvrQX5Vfedt2MO8r/V15Wh/LO4cIViADb9ianc8QW/Wjakx108nRdMyZJ44Q0gqbt8mJM3zr7zn98DH/5T49b6RqtAL/5nrtxiqCKXOfqqe5+dWUpr26OkHVVkfdie1FTRsWrtuNgezu+8sw39fypnXsBjw1dLuQtJ73E/YzFI8YbmiafScp0IG/D4OxH34jylVWTPrrwXZxu03E1TFsCF+5+4/IwsZU39XR6X/zSXc/gb77wZIKumQCKdUysfQgTi5NaxqSrINX/GLIVkaOOZKhjIfDEniSaJRUW2PcYWh0qb9XAKVdlDMBfPfo+lK/bAtanAgqiXrHyJspNMVh+/s4aeS/TVZCw4XTibZKVv/y+3TJYLkt512q1g7Va7daVqoxL8ijvsekFfPirT8W/E2+FaNkqOLbsGcNbb3sIB08k/NOhEyFPt/dIqIhCPstdXlwXAYzP0AY5ub32qX32UU8u2kRFXGrnUX12Zb4q8l5sL2puX17fQpQm+4CGVsDj5bbLf1q678UKVyC2JJg7Lk1x+a6bJyLx4jy8kRP67lZZnHLNK6dwsKby5nQYBQDgipLRaBNDeZOhEDK64n88ehh7Dk9r36142W5g5Bg+uzM8ST3OgtqkQ+7yFMhURKoo2bp91xXaxKG8O/U20VwYFVpEtjErEMiciIXDO1LewF1PylWErYxThVDenAvnSUFS4vGZqZN72+Mttyvqo5xe1Hf/mTxbIAJs2xdaEk5O2kpgcraBbz98EE9MPI7Ky/4DrEIYGHKjnzTuzkWbKMi7pSqXpMyE81Zpk0Vychsq6RspqEHcCgIwX6dNzH4mB3ZAIO8scW03N5XF5IYHUL52q9bmZhjg8FrKKGA2bZInNrXpKqj52KfEscmSJF8RrwpmG9kGQKer4JKRt0OU/ChumwtBI+AUaZPKO6V8a7Uk8IlvPY29xyeJBxzKW+PRjSIy28y8H9qLsrb2J5EG7QmIkrPRVfA5k3zHOumDN96xHhuMAlCNLeqDwPAUHq+dwqNTHgZe+j2AAf6GZZyIIw9LpW65OG8FqaleF+p7NRTaRLpAzjYWSNQ8VNTN9VQTNnky4bmQt9x9FysjkV95u8S1A5AVm5BeWumHThPPEsjbvT3evTGnGbTQVwitXjTydtFLHLd/e5dWviw8id2SvRwXjvftZKu3vpU8B+VIIG8uOvfzppE3LV5lDpWXfA98IQEZnAtsfvokvGGiXAfooaI15hYLeYfOATML4QqhUvax2NDb5vQ8zeuT2fc4bwJ5kzyeobyjNAltElgK7Hdv/LW488gOLykBddNDLFkWf7OW1MBxKm9l+d6ilXdLMVgGjdA96sjENKj2KBd0szu1WUNT3tp2dHVJLSc/dZPT8rqji05RRQ7KLQv3onil9MWlyxVCEAZLEa9arN2OSn+ylLficZInbryUpw9M4uGnk00aKvIuRfsbks0zKZy3y2CZ1t+4PYy54Hjg6GZMNqaIB3QFT30PwQXaHXLe2iadKP+xacXtTrV1RwdOeP2Je2HcPNQBzA5FmUZxsPICvYKW9ynaRAhMzzXAGLB20HZdqZN8uOPbiO5u0lkdyjunwVJ/Jv4rvM8DhWsM/7l48EKYQ4hJxUS6XqV/JCWTqA7UQKQVV9tBm3CNNgnTtHgbol2EEIDwm053MO03oXRaIuHsNeWtegpMz4euZVy6FLJlh051omnlsixib2MrCqNHrfvaYwLWEnxybjH2x7WPyFN3IOrPqUZLkjZxvLvqTaKVwdSY8Vx7DQa7Len8M2gTYWzsYQJbTz6NL9a+jv969j7XQ/FflFcQFwIBloO8wzxVN8gsZCyBQhZwUkUzLpreI8UWylXbocCZZ+RmOzPXwJqBUrwJTxW1T8TKP0M3d4vzXhW0SR5XwXCwJI1NGSwTiToJIyiAKAoco5S3LLdYR7NvAUAYLtaDZygBieKzkDeNfqZmE6V64HjiXdGIkXcA8DIQFNESDXDYu/LsMLF2VVrQvVoAiX6SxF++Zy/Y7CZs2iQd4lnu8xhd4nIhVIVWYg7kDWHRUd/efBB8emOYl1GcGTtGFdVomRa73ZQ5I3iUulJhMA651gyzxiTreu005c19wNfL/9i3n0TpSvcjWUbNgItl0SZZ4YIpietBIG8XbZTpGVJIWT0YVAxjAoILTM81cdGGgThsA4p1+CMndfdTveauAqJ806u4VFklyDvPYDc5b6lAQwlEYBuj1dc3Yy1QS7dI+m66BzOb7gMKjSgfE/nIOtnPujhv9bSUqTnVi8VG3u2gDSEYRLuAJm84kDfdHlqZwua8TeQNJrB177iiTFmmx0WWZB2cAVBKzC70wMyhJK3pxcN4NDjto61chzEAeZA3Xd+5hZaRTiYUMfI2y2KM6Zt3hHBQShnIm9vIm6JSrDzjv+gVRtChwTIgkLfOleRF3vlpk0YrgL/+KLyRE2SacLzR395OLzBXb6HV5hgZLKMQKe9y9QmUrtiFx09u1XdXZnLe0b/nNW2Sw1jjok3iUK8iUHy/5b+Ajeai2TIFectvIdMwqxmF8a8iasdUFLmKRicV5K12kGaLgwsevhP3gKCIpmiQ5bgMuEBodBFCoKVshoiX9KbyjmmnxFUw78ECLgnfNf2bmgoXjFv01Puf+ChaQZvkvBkTqLz0TpRv2BxWW8lK47yjv0teGI9CQ94dcN6zi6bylrSJiIPxk0pSKqz+GbzjoXdj79xuKw3L5LzNlZewqTwrU4dCk9c4OqdNRIbBMmNTV2LkdblL2tJoBihdvT0+I5YU7SzOlHZkIqZ51g6W4hgmXn/Im8+15o3nM1YSMtvzGnmr2oIFKF35tJUm02BJWNSp6H/CxXkLBjfpqjdj+LEEuflB65iKIlfrN60ib6WKrXaQ5Ck8QDBwZVJSxbUSAYC3/P0D+Nyde8BhG+c415U3YwKMqfktnzbhnOcayKodwOUfP9+ogwsbrbHI390bDGknE+Emf4f1KEahfxtZyNtFmxjIW4tcyXTaRM1Btru//jimG/QGpGzkbQxjJiBE/qHtQt5ctCE4g+D5tA9lsNSqlQHCYgrEETOHEs1g6UhTvGInPvTkxwEY38/sg0xgJvImGeovWWdPlr2STpuw5DlK4ttnYzzv50rUJvY3HIW/1j481KYJon9V5C1vqnG3Y4Si0yaWMgBLGUD09VabmDDUfJmKvCNf4IWmEX84ybvR4gkPKbyQOoEgPUnMa6bOuWfLUcw1E08AoaYzaBMG9WSYpdMm5cULAUSIlqSPkk4uBNBSN814NvIGgIVmnUTe3pDuK6xtACKQ9+xseL/eTibOTlwFTc5bP+RaDzusKsskhnUaIkSq8ra8f5iwAIWdZwZtwiPahPvZeUWS6eedMWHHLrId8OWqcd81Dr3hCTwzvd/mrAmDpaQmiwUPBV9v1/1H5x2uia5v0+O8NVdBVqCXchTSNM/pM8edNiNKexynkXcaknG5d7Wo8+8UJcMI5P3NBw5YgaakNDXkHU48AoJE3haNlGE85YLjf3/6Edyz5Si0zsgEwJjBeSvteto+7dwpkVcEFzzzUAouhIaCXaF051t1kvP2BvWt+9rxdoQiF80Qec80k/gYgljGu5T3Qt3sL/LZhPM2g1UxMOsUJlpEunInkHc6baLTMHT898jbhPvZFEwk6mYf0raTibyl8s7/bKPlPrUqfjSyX9XbDdpbRCnj6fI3ULruCfgeU0K/hnLvlhMGcpffOL388/wMy6TBBvsdx3UZnV8IA+EITg4e5YnoH8l568qgwIh41vGTNEdHHdygdWqC8z41tZi6RIwPtuUeZK+hFLPlKkhmqaL6No6MzeOx3aeM94yQt7JJR+O8O1ies4ibDQSnIxL2n0bp2idQuOAAhBBoqstwj4MaJX/zwIfDmCGm54Dx/fSDpW2PH9EM41ur1EXABbzBSVReeid+/meLuOqi4SRIWNDEx7b9I/ZM7Quft3zJk9++4W0ilDHvCp5lGfqY+3vafvc5lLca/ZE62k8IcLQhuE9VjhQ6CmEKTWGKXBF3oPgX243MNIhcD+tBXY8aaqQvXHAADW8G/toxeB6zkDcEc3ibuKRb23NCWR3KW/noG9bSMR/TON44jVSy0uDIGMwGdm1AKRUIr8r441OdDZnIW+O8I6R8eqGJYoG20Ddbyqk5wovHBeWhcHLKjCpILUWTP0lEIf9mhvJTi7OMZSkSKXrOOclhFzY9C39kDIVL9oALI261Z3sLAcBscw7/dui75GSQvAPXYouTk10zDBA/3UiQNxci3ml734l74bFk4nr85FbsmNiFD2/5h/B5I0s1PANzGSzVFY3po2x5aZgFKG6x3LS58FSUW7yspuVHb0aKDJbcy4286XAQyt9ZRwDGSJaY2B3ft+6IGa8960lKrOGgPfR0QHgwRsGzVzT0OKHb+rz3Nrnz4N0IhpPTbFyzd7M4DW8w2U3GQaFPYoebmoRxml4A4DHfOSBobxiBVjt9m69Gm0R1m11oYaCiThRh3v76ozi86SsYjyPTJRMPhZz2HDEOEchA3jMLNILx153A+MCTSRkG520qjlRRkDc5QKPARcyLAgRZtAk9CNLtEUDlpXfiLx5/d1JnQsmIdglMeBbyVsVTJjFTUclBXbxsF0rXP6L1o4Ifvneat4mlSMyE5vsJFu8OlqsGZ1pDChcc0tKQm3S4CPcudECb0JJCU5gilXsn3iZKGNqs/OtB3Q1SDCkQyJsxM9hZBm0StdtZd4blcyX/dfg+iA37kwse3eCLw3tQvkE5q07Yg8VG3p7yQ6DvprtjtyBTfObD6kCpyFvQBzu4XAV56DVyer6pK++ojNLV2yG8AI+ceCIqMkFE1OBrGsZSCnm7O7uivNdMYKayG7NRKFYhmD4AOqFNMjhv1Z4R0iamwZLOt+SVMhWWmhc5QQsGP6hgup4ob9OzRJ5yv2N8N75Y+7p2Tyr1wgWH4A9PJVQaEyjGylsHD+FziNPpkk6bQHhoPP0KfH/5v0G0SsajRHozd9VgSfTTgHMIFkBwLzMcQnP/C3KVk5c2Ice4i/MOsjlvKYvtRiptoopHcN4W8o6FzmdO2kHOV+U9WDTPQ8rnp2YaLAHYvKjxDCu6l2A+84gHouWs4+O0CW+TNNpkodFGwAX6+9wbX+X5lqEBNULehPI2N8Jkcd6WkdKQeqCe9qLccCBv0r2MS+Vt74g0JeDcpk0cDV32y5nKSquGw9eRtSs43ZyN77uU98eeup2or1l+tLpjSJS3sXFM47wt5E2HXEhewgOEj6IYtJFxnrZQ+p5FmxSa+I/xr0Y305G3x4vgi2nnM+ZTlkBCjVAUydWXDJPPtLTTjzKQdzs/8k44b32MBFwxHme8jzRin7e0yXDJ6BhZvBnkstb+lNyiTQiDpUOcyNuFJhzeJioSYYa3h4xY1t/nk+kBJEa8DM7brFcW563/bae9dzI6wcY0WLo4bwqRi3TaRJW2aBu0iTt9OQfyVoU8UV0AQduDgEjC4BptluY1YCp6lT8tRoGpBONYaC0qyF9ZxaSNb4Lzlmg4NIqbyjt7E1Sa8i5etA9HGwejgpTVKVm1EpDmB75CnPeFGyrWNUA/rDsL4daDerqroCK+x8LYJsbZoLfdsSP5GbscOzhvv4XSNVsw1TpF3l+unP3Ku2zO6lmDNEEy5vJYyPgjqsEyJ5/nMY/42GnLU8cmHS1T3VVQKu+KorzN/GOFpnLeDkOR6u1i6u5y0ZyM8iIkph0F5+S8ieszs8nBu1kDuRk0DdokcC7ffa+I7H6RCO0dxNCKDqOWBzzrbmUsQt50OWk79yTyBoA/efCvlBJV5W0of2YAC4I2ARB+Cwp5Z6FcX1Xe9maVuJgMg6XHi+nUmaqIM2kTLjO1brlWS5pHUibybhiHB6cpbw+lgm8d7Kz9myHewCz8dSdxz8R3c6XvVM5+5W0i74wO4K2ZgD96OETeplHJcKqn/LxdEvLj5gBLQ95Au53RWQ3aZG4x7CiVko1mpW6IO6syqFwHti422ti+fwKHTsxayqVcNCYjtSnS2jivq6A54JXJpt5q0ZHjFGnypkGbuOsU7tjsQHlT7SWSibwZnx5EIO9iw3o0rEOa8k7aqMlbWjdSY6CoovbNcJerqbwT5G1OaozlMQ7ayHugQqwuM2gTxovpyl0J+ZpZpxTkTfbxQgPiCiVqYJbBsl0P3zV697R+7nsMJRN5W5tycirxLpHeZ31UQVN5iwzlXa6GBj3Of9SmTSLERbvwZNEmjOa8U5A36SqIkA9mns77BuCxkdEvEChYhB4VCfJOFEIgOBg8A1GG/NwHv7wNAPDCq9ZrdSgVfSxqV/IrP02pOV0FCeUtDaycg5VoJSilLVo6bcICp5Lg4B0dVuCMxR7lL3fGmqECPI/BKy+Sj6b5/5rbrKVwIVBvSF7UfD5516GBIi7fNIg9RF1JoziQjXIV5R2HA37ht3F54RIcO6J8U+6lImvGC/m9UTLq5K87juLFD0K0bbVEKe/CxsP6hYzVXD1oYMfUdlRe8j00nrkpk/MuFV3IG/q/GWOn5HVypH1+WXXIm17y2mIFNlKflVwVWO6DBUJFn582YcxNm4iFyPiioh8exFtz9d2Eqnkr8X0WIql7mwfwUbTL12gTvZ59JbfrY+ogEwzqnOSiTex2TZQ3FxzMoQSlNHmT2KRDS8CDDpE3nVbWmaJNgMjly3UGaQptYrqcycnj0IlZvO9f6IBKGlVsb0eIFWo74LTyzFBkKm0SCB4jzFPtI3pCkU6bMF60rqmn4+iJ079R8eLQq4zaRU0pbxEYSj4H8n5y8lEAQGH0SKby5l4D/nrlRC3LrzuHvQLAQjCXnmCJctYr78GScZxXFqKIxDwRBgAWvXGwUqI0NOSd8eE9EJw3E6lLL2qHJaAoPMPPuxEF2REeMdtHA2iiHvl5azssOZoNm/dUg/aYyuVF12yI8xaCGS5dKW2xVFdBRQFwLsBK9OHNUkyDZZq3SR4DqCrkElyhdeSka7aZ57n9ydNoEy/PPiZzB6XSdz2PQOZyFeNS3ln0ohL7RQihIUx14hXc1zh7S4IiREtHlsHUJkeh+b+RVQz5zYjNSSmyGDSSby/S9wYUPIb7Z7+FwqYE3VteJhmbdKTMn6/Ku+jps2t+5B1YXgXH+zej76Z7ARh8dw7xGIujBcbChNPvPDRYOurKw3cyvU0k8hYUH2xxyJ7eZ0wlyoQWqN4EhhvW9OEVz99E551hsMzjKmgrlAR5t3mgTaKUtHjT9jZxIMCOkTeZNqmfPGvS4rw9lnKMXVr5hmI2vTuu3gp/RPdI0Jx/PNjKnUvkLUBNalmumJbB0nVoAfdQLrrZ1dLcZYDwsfjk9yvPOJR9BxOsVQ1CeVthm3Mg7wCK8k5RuowBp5pHjauulWpqsWjwum6/WSE565V3YYnKuzb/lO5GpIgMUnXoxGxn3iaWZBgsXcg7iDq3ZjQKYs6bMyo6G6G8teNQrHU16k2b14yzZSxBd1FHXjNQip91itC9TfJz3kl9A87BynWSspL+4S3eyk2b8BzxwbUyXDFtYyOgwnkrwsBIdBfuKUgpz1E3+f6F9SdS6xtGcaC9TZy0SUcrEQGmncSj5Md9R98HGjtfDm9xJE4XVy2g+0Qndgm7jsT7GKcHZUYtbDeUb5+OvOFxeNYhK0tD3gAw35rPTNOpnPXK22zAvMr70dN3498O3EneCy30wHu/uCW+RnUs1XASUyymh4aTN05xFXTQJpLm4NQJJsYAzXLhMpG3CQw9xhKFLkJj7Mtv2BQ/q0qlPar9zuUqaDJMCrJt8AZYoQVR77cfi5bgpsEybYAEIh/y3nFgIsqJSCugrQwAG02fnFpweEKkl53nsGpbkm/reSJxc40zlRMNjbw727QkAIVnZso5q4J7xGEj0b3ATyY4dRLvAvLeNbnHumYj7yyDZT2mX0QGbcKYCDd/aRd1ZW2GPqGEN/pw67rXYG15TXbiDmXJ3ibVatUDcBuAFwFoAPjNWq22d6UqJsX3lqa8AeDo3HHyulTUi402vIpbAYr6AFgUzJ9EHxneJu02R4m6RdEmCPA0/08ULiyAQw2zmhhXjcJ15U1QH41U5A2d/4NAqegn76WIL5K3EFFsk7g1nJy37W0ikeY8j7baN/qBioFIWiWgXA9PLg+M4P7mBBZx9VzkcxX8wJe24a2/cJNDmSqct+Pg4v3HTsMfJZS3TOd0f0zrsylLcQnwGCBcB1cv0WCp1c5E3iqFIryUzUlqlD2FJzcNiXHypSNvUkzDppPCDKXebiQTrWnniSSY2gh/5BQYC3fuLgYLyU3D2ySOWZLyXmJhGLdueFVXdlkuB3n/NIC+Wq32CgB/DOBvV6ZKuhTY0mgTADi9kOaOlt2YvJ4YS2PlrX2odIMluZMPLtqEY9I/gOKlz+CxiUeVagq9fHm5kBXTIZ3zng9mcGpxPLoZbv0vF6PDly3lrXoUmLSJR1MGKauCBR7GjxENe9ecCMKy2sLYpMMIhBlRLGGI2XyKYXymTnqbrBvqszhvE1H/4M2X0MibA6y0iMpL/pMs04z3rk0eDu8Vdax7Kco7NFhSGXSgvDkHUxQ2KyrtnkKbADYoAIDXvPASOvEykDeZXYS8g5nQDTbLYFkP6on+cCFvGRKaCfSZyNvyMsnR5wTr2vb45fh5vwrAdwGgVqttrlarL0lLPDLSj0Khg/ChkbRMlzJidvVFGa2GD69vQbu+0GjSb6iGF42zI2iTxUR595WLVjrGhPN8zWsuHcbeY5PkPUQKSlv2EUhJ5Q59z9NVQGBunrCRd7GUvLxf0AfgNydvT81//U0AACAASURBVMoRDAwCI2v742dVKfmKkhVGS8VeGmY7MONXslKYrE8BfQCnaJN21DYFAc4ol0n1kgeAo1DM4C8VWb9uAJQuGuwvY8PICA62n0VloIjR0SFU+pMVh+95+H9/4cUo3n8I957cpT07sm4A3shJZ5llI1ZNoaiMA8dB157HIJmSQtFDoShAHSnJPHr7epbB0qqf0hdVYCC4h6JfoBcPgkEQZQ8PDACUM1EGMu5Y5GpBIv0cnHfFj9IKe9MdkNgh1oz0YWhsACdU9ROFKYh1cQ6dLISHkZF+jI6mxX9ZmixHeQ8DUA/dC6rVaqFWq5Frx6mpBepypszM6+h5omEfgXbJ7Pdj71wN3kUHtOvOU8r9NpKWZ9o/qsgYzwDQlm53pkudo8NYgdzVfCWXrgwYNbRlLEGBDIJzdeEl2DG5Ht6QclqMyTEzgXGlzZuSQvECFK8wzgCVOwsbEn0ZFEurhNj0oGy2AcLOCYp2JZF35NpYWgjVfcNW3pIvbTRbqHvmQcym0S7Mb7HRzK28Z2cXyfNMBRfg0YpicnoeY2OzOH06Kb8dtDExMQvO7e59amzWGY0SABbr+rdtNmQezHlCkBrpj3Me9w/BPU0xLzZaumtf4IeeJB2g3Ie3H9NoExN5p51hSQVfa5tuqzLfLiFvOeFn9QEBgUYgv6k94TcPXQ9vIFRp39n7H3gmOmgjKdDhNZThWjszvYixlP6RJS7Fvxza5DQANVfPpbiXI2lLNikFj97C66JYyJPhDcXQqN2i5emT1omE8zY9Jwp+inWdQN7UKSRCNfwoKPQy/8UIOW81NUMwPRo9xyzOW05k/oYjKGw4Bl3C9KUCRQ0BJTGkp9W8XNIDF2nPxeeDRkYjAnlLYy4HR5O34InIPkDZF2R8DxEgj8UfCE8jojhvxljc12I/b0WBzjRn8Z7H/i6McW1WmQt4FffgtEITq1SDQ3nrdUNSrmEMtGKbSANyB4pybrGl88cqJce9lDFIn2daZM8R5+23Q4M5l6e8Z/tTB3L5YtAmfH4YwckrIPvykxOPW89afTCPtwn3zsozLB8E8AYAqFartwLYviI1MiQIst88jLtLKW/Fm0IRVmiTBj5V+MyoppBpb5MEeQcnL4NoF8EjHtdPQ96BjbwD6ggppYNpE1FMp6hKFGjuuRmLj/1wNMB1zrsVxVkhJ66o85cKtMGyzBXlTcUsoVB2DhdMc3MHkExYXHA0gyY8YdNVcVq5Y7OD2CaNZhC7Aqris4TbDRzeJkfmjpERHA/PHgUbOG1dT+rpUN4C+ZS3JxTlrU+wZlTBeMLvZEMMA5gSs4Vp9AYLwyFTIvTV7SVzr0Pr8LXu7eArjbwLrWgsLEE7CkbXJ/VwEXP1F9EoaXSQYGel8v4GgHq1Wn0IwAcB/MHKVEmXv/n8lsw0PvPIRpfK22MpXLsglDIitzlFAcngMtrOQJbEJ+H1AdSf/EEEkxcAABELWClS8rraFmXXxpwwDxXxSZ2io/0QEZeLRUgkfaK9D8WrtwKMx8qb7udhOQUH8i7CQMjqbe7l2/BEKXnKKyFSPvP1ZqS8JZ/pRt4cHSjvVhAbJFXxmR+vrmRMGvJ4MAJ537bzY6kDlBsKX/VZNs/apMTzEoOlMJB324G8XTFYaBFgfS4/ZAHP6ROnG6/76hejffxqN1KXK64VAuDMDyB4IXeICzsDUxEDqRMBE53PEyLn+FiCLFl512o1XqvV/u9arfZ9tVrtFbVabfdKVkzK1Ez2ziQXbSKtLMNsA3EvHXn/1Kuu1NLIDtn3goeUVCJBOHLyiLLxfeb+0IQfbMN1Fh8LM+Xg8BvDYE//sBLW0i7gPb/zCvQVCwAT2F++G4X1J+ANTyhBshwWdgZMtI+j/PyHbArAcklMfl+wZg184pwnK9Kd4dqoHqCsSdSOMwuNiDYJJ7pikZgM5RbxnH7eiDYuUcjbg6cg7/Cg54BIZyriPGJ6HSXnVsKJvDWqhSkGSAOkWLt4o77lDc4grzAvgFd2hytwIW8GloACJC6WpodY8oD09MhWO7kVvGW4zytEpEaAzKtRuyX8w7S7pLoKR9mdpcj7OZE8bja+w+IuG3bIH7HvxW1OI++Crysbsh5MJFx0PKjCdGE4CMeHJZQ3efJ2hLwlKvJ4BUGzmOzcVLKXytLzGMwzHb3KXBKe1tlhBR6evBvewGktnkN4X+0mejCvP//V76M3caQYLAE4N3JIZCndBKXyvvriYRQKRp4x553fVXB6rkF6CPnMjw7cCAP8v/met+Px9r9Z6QICeWeJFZpYPZw4B23ie0iUfBbn3cGxdFJk/1rPLrXu8cVBp/IuFXyth0uAUPLLWFd/nl2OEacnVfIebC3Sox46hTKAA7TtTB4zZ/Ubt8OCml/aIR7LkbNeeVOozk7jR8eCGRI1NgOLfUEtkSDI+AgFX9/BSCooJpSloK/l53tu5G0ufQFYCOxnLv05SPqj78YHwiTw0A44uTEizobJVYKivAenFdokxT2quFa73jp6NerbX6l7Gxidu+gXHBOsec2gTZyHOIRtI7l5qbwFuI1golXAzHxOioAJTM02yDbwPT/uawvRxoxpmIbdpSFvM6iSttU7h/Ku9PnReZJ2FExzkw7Zt8z6nF6n/faijVIbvEtxYd9FAELf/ktO/J9Au+ykHYuG668ECB5juLCReA5fVXph+AejVw+k5D3YmqDj6ltfA9HUt8e1T10K0VL2KzhQM0XBjAxWyGcEC+ywtFaG3pIo+Txy1itvL4fyLnoeyKOYYk8QoLnnFjT3vVC9aSTWP6RnnLJDzZ5M4bw7Qt5E7Ac1+4JXwPVrbeTiMQ8BF4kiJvy8GWPhRMNEogj7FpTlreEGKL1HiO3A7ZOXQSwOQdU1wqBNYP2SCW3axIxWF/5rPB0b3KI41xHnTUWJlPnOLKRHKFQqhem5BonSfSTIe+cRd6wR8si5rFKtk+Yj4zETRrB/WvrLfrg9nlDMYfya7BWNJmb/izboFFHBNcPXhUlYC4wXQmbHMQaLxt6BdiBtTPrGlDg+UYy8c9AmOZF3uEdBr59ola1OKdpFtI5dnVxgDjsJobz/8BdukTf1ZzyO4mW1jAp65+8ZlnmWHC5vE62hhQc+p9An8UeiaZOw2AzaBLDRRJRv6ooho/P6zFOOaFNmei8cZKoLYHITcbke80LkKlGd30rMMZYXAgv7JAt3NWoSuTRaqxqjzy+pc0oFYgxSGStFxnRmogAhQuRNfmJ4udBrlDhE3pGoQc98rxAbLMfmVL5Yf1mX8m6PX+Qs1jR8qkg8z2aaSp+PtmiDad9B7ds5VjRqfRb1eNux62bg4YrBK5N0gOZCaUrZRN6BnJR0he9LDjxepeZQOx2EGiZDR1D2EcVAXhg9hsLGI/ojjnKtyacTEQw58OeS5KxX3nlok6Ln0x87numjfxqVxKHflTYSzzOQt2ty8GgjjOfbecYivNSND6Hbml0v7oWKZ7Gh+KomlYnr7TGmBbTXttIbykLNocmNcALRO2m6R7BcCqdkxYA2DZaSZjK+m7zuS+UdGqTIyIECoULL6RZXvv5R1MV83KZlT9lBqXibqG5z5md3KW9qq78UMyKelofTYJlIX8lHM2iBOfbUUSsal7RPXYL2iSvJezzwcfHAxQCAfj4Sxvlm7mO8LNokVt66kU4aMF1GV7oyeXdjM1hqTIBYWDP32DfSmSKVN7nXYAn5rZSc9co7l8HS4KeTZxNuOHTdY+Dz0Sk2ckeZw1XQnM2ZIzCVNDixmPMOn+Ms/ZivtM7pMS+K+qfXIYh2HMbIWzNUyWdtpMR8nhhWDWUhrQIAobxlVZWmKRcLVihOaQ+Q2/kv6N+I512+zkiT/D/MVNImpvKOFKinKG/I8LXmwAlRV163OG9wBuUbNsf5lHx1+7sfG+bUHYbmhiYn552CFKW3CW/0AYC2w5PeMKZLqeihzdsRrSP7q5oiP23SPnk57aIJgLcZin4Bi0/+AK5v/RiEkIo4n/KWBsvYaB6Jb3LmeVB1B5y3bY8i6msg77T8TEnq7zBypmXH0wJ7LU/OeuWd12CZNcMNViIKINqSzXwDrVnIG/QmHU0SazOL94+H6R6a+/fULdNq5zSVtMe8hLZR6hVEyLvepAa85LwdE03Ea9reDYm3QsOhvNW2/aFbLrGOqZKDh8+O4Hdv/DX8wc2/S7SXw2BpDOQYOfqKd4VgIfVAfAIz6FOWeOV63Kaq8i6gEEew1LaHG0J6BQGpYzrmvKN3W2jK/HN4KyB8x5bcbUqVY/jdZ4pjrARBtOJrl8B4EUKIyABOpy85DJYM0KgCy3UwZdUZVzG3twlzrAzsPQHOaIea2Laa+P2XSJuct66CeQyWYbjRtMhnDENRkKG84SpN5eNleJvEvJ5qzxiecNdJi39s5x1y3rohs5+H/ur1ZjtU0kSdGNN3xEl6Jo4al4L06gFt+FO3ifeXi7HC6S+EVEElCoB16cZBvGDD8zBYGiDay0GbWMg7UqBRu6q0CWVo5FS0piyRtImveiSwcL8AoG8PN8RpsEzpf4EWejeJWhhquWzlLYQIfd7hQzRD9C7/VfMFcig9wuAc17OVKCouBHgG8rY476ifmM9YB6qIHIo5L/IGI9rerq8QLB8VQ0xssbcNS48iSufnoVva++xX3jlenAfIRN59pegDBGZHkohV/yjmnOH0844Gnyd05A1kLIkzlXeSlwxkdX3wwwBCDwPfMwaVxs8ryjvagh67NFEca/SsS3mr27v7ikW0T12GYGojfv/Fvx3mHfHbI0OJQjHby2q9WHn79PX4d2iMDsMDEMhnKWiIUN4MDs7bkGV5m0glo/a1HMogEAG4CE92aT37PLSOXYXWs9fH92+8WtmElkPpDffT3G/Q9mKwJA/wZktA3h7T9VXBPMRzJTlv4aY0jQtkOAYtI9irYEDh/JkAolXZ9SPX5qyf6yiL5cvZr7zzfGeOdOUtWGx0W1MhgiGFibRfofJRFKKDNmHGrjH146fuclNpE6OjMlleTNkLjBRGUfHDuofK273tVuO8pfLe9CxYadGiTdSdfPWgDj4/jObeG1F/6lXx9baCvBlj+PGXXYs3Xf0mXDp0cVRehJY17xyDd7dok4jztmgT0/jkJbQJANEquX32cwuNvGPlnRKrgopICNCDXop6AEBYgLpJJ1t5N6IThTwUgHYJ7SPXAW3V2Kq0WSafzLB2iFZiPorxpMu5IDnv2GYEoGScbSn3HzADWPgmbZKD865ekvMbO2kTQzgDgiJe6f9iRn5Gf4RQxlNycPbz11+P4YOvR3P/C1CcvCYlw+7F8z77lXce5M2R2iEEwo5VLHjoL/bRiUzO20KOdj2KFx0AkzHEc1vHozqp6Ym6a5MH42BgKPoRt8xFiLy1OimThjLjacrRCxzxo5Vld1BAMHkRRD1xJ9t7JJmEfM/DG19zNV5708XJNWnoU6pjDShjMoyVNKGstfeKaZNoC7wWjnaJgyJG3mXlErMRIiFuzjtNeUdxSSjknUN5N2PlTdev4DtcCMl6RgdPEPKLP3h9bGOamWvi8Kk5eCyhzQRnCCYujNObyFuKx0K6s7n/BQimN2Bd0QhPQSBvk2bbtHbQSkOLAfPT0gEoiYx8SdpEfrdEeY/0rYUX9CMYvwTXFb4vNb8e550inLPUwcMQoh+PMeNUGHkXBOdt1MPh6xobJeXAzKtQMmgTj8FAakwbpJWybyg59VkFKam76ZhjO7b66hlGHSpIkWwb1aXQQhsCJPK2OW/jzEQeeli4NuksR0q+vgvPPHKPEjfnnaK8zeiWUnkzwEmbCHVFFNI4vsNVUKt3Rve7aMMg3vjaq6zrDAwXjgzF4612OIwVP19vo9FK6quujEoFekxIV8Fg/BI097wEvm9QlUR/N9F50cvh1odwAs+FvM19HR1IvOdCUd7amZQpgVjC2CbnKfLO422SRZsIwcKYyx6Dz4xTJRVqQhWbs03Jn6soeCnKm9hxqbx3aJxkSdQ/AJVywaAm1GVqkh+fW4v2eISWnIdH6Mg7TXyiI0rlrfozW+6Kpuujy8/b2HQhD1oOz6lMR9vtsYvROnp1HJbXJYzwNhEACuqKpU23Q5s4jCHK1Vle3C5GOFdAYN2abCVVb4cKwwedVl8xpE9wb/7ZF2HDGht5F71itCHHfuaiDfJEKaH1VZM2kWL6hluxUYiVpjkx5VXeIbLNYQuRESgzI17R9xnCchLkvSa3Uj5/kXeON/+Bmy9O37UlJPIGCoI8Epg2fGloNi3/8N6F6/tzg0OhuQpSaNb2ClBP5wmVtwt5q8jVSww1jN6lqG3WaznaJxIqSJFPKG9615tSjsvPW+jB/1mMvJNDFGLPLWsHTQHto9fqnhiUUN4mQsSG1zSRKNiSDjhv9bOVStn9u96OkDejFZp2UEiGAVdzfVNEtgWlkDSvEqWv9jloE3OTjgXA8iBvP6fyBsuHl6K2p87c1LNzK++Q826AgWGomJPWOZ+Rdx7aZM1gKXXwHDwxi6Nj8/A9hqI1AGjaBEg8NYaLWbNs+Owf/dLN+MFb7MhscUnCR2N3FLBHje1BbjCCpZB12qRgLBcdSEd4itLIRt5ItcgDHkEtxKFUFUrBQt6mwTLa0KMeNSdTavynNFhKbxOFQ7RdyQ16wiWkq6COvF0aoc3b9O7YVFdVdyhUKj44APzApa+O/z42H8ZaKTiQd1HpF3xhmEwjxdy6LqUUKUt6vCWTjjrZFh3I24xtYk/4dhnmRp6Sgrxfc3EGp0wamPVrIlbe7qzCqrmUtxfOE16Akl/KRbHJJ7sEvFeH8g6mRlPT+B6tABOJOl8KbUL6b7b6UN/xffjvV/12Kq8mN/wM95dw2Ub3QaMXLtwKfjoy3sS0AV13E3kPVYraIO03kbciKhILaYfw9xtecRmylgZZqJWmTZLTb/T6m6LQIdERaO1jV6F94nIjv6T+s/OhsVbEm3SYG3nHnj9ZyjtMpxosQ9okGZCpW6k5obRSmlX6eVuUDxPOHZs/ftWP4M9u/UPtWsGBvNV686mNaJ9ynN4ON/KWFBIZgE39odAmpp+3FNNV0FLexFhL47zpIwgjcdEmEf0XT7SSNqHObVOr5ly5sKjeojN1LAiQsUKyKpR385mbMTL7ImeaJIiTQ6Lv4XuMQC9MT2Q+ujCMSqEvP7+VpuQpbwsFGWtpVYMlAEYgby0/Ja06WH7s5VfiygtC44pfAL3CUD04munImxpIuWgTY5KKgyPxAlqHq1pSlcufmw8SzhtC+0zWN8mrvD2pvBXOW0CjTVqH7KiOsRB2AYr6kihvoj7prJcrPjhjDBv7N+CN1/x4fK1gAg953ddXDPy0281OUhqqyx8AlKI4L5Se1NpZQd7lops2UScB36SjCBuPuQuzqBg508+xpZF3o/ZSBJOb0Np/I0SrBFEPefvsQx5SkDcAMNHhdvfzmTaJECgL3IgwDCKV/oFlXkWvA85byT/PQchhGSnptEGgxkKx+WFrhydjFuftKquk8IVXXbgWN1+7MfolMjlR0Qrb+U0/SG9CoMpMaBO3wTLMXKVNSvR189lok04SmCqFNokHcfpgkass3dtE6Mi7WcZPXvrTdAYU8oZjwtJ+E7RJxqafCwY2xX+7jHjmEj7NqMuivtV4+hVY3PK6+HpMm5DIWwUdCvIuuZQ3oH5CFUz8yOU/AD631nrGRN4lI2iYUyIvEOvywjCae1+MYPJC1Ld8f6y8Mw2WaZx3HAqjA7V5PrsKSmNHmqHBY4x0P7LSecy9BEtT3owKO+nIJuVL2S5wcCJvj+mDkGW5CipSLiTo+aL1Q/HgFixwdCRlcEac941Xu9AbVVcCeVPeOk6lYihvdYeoSAyWiZ+3iPOsb32tUqZ9whBdnI28w/dI6vH2X3oZNgwPgBJG0iYZkxX1mwm333gkMgQB4KZNiiayTVPe8TsyDQFLA6FpbLRE9TZx0iY68lZ59FdffCu5SjG30KsGS+cByAAgGPwUYBeKukJdmvIGAK+yAK9/zurb2Sbi8xZ5h/9mNnqGoQ0IJ4JiwUf96Veg/lRkEHJEFVQl3CJMN9Wl/BY09rw4SZvyoTwCwQgH521TArqrYL+JvJU8VKVULpQSP+xoiR7MrMcrNt6qPKuUE8cWcUwMhJGKok3IWDDCR2PnyzSFS4lvIG8Pnn4OZIy8GUSzAj4f2RliLjWbNmFgmsIQAqiUEoWxbrDfUihJnfJy3tnIO3C6HobSX0gUU9FJmxDhdx3i6p9qm9vuucnv512aTOqlFNrExXkXvALZ3wsGui6qsdZdZ2JG0rd4GX7iijekppGShbxdBt8WSyJXyokpl0o+nzlvqUSyo8elcd4KbeJ7EPNr4mVU8ng6beJC1BeLG8Gnk6VtKvJWbymHN5DxFAwe3wPTDJaWq6Dy/uVCMsiLXnJCTOzZIBgK2hKcKN/xDoN9NvqjaBNbou84ty72MLnpmg24ZNR2udL813kYcyR2FRSER328czGnnybjIS+rInwApYISrN8rOJU3ibxB0V+GUJx3Bm3SX0zCOdieUtF1czWZC3nr6dSjzkwuW31G3eWp0nh6en2SUGkd12HhJuetepusrxBn0MpXEGEgttdd8ipnGlUy7JXg06O4YOKH8NpLXulM0wmSFo3+81d5S++GbOf6bPE8ph3d9JafexF+72eM8/Wo51JoE9mZ5QfKMq7EonHeREqmp2cG593fV3AaTspanOoEoQdIDnGgvEZUWTfch0s35vNlTWiTRBHJA4TT5Jd/+DqsH7ZXTBKpiWhXZsHzNc5bilQqMWXm5aVNhBJ2134PIOSXiw53MMYJJUp9R2MyueFynYoql1gmKKkoyLvksNd0RJs4+3Fyva+kK1L1CRUFm8egxXlZft4K8mY08vZTaJNN/SneZpEftTrB/N7PvMAw4irJs30FUQlGLUpNlTz2r8YzN0VnaVbOY4NlzHlnx4BoHb6OvqEgb3VLb/XStbg4Qn5pp49TBxy4JG1WbrOFpEoa523nLUPCqvmqHXLTSL/OoStptTjVyqnosXIVTN/mLv3Albp7HsM7f/1lVr2oVvIJV0EZTClNXD78cVtHxsr4vZnQ9Hc8KJSYIeakRwnzODyTixSm8i44l+vyXE1Ncijvqy7QDXWVvuw+paL/kk9TgxZtkld5a8hbt6e4nvE15E3XP6QZVeStUjI08k5zFRwqpYAIweB5ehTQTev6sXaQVr48R0TXLAeFXN4mQQGi2R+lz06+FMkTnfyMShyiMsfWxfbxKyHaRZSufNqZl4oW9BM/MmiTFTBY+lAGn3rmpVG0ZlRy5LtpXb/BTSZ/lzQf2eSEmBh5g5EW/ILn41dfX8XR8XnnO1C+VhRt0jB3IhIDVkatA4DGnpuBtvR4kG3jx+8AIAoLq7SJ/EO67glPUxQe86wjyMIHOTymhxfQo8eFZboCVdEGS7kHT0lnHfBhnDyTwXeb4vKU6ojzdlBt6run0iYKdeNS3hbyZvo3obfH62Wqk1bWatbaFOSx5KhAQ5zIW/lWBc+zyrwUN+IwnopKzKML6HZeSVkW8q5Wqz9TrVb/eaUqQ4mc5bKXOwDAHJtMIuTt6Us9LTJfpsEy3wegNvP8yvP+L/z6838JI8GVycUM5B3eUxUVw4Xr+1EpF/CLPxLGcnYZLK2AS5LWgIxux3TFHz3rswJee9PF+MUfcqxgAC2ErBTK26QRtIxUlPJO8uLTG+MDomMFHE1wajzl8LRwEZUbXm89ez1G2RVoHXg+fIVaKjuQKjwOjzFcPnwpyu0RNA/cgI1rK9aAdXPeFPeczXmbE2abm22ULmWn8jYNo0ugTVIMlpcNhZt+bhp9geG/7ab8tAOIDSVP2XhM5D1QCFHrxYMXpitLwWLvlubB56F58HnwPYabrgk3w40Y4W837zzpzisSz2OWwf0y78bkPjGZvOriW/Xvq+1HyCxySbJk5V2tVj8M4K+Xk0ce8TugTcKEKciX6cibMaVhs1wFlS/wU1f9qFKeUTzxfF+hjFs2vUjr+Jq3SQ5hDOjvK+Ijb3k13vTD4aYWl9uj5QLn2QZL1UD1mhddlJqfKjRtYivvZg7axCVyEMg28sxVgkGbiGYFt5TfANEYgM8Ybr4u5EhdvCXzeMRpF/AXr34rfvHFP4TXv/wya8C6lLdHbFP/P265LHOCN+/nRd6DxdC4XvDp+phKNNXPWzNYqnVTlLehbKvrrsEfv/TN+O83vEl7h6KTNjFO0jHbJYfy7i9W8O5XvgNvveX30jnjyI+aMSA4dTmCU5fD9zz8yuurePsv34JXRn27E6EcFNTfVMTMN1XfiA+/7t1aveL8uqS9l0ObPATgDgC/kyfxyEg/Cg6/0DTpj44vS1Ouo6PqlnSioaKGLJeLWL8u8TLZuHEYmG+R+at5jo4OYThIrP5rhpO/K5XEP3Z0dAiDdVthDA9XMDo6hD7VU0OjTfRB4HksKl9BkeWSVady0VYio6ND2Bis1X6PNMJ3jnWZYBgaTPyH+6J3KPoFoy0Tuah0FY419+Oaiy9Gf1GPRzJwODqaCzx+PoCOKk208vM/dB2qV4+iXN5vlVWWLnuR8q6Ui4A85EcJ9KMqmTVRjOpi0UN/JURblWIZ0444UoN9/RgdHcIogCsvC8PmFucTg+vo6BAwT09ABZRgZvuGV12Dh+9icGyYDOvjOMGGEvU7fPQn/gqtoIUHt9DH6q1fNwAcUK+4lcXGDUMoxd5ISbqBSjkuU/ZpAHjRtRvCdhoNV3t9yr0LNtFudevXD2DoRHJ+64YNSbrR0SFypTlYqQDK2SWbNq7BJoQ7g0/XU86CBUNfuYiNG4fD2CsCGB0dxPo1FVx04VrseHYq5Vla+itFDAwk43h0dAgD/WUgqkaxEI4TPwKCpTI1bpK23bhxqCtGy0zlXa1WfwPAHxiXf61Wq32pb6c8cgAAIABJREFUWq2+Lm9BU1ML2YkIaUbcVZob2tiY8nHTYkwEAeoLyYAcG5vF5GLE7xrKW81zanIO83PJcwvzLfzWC38F6/rW4v6Hw/cSQmBsbBbTMzZfPDUzj7HybPwuAAzaRE/PeZiXOnu3mkFcp9HRIYyNzUKofk9R2rGxWSzOJeWMjc1ibjZUNYv1elym2g7zC/WoCTy9LRV5ed+P4dWv2IT56Tbmoadp1MPy2jyp43xTP1LNjCnx+pdcgrGxWTSJw5R5O0rLPVx36VqMDJZxWMlO0i1ql1hcDN+HQekzKdapEkrWu07Vkz46NjaLmQZ9LBy1vXtmejHTy2VmNv8YoL7Dwjw9E82eruPWgTfg3sfHwwspyHt8Yh5Fz86n0Ui+HY+OM7tkdBC//8YXanVpNtpAhF0mJ+fIMqanFzCvTHwz03q7UvVrNpJvVSlUtDLnWyntJhja7bDuIaEmMD29AB71q6Wg3nYrwMK8ricai0k/5UE4PoOAR3VvW99LXf2Mj9PtlFdcgCpTeddqtU8D+PSySl+GeDl2WGqSYvX3jI0uQD7axDzUlzGGm0ZfEP3ao6WlJpn46Kz/v70zj5LjqO/4t3vuvWavWa1W0kqrq3XflyVbEpIsSz6Q8QFyfN8YG18YDDwbeIQrPO5whEfsQMhznHAkj5c8JyQkJk4CMRAf4KMJfgSDTWxZlnVLuzvT+aOPqequqq7puXpm6/PPzvb0UVNd/atf/+p3kG+swvB4RhsY+9Bh0cTrrO63edv7laP56NdC19dYVEkmk0pwzRAsb5OOZA6vo6z1kK3vZ7gHeufSNa89VimBt+2Yjx8cfLa8AxEOTbujOdo45UXDvQyyyeDaiN88wzObBAt62G8WYXcxSv1L6rpc7xwNs9ILUDoanttF4/xHm03s7cVSiWE+ID/zbN50XvBgqgdGigXCZPXJsz7oayX/95DFDjRnxZjsJ5bwLh4eQCLPLw7OclDQfM9/OHUydBO0jqugdBUVlvAuCxV/9Q/3JoW5ClIr5oIbwxLerlCjjppMonQqh9KJbr6NkkpMxbITso/L+HIhl71Byn7e5PkmnclFlEMilRK5TgW9Ta5fdjm2jGxEPm1rDZbz6wd6MvjoDeXoTrcd6ZSOVFLHjRcsKU8yJXsbL/Ut7Y7mmlLKv03kocQW3nR/cm3eDFdBGVdSfiEHOXiulT6v0ogLlsG+LDIiWjRNw8mf7cTJ/97BfQp0+DxUfO2+89LV8OP3EvJfU4R7et2bwMnnJrj/uLlOWAeVNUlS4f4ygrn6sJRQYi+8XQFlvT4T2UQW1y0VFxClMuS5n53gDQvBwAKZWVTXaTcvZrVq75oMzdvRuOhr6Tj99FZM/s4QPmzlvRnCO8HWMoPeJj7N26JzT7jtE+Uo5uWxANjeJkMdBfzBoos9jw/3an09WSqhkbu90JvDV+/Zjg2Lp5WFXElHKhF02/JelijPB935DXJunblEUHj7j/OHbLvoDP9vXdM9STEvP4ZZXSNYNkBnJnQnybSWRT5ZjhqUrRrD1bx1zWeWklywJM9BhrA7fVkssjyLABRTwGRaqHmTX6USGtZNW4W9c3YBAEb6gzljRgb4vtyh3iY6oXnDNxFw8pMX3+AH/rCO0WOoeVfl522a5qMAHq1JSzgMD9gGtrmFabh724cBAA8+I/JOJDqtpNsFdzU3n7IlFELcM/o1b8HNY70al4U3p60+4b13zk4AdiAO/+XOr6EQi5uB2oy05u3X9D3hLdC8efUK7eMEk5m/fiN/R48Ja8JpZwJJv/AmE1OxNG+dMEMJTG05Cc2bN5npHLOJy+yembh4wQX4S/O71D6ua2AulUI2mcRhZ47KJjKYkHAb5I07XdPoCORIEZZBV8FJxpqBnLKjUQIwl0niWkLpYvWrSHEQ2q0JRcRbyKY0b/axxVdm49SxXsxdeQAvT77ga4sWkL1kv4mUt3xiEIeLr4VXc6oBsde8t68ewR1vW42bLlgqdwA5cJ1Vbc3VvC0Ebd4SXWDXviS1Rf4xTJs3y2zia4XL57Z/DGfOsM0KqxaUtQPWICQrv6xZWMAnbzkDQDCM2m07z2xSlDGbCIS3yGSwYtC+b5lxOy0tb/4ioTTvpF/zLj9YpIJE2ry9wEvBuytLeHekOnCZcRHeve42b9vVS/YH9vMHlAD2BOb/Kd5ah4NrqhnI9UM02fLgad6aBubiNXtf9nfkBLx52TAA4LxNswP7yQhv23WPL0DZaYUrn3C8b73xYO+ph9i83eOs473EmC/3H+vtTdZssiu/3068Nil3T6sh9hGWCV3Hrg2jXC+IAOTA9Qq+kpo3Z8FSgD88nryRnTm7C/t77AczzXgFLpVYZhN2m8lsaqQ2xJowSG2lkO/AYD7nbX/z3D0Y6Rp22uuaTVxhQg9OmQXLlITZhMW+eXuxdtpKPPx3rwI4zB32pJj1tNCSq3lrzB2psG3XbJIo/zaR2ZFl8wbgTZwuG4bX4BvPPkxt0xkJojSNvK595Umf8N47ZyeKVhG7RrfhS0+WfQDIFL4ieDbvhK5RCZdkYwdISG3SGO3DV961jVlsQeZ5CUsry1IShNk4Q1LCuv2ia8E+CgtN9y96F51C5aI2i1LCpvQko7RffYi98Jbl9ktW4AvffpoShJblzJF6WRsO2LwlbVO05l0+Zs/GUZwaL2LnWjsKbf3wGvzmyG/x7y//l7ePp41zJRffdujC0iComou+r8+Zs4Nou72fF9Fn0a+FMpo3L4MceX7md3oCs3tmQcMB5vess7rBK5ajeWsBs4lzLNU/9oOY1Mn7X9mCJY/VQyvwxKtPe/8nWBOpZucdJyn6cnV3pDrw1oUXBtqeZdjfWZCa96fesRn/+39H8cQvD2BksBNPvUAa2CoX3v57yKuSI7NYFybgWeNFJKDDgnRIs4k/YImX2ph1bt0R3sw3HI38qPs3lc9Rr3BK1rUadqU6s2r+YDAZTUDzji68ac27/DmbTmL/zgUo9NqzbUpP4rJFF1PH2q/JlT9S5IPCdBUkBiozf7a7nye8CbMJQ/MW2R15eSwAoD9rL74NdQxy9/HgDG5S0E64ofWWjmRC8z3s5Zb7E/5fun0+9myaTT2Qly7cx7wey2zC4/qll3vrEP7rlrcFF4/9ZhMSsv+zETTv/p4s1iws4Przl0DTfAuWxAT3/g134d51t4eeW2THpfeTaKem4dRp/m9nKQm1MZsEo4RF7R2b3kO4CpPeKuzJxR2iorbyTFv1oG00b4AxQ/tt3mAsvAn6+gt3nOUluCEFWyWz6/XLrvB8wrkahM4OJhGG5IL2hhBpJ67ZZIK0eRPfu6/3PO8KQKx5rygsxX7jIiwf5Nd9dAe+/yysdnu26lIC/rzb9kHBBUtd07Bn4ygA4BfPlc0X22duwUP//DxSoyZ1iiwv7wkDTdMoTV1nPtxBU8GkpF+3bFtEgoG3YDmja7rcuaWFd/jY1zXgxGl7AmbtzTqHaPKoSPP2nYb3rH7l7m1IpXR8/vGfe9tczzZWeDztty5Y/2mg8G4bzZsJw+bt1yBFs3pXLuVp1HSQjny3rRla4Wll3Cs57fMLT2qFm3EY6Soo+h2uJkGZTSjN276+P+sdSZjN+6wZm9CbyXP34eEtLrIsHM79Ix8ki2c20YN95UViMsxS3KRVHKggFuZrf9ls4k4+Qs2baPus7hlybRAJb8kFS5n2iPdjb/d7eJxwom47snI+8VK+0wwsS/NMI3aZQ7/QZZ83k05A1zSquAjLT9xDKz8zorYqs0mN8CfptxAcpPJmE0LzjurDyTvM0ST9Zosw39KELqt5+8wmoLVEtxQXS/O+7aLlOHvdLG5+ZFnCYhZY37tRqPRrdrnhCZ/mHdzHPutb3zQ/cO50Qj7PiH1+se+wTowk97eE1ad0WTttJW5ZcS0mXjTEbRBq3uR/4eMzl6GFqrDIL9kGzjjzJ3xzhbf/OjwqUYh8RxKad7CPeEWSXUjvMy/Yh/lmQH4WPGtK864Nky/Ps//+fgxAWRMb7u/A6gW2fVZ2oqxU8/74mffjY1vuo7bxJgq3cK7/AaLMJoxjkwxtk4V7Xm8h0Kd5Twps3msWFnDZrgXVJ9axgiHtPK5esh/WRBrF16c5xxAHkZnwSJcwhm+vuyvrrUE2MMY7P8iHPMTm7Vx5rCfoaue1kbR5JzJYNrgYVlEs6ERmE0vSz9vl07duxmduK5f6qlbzTidpRWPJHHudZ6tkVj+34AK3bigPqxyKv2BmL4xZdMGLfJf8G1aHo4WzUt2S99w/vnj71Zs2s3nT/5eODOLk4+fAE1ROb3/0xo3EYJXrbNkgHZeedDCZDN/llK15hwUGkEn4hWYTrwCxGzBDn0smSKdaQqOFCeGzYXgNigdHANuBh+HnTefztj9TezjXdPZj9E3lmjd5L1jf64F7cN7c3fjt0Zfw/KH/CexPCks3Inbl/EE8JzCTi8ZdpWaTbDpJlTur1uZNFTnRNGxZPoz5M/MY6pNzmxvrGcVlxkVY2Bd8SxJCmE1ufnMwFqQ3RHi7i+1LhmfhyEG7PxK65qVzcCF/tn88kROnRFblmtFWwhuA52M5+Zo745c72h3fYRotC53jKlgJvGevpyuJE4iiecuF7AbyYVv0lFUqsTX/RsBr9xlLh73PLE8OgF441OkVJWpf1jVY/vgiyDbwcn54TXS+TulJLBtczBbezt+klvC0zTULCnjueX4b/Hm26e+q0/hE3kokbok0vzki35XBwSN2tkI3SGe4vyNwPA9N0wI+9rKIJrV8iLlvz5yd6EjmsGn6OnzxWXtRW9e1QGZfyignWMNqpNmkrYS3BgClBE4+vhtsi5D4oQOA4Y4hdlSdXpnZhN0+zo2VWbBkeZtQC5YVhK9bPi3R+Ziq9JU1AjxhLdLM6QolwTBuwKcZ+xYOWf1eqdmEqhI0zlGPvcuUfw1/UrW3V7JwKjKb7F4/ipcOHEdXZwaPPflS4Publ18tTK0qW6N1x5qZGMznAsWpVy8YRE9HGgePnKrIXe4TZ36AXapOFkscEBRmNskk0jh79nYA5TGU0DXM7Z0LANgyYtdxpRbHA1o5b+2lvrSV8HYfiMWzB/Dcb4JJ2BkKU+Cx3jW6DaM9MwP78SIsK2od5zDLtXn7hCeteQehzCaCJgVt2Rp1wltWXIfvvfCIN4jrAU84y/QkNamUEug5PQ8Hk09gUX4xnoItkJjeJowcKC6V2lYp4T3BFt43LLsCDz3/Hewc3eZt42m07oRCR1eKe0N0j7tyKbzz4hV49OnfM4X3ioI4vYSs8M5lkti4ZBrzu9svWQHLsqTs5/uNtyChJcXFhWXwJVnz090hv9DuniahaxjtmYmPbbkfPemu8ndO8WvxW64S3lXBnfmZwtuneXeyB2aC8jaJaNjiLfaM9+Nk7rdY1E/b+8K8TZKSppzAd74gnbH8KO5YI1UQKTqeCUP8PQtSeFslHX2nFuNdu8/DqRNJ/BV+DIDjbeL5lgfvV6ULsEUJ4b2wbz4+dMa91Dbuw+xs9meAFFGPaiwussKbB8skKeKsGWdUdT0PSxOaKioxY+iEyyEA5DPldSs65kL5edeENUPlwqA371uKGYOd2HfmGHNfZrg0cVMGxxdjLD/KPNZfjCEKPAHbfXwhbllxLd4y7zzu/sxXf2LRTdQmOysiaXrQILtQW2/K5mm+9KZMHJaOhKYjn+mhMkSyvU34mnelkNkixznCmwVPKLqv3uTENDdve6dsmr6Oc0w4sjVLAueuso+ki6XUHLHmXdGZPLMJY7InPgv9vJXwlmPvnF1Uqsn5M/L4wxs2YhpnoYQ1vMiuzll9jD1sKD/vqDZvrhKmY9ngYkoY2/uLbd6U8A4RxuTkY1kaOp06lLIZ7aqFL5wdQSupeZMlyNIp0pRV3mVujz0Br/SqHVUPGXBzekLeRsvX0hwtj/h+uHMInzzrQ7hi0aWiQ+pCYFG7Qvxl7hqFFWLzBoDLdi2QOhdp8/YT9iz6z9EIWtps0pPuZgpSrm05xGwiu+hXa5s3D3KGZ5lqZMPjAffhLEdYLh9cgvPHdlNvLnWFEx4vAzlJWaVyylfSt5jUeNZOW4WBXD9mupGLNdAK/TZv2QeHp6V59lWf0OxM8T006ikYqhnTlsVeT2oIITZvADh73Sw8/cJBPPPr14X7uadhac9UkI7vWSTfOlRuE2nYI4avhYq9TUQaNRXNGFkFquy4sNmedA8La1MmkcKpol1Q96pzFkHXdOwd21VRe2qCP8JVokuSpNmkpHsPF+lt4w+iGMuXA2RqIVdIs8nEZMl7cO5Ze1s57QCDsLc0Wf9qAEhzMv3Vgqhvk7qmoWhZzTWbSAhMmfaJNe/gfqznuYGKd2sLb+6LeAWaN4loIZIUjtEHOu/kHO0sRCCzor54ZJIZYNzOiT7QI+9/WytCw+MFO6RJs4mV8H6rqE5irXEXLF1N+dRTW3HuptncNRKvXZz74iaSqsS3viuXwtuddR0e8rVeaao1BTZNdsOSEpgy7RNr3sFnbf/O+fjsXz+F8zfP8b5TmrckvIHKe2DckF0SWaEcJbBHGs7IotwTmbO8fJvIzHWVaHu1xt9KmZ4MaN6Mg8SvztVLltndtvvoummr8CgA63QH+jL8NRIXns275CUDq+xebFjM9obyM/7rpbhu7xLp80b1oNIdH7pSs6S3ZqGQD4/ilNK83Tc6lvAm93P+WzKnH197z5uY52gELS28ec8k6zk+f/NsXLA56IVCO9/LaUGRg3QqfKcKC9KhQ8LDzCZl4V2tW1gUwp8dkbcJ7SrIQvTQRNVGSVYWluGetbdhZvcI5ky8iof+6ZdYu5BfxNZrV4jwrvVE6iaCyh2bizNG1ksfF1nzdvq9WQuWmmZh1rRwX3GZucVVAMI1b4GroFqwFHPj8qvwvRcewbrhVczvWYJu6Zx+YR1G+zi5AdyoBcswzZrlHseDTPjfDOHNXbHUqG+ZUF44ls7sf6HCUwO5YtvRbRPJ1pUj0gmXeAuWnuZd45QE52yag1+9eAg71gQDzUREHdNuvzfP5G1h+kC4GVCmedILliJvE6V5i1lVWOYVOGDB6lu5JPKSyXmi5jbhbL9o27zQ67A170oWLJstvG387ZTpS7+rIOtW1lvzjkqY5l3re5FJJXDlbnFqWRZRJxF3DDZ6wXJJv4FnXzeRHM8z/bL9VGI2CXMVFJmYlOZdJawOlFlISFiyOY2jRlgG2/DZ27Zw8y/QmnfwmoO9Oea+LOJi8w4gobmRQTq2q6D4LcRP80S3wOaN+phNohL9bdIxmzRYeF84/1xck7gKiTPl2i21YAlXeIuDdFpa8zYMIw/gLwD0AEgDuNs0zR/VsmHVUKlm5u1Tw1JQ7PNXdi46PD74fb5TPsAm02SzCe/hkenJgOZdwfn9zO8dwy4i90i94XqbOJkcRbEFjaTVvE00aOjMyScXk9O83b9hmnc8hHfUkXM3gB+YprkNwDUAvlSzFtWAMBMD/zhJm3ctHzhBs8LC40nCMrNlm71g6fzlu3HKh8eT93fPGXOQTSe8VKXiqwN3rbkFywflvTCqhTdWvNJzjXQMFhB1TIwM2G6LYalXa02lCpTM3JLw4geqsHk38HZGNZt8FsBp4hynatOc+lFLzbvaV8xkQsNkMVhQgLe//zOLYklccosU3qxCEXWnAs8gP1RWxJJOJby/9ZKVuHTrmLB/mueDzL+/rh0+PmaTaO14+76leOzp3+Ps9bNq3CIxlT6BMmNg26oZ6MqlMdQbdD1syQVLwzCuB3CXb/O1pmn+xDCMYdjmkzvDztPX14GkoIhtGIVCdQJnYKAz9Bzrl4xIXWdwoBuDnZW3p9uxbaeSOiaLdsTe4GAXN21l7+kO4tgs1TZ/OzMdSWHbB4+UiwPPnSFXUbyW9PVk8ZtXjqI/n6Pamc3av13XNam+t0oJjM3so/YdGuoRHtP1RnniqnYcVcpBlN3YqGs71YA6cpmatynK+Qb7u1HIV35codCN+WODFR9XLX19ndLtLRS6kfB5mrH6qFDoxoYV7GLQva8e9z53dWS5fdx5qhxt++4r1iLfWfv76xIqvE3TfADAA/7thmEsB/AwgHtM0/xh2HkOHeIngg+jUOjGgQNHIx8PAIffOIEDIdVGpudzUtc5dOgErBOVJfMHgOPHxwHQ2tjrB4/h1HH2uY4eKb/QHD8+7rWN1R9Hjp4Qtv3E8fKgqrYvo3D5rgXoyiWxb8sc6vqnnMFeLFlS7dr/poXYvHhI2Bd+jh4r92Ojf/vhw+xru5P3+OliTdsU9Vl5442TyIw3flxE5eDrx6Ta6/bHhC8TZKV9dPjwSe/ziRPj3OPJdMGLZ+YjXcsPT/hHXbBcAuBbAN5mmuZTVbSrYciYOmTdpapdZEpSWoDAbCJh89agwYLlFRHmcWziuPD7ejOQz+K6cxcHthd6swCAWQW5pPw7V8+Wcg0jaa6rIPu+FevkKhiVmq7jxJDauDLa0aQiWsFV8OMAsgA+bxgGABw2TXNfzVpVD2Rsq3W2ebvmMLr2pGj/8BziCT2BydIklbKUxcbhtfjpK0/iovnnyze4AexeP4psOokNi4ek9o8k7Jpp8+YIRStuwjsm7agXjVr3iH1uk9gL6ogEy4WxieoquGzuANa9dBippI4fPXPKOZfcdXiad1JLYBKTVNY7Ft3pLrx3/R2VN7rOpJI6dq6VjwaM0vfN1Lx5Hkyx07xj4vUiS6X3tFFBRI3sxniMnAYg89DLZniLGmE5MtiJd7xlOfKd5QU0YQWckAhLoDzhTIZ4m7Q6Vy/ZjwvnndvsZlQM19skdsI7Hu2oF42avutZqs5PW0ZYspDpUtkBXK0mRyd2F+0XHhjgFmSYDDGbtDobhtdEPrbmWSArgDem4qZ5N1LoNIUGvnx94uZNXoKweqKEN4Gs5l21b66kz6ic5m3fwjCzyVRm4/S1eOq1Z7Bn9o6GX5s36boKgChar5E0c4JrBNWG71eisA31NSZffjym/QaQlZgJw4Tye9a9E5cvugS5ZHj+YBF0EQXRfuFeKVudKtwrGhg12GrkklncsfomGP3zG37tsKjdWmcVjEqrCe9Kbdi7GxxE1AjaXvN++76l6Mgm0SWRByHsFXZ2zyzM7ql+EJACmyzlFdgP4WaTXaPbsHH62uZETSpCCRtTcVkojEs7whjMDeC1kwfRl+2t6Lhtq2Zg3kgeH3jw8UjXjePk1vbCu9Cbw9h0cQSeS6PsfrIDgaqbySuVpmlKcMeYMKHYbJv3Tcuvwq8Pv4gOQeHjOHH7qhuRSWaEhZp5FJyw90WjlQl+wDGbWMTnGND2wjuOGoVsk6jq8DGc+RXhhGvezRXeKwvLsFKQGz9u6JqOrhS/hqeITDqBL9+9ta6FnBtJ2wvvGMpuaQ1fRvNWxJuwaNxmC+9Wo1qtN5tuH5HX9iMnjkJPad5Th7B7HZesgorWo+1HTgxldwWad1lLiOMkpAgnbNKNWsx6qkKW85vqtM87BIc4Cj1LstJ2Ulead6sTdt/iuCYTRz6y+f04cPJgpIXK2mHfK7Vg2SBk8sTM6GpsfuuJolO/MKRxSU1p3i1PyG2Li5933OnL9lbsHtjutL3wlhF671sfWkuipoxP2MI7lRS/MieU5t3yUCXcGMQlwlIRQjyUbYopILxl9mnsA+Rq3mHCm1qwVJp3S5JJpHHjsisx1FFgfq8WLBVRmQLCO35Cz63qka5A81YaWuuyamg59ztdMg2xQuGn7af9OP7A8UlX8xY/uJQPcAwnIUX1qEm5BYmJCSWOsq2mxFLznpQzm5Aom3d7olwFFVFp+5ETQ9mNiUnbbFKJ8FYuZe2Jsnm3BjOH5GqsNpK2Hzlx1Lxds0mYzZtEad7tRV/GdntT7m+tQaE3h4yTE0X5eTeIBtYDlWZC0uZNEsdJSBGde9ffjt8de7nhMQaKKojZI6g07ybgFtzdvmpE+hilebcX3ekuLO5f2OxmKFqYtte8Yyi7sWX5dKxbNOS9hsmghLdCoSBRmneTqERwA/H9HQrFVKEnZS9aZmOSHKvthXccbd5RUJq3QtFc3rHyOmyevgE7Rrc2uykAIppNDMPoBPAQgH4AxwFcaZrmgVo2rHa0h9BTmrdC0VymdQ7h8sWXNLsZHlE17xsB/Mw0zbMAPAzgvto1qba0j8yLh3uSQqGIB5E0b9M0P2cYhmu0HQXwSu2apGBRtErNboJCoYgRocLbMIzrAdzl23ytaZo/MQzjXwAsB3B22Hn6+jqQrMCv2U+hEK1C+uBgFzqy4rScrUBXd4bqg6j90Y6ovqBR/UHTrv0RKrxN03wAwAOc73YYhrEIwN8DmCc6z6FDJyI1ELA7/8CBoxUdc83eRXj+xUM4duQkjh89FfnaceHQG8dwIGX3QZT+aFdUX9Co/qBph/7gTT5RFyzfB+B3pml+E/aCZTF60+rD1pUj2LpSPggm7iiziUKhIIkapPMggG84JpUEgGtr1yQFi5IVu/lRoVA0kagLlq8A2FPjtigEKM1boVCQtH2QjkKhULQjSnjHnDtX34xVheVYXeCX0lIoFFOPtk9M1eos6JuHBX1CRx6FQjEFUZq3QqFQtCBKeCsUCkULooS3QqFQtCBKeCsUCkULooS3QqFQtCBKeCsUCkULooS3QqFQtCBKeCsUCkULolmWqtCiUCgUrYbSvBUKhaIFUcJboVAoWhAlvBUKhaIFUcJboVAoWhAlvBUKhaIFUcJboVAoWhAlvBUKhaIFiXUxBsMwdABfBrASwGkAN5im+avmtqpxGIaxEcAfmaa53TCM+QC+DsAC8AsAt5qmWTIM44MAzgMwCeBO0zQfb1qD64BhGCnYBa/nAMgA+AiAZzEF+wIADMNIAPgaAANAEXbxbw1TtD9cDMMYAvAzAGfD/r1fR5v3R9w17wsBZE3TPAPAewF8usljSUkbAAACWUlEQVTtaRiGYbwHwJ8CyDqbPgPgPtM0z4L9sO4zDGMNgG0ANgLYD+BLzWhrnbkCwEHnd+8F8EVM3b4AgAsAwDTNLQA+ALsvpnJ/uBP8VwGcdDZNif6Iu/A+E8A/AIBpmj8GsK65zWkoLwC4iPh/LYAfOp8fAbALdv983zRNyzTNFwEkDcMoNLaZdedbAO4n/p/E1O0LmKb5twBucv6dDeAVTOH+cPgUgD8B8LLz/5Toj7gL7x4Ah4n/i4ZhxNrUUytM0/wOgAlik2aappvL4CiAPIL9425vG0zTPGaa5lHDMLoBfBvAfZiifeFimuakYRjfAPDHsPtkyvaHYRjXADhgmuY/EpunRH/EXXgfAdBN/K+bpjnZrMY0mRLxuRvAGwj2j7u9rTAMYxaAfwXwTdM0H8IU7gsX0zSvBrAQtv07R3w11frjOgBnG4bxKIBVAP4cwBDxfdv2R9yF938AOBcADMPYBODnzW1OU3nCMIztzue9AB6D3T/nGIahG4YxCntye61ZDawHhmFMA/B9APeapvmgs3lK9gUAGIZxpWEY73P+PQF7IvvpVO0P0zS3mqa5zTTN7QCeBHAVgEemQn/E3QTxN7Bn1f+EvfBwbZPb00zeBeBrhmGkATwH4NumaRYNw3gMwI9gT8S3NrOBdeL9APoA3G8Yhmv7vgPAF6ZgXwDAdwH8mWEY/wYgBeBO2H0wFccGjynxrKiUsAqFQtGCxN1solAoFAoGSngrFApFC6KEt0KhULQgSngrFApFC6KEt0KhULQgSngrFApFC6KEt0KhULQg/w+3++dyASfgUAAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -459,7 +431,7 @@ } ], "source": [ - "plt.plot(Y[:,1:3,1])" + "plt.plot(Y[:, 1:3, 1])" ] }, { @@ -471,7 +443,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": { "collapsed": true }, @@ -514,12 +486,12 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBUAAAEFCAYAAAC8b987AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4HNXV+PHvbN+VVr13yWXcK8YU\n08GUQAiEACkkJD/jQEJCQoAACS+QkFDyAnHgxQQCIYEEQoDQYqrBHRv37rGtZjWrebVq23d+f6ws\nW5ZkFcuSbJ3P8+ixdmfmztkrWTt75t5zFV3XEUIIIYQQQgghhOgrw1AHIIQQQgghhBBCiBOTJBWE\nEEIIIYQQQgjRL5JUEEIIIYQQQgghRL9IUkEIIYQQQgghhBD9IkkFIYQQQgghhBBC9IskFYQQQggh\nhBBCCNEvpqEOQAjRPVVV84BiYJmmaeccse0l4HtAsqZpdUdp4zfAXk3T/j5AMS0ELgH+CSwFngeq\ngXM0TfP0sa2vALM1TfufgYhNCCGEEH2nqqoRuA34FpHPBxbgPeB/NE3z9bPNWOA/mqadP0Ax9qs9\nVVXncuha5SJgERAH3Kdp2luDEYMQJzsZqSDE8OcFVFVVcw8+oapqFHBmbw7WNO1/Biqh0OaHwFma\npv0KuB54XtO0U/uaUGgzC0gYwNiEEEII0XcLgdOBCzRNm0bk/VkF/nIMbcYDpw5AbMfaXvu1CjAV\nSNU0bWJfEwrHGIMQJzVF1/WhjkEI0Y22kQrbgBeAak3Tft/2/A1E3hh/ASQDB4AngdMAJ6AA8zRN\nW9k2omGbpmn/q6qqF3gEmAukA49pmrawi/OOBxYAiYAR+JOmaS+qqrocmNMW0+vAzwEP8E9N0+5U\nVfVXwNeJJCxLgB9pmlapqmoa8CwwDgi3fb8GeKet/efakhRCCCGEGERt1xrbgXRN0xoPez4NOFPT\ntDfb7tD/HzAN0IEPgHs1TQt2d22hqurnwNnAVmAm0ErkfX8q8G1gCpEbFRYiNxgeaTsuDfg7kNQW\nyn81TbvvyPY0TQsdFqsFeBQ4h8h1xUbgp23t30PkWuVLYDKQCWhEkijT246LAkLAg5qmvd/W5j1E\nRoQGgT3AjcDb3cUgxEgmIxWEODH8HbjhsMffA1467PFsIAM4XdO0CcDfgLu7aMcK1GmadgZwDfCk\nqqq2w3dQVdUEvAHcrWnaTCJv0Heoqnqapmlnte12nqZpvwXeBZ5sSyh8l8ib9altdzkWcegOxzPA\nbk3TxhF5E58P1BNJLvxLEgpCCCHEkJkJbD88oQCgadp+TdPebHv4JyLv25OBU4gkBu5o29bdtcX3\nAY+madPaPnxbgPc0TVOBXcBNwGWapk0HrgMea2vvJqBI07QZwFnAmLakxpHtHe5uIh/+Z2qaNhWo\nJJKk+AOHrlWuAuYBhW3XKTbgr8ANbee6ElioqmqOqqpfJZJEOF3TtElEpqLe2kMMQoxYUlNBiBOA\npmnrVVUNqao6E6gBnJqmbVNV9eD2L1RV/TXwQ1VVRwHnAk3dNPdO278biFwIRBGZYnHQWGAU8OLB\n9gE7kWz+6qOEeTmRIYHr2o4zAo62bRcCd7XF6gYmARzWvhBCCCGGRpiebzReSmTUgg74VFV9FvgZ\nkREK0PW1RVeWA2ia1qyq6uXAV1RVHUNkBER02z4fAotUVc0BPiVyk8Otqmr8UeK7nEidhIvari0s\nRK6XjuZ0IiMr3j7sekQnMoLiQuDfmqa52uK9HdpHdQghjiBJBSFOHC8D3wFq275v11bwcAHwOJE3\n9l1t+3bFA6Bpmt72Jqocsd0IuNuy+AfbTwXcPcRnBB49OJ1CVVUrkbmHELl70D7XSlXVAqDb4pJC\nCCGEGDRrgPGqqjo1TWu/IaGqaibwHJHRBwYOex9ve2w+7HFP1xYHNbe1nQV80db+CiIjJC9va2Ot\nqqr5RD7Ynw98qarqpURGSnTHCNymadoHbe1HExmJcDRGYKemabMPe80ZRK6zzqfjdUsckaSFEKIL\nMv1BiBPHK8A3iAwR/OcR2y4iMqRwIbAO+BqRN8v+0ACPqqrfAVBVNZtIDYWZPRz3ETBPVdWYtse/\n4VDy41MiQwYPVk5eDIwhkmwwI4QQQoghoWlaJfAPIiMUYwDa/n0GqG8rxPwRcKuqqkrbTYP5wCc9\nNB0EjKqqdpVgOIXIh/eHgI9pSyioqmpUVfURIiszvE1kRYrtREY4Hq29g/FZVFU1EFnt4eEe4ltN\nZGrF2W3nnkakdkImkeuWqw+7pnkAuL2HGIQYsSSpIMQJQtO0CmAnsEfTtANHbH4WOFdV1a1Ehh4W\nAvltb6x9PY+fyLzCeaqqbiHyZn+fpmkrezj0L8D7wGpVVbcTGT54Y9u2W4ncBdkCrAQe1jRtPfAZ\ncLGqqk/1NU4hhBBCDJgfATuAVaqqbiIyemEHkRoEECl6mEKkQOFWIjcgftdDm1VEiiNuV1U18Yht\nHwPlbe3sBHKIJBlGA38Epqmquo3IjZJi4LUe2vstkQLRG9viVogUs+6Wpmm1RIpL/0FV1c1EboTc\noGlaiaZpi4jUW1jZdm2VBvyqhxiEGLFk9QchhBBCCCGEEEL0i4xUEEIIIYQQQgghRL9IUkEIIYQQ\nQgghhBD9IkkFIYQQQgghhBBC9IskFYQQQgghhBBCCNEvpqEO4KDa2iapGNlL8fEOXK7WoQ5jxJD+\nHnzS54NP+nzw9bbPk5OdsnTZIBnp1yLyd2DgSF8OHOnLgSX9OXBGWl8e7XpERiqcgEwm41CHMKJI\nfw8+6fPBJ30++KTPxXAjv5MDR/py4EhfDizpz4EjfXmIJBWEEEIIIYQQQgjRL5JUEEIIIYQQQggh\nRL9IUkEIIYQQQgghhBD9IkkFIYQQQgghhBBC9IskFYQQQgghhBBCCNEvklQQQgghhBBCCCFEv0hS\nQQghhBBCCCGEEP1iGuoAhBBCCCGEEEIMriWbKga0vXOnZQ5oe+LEISMVhBBCCCGEEEIcdxUV5fz6\n13cxf/6N/PSnN3PnnbdRVFQ4YO0vXfo5dXW11NfX8b//+0ivj9u+fRvnnnsaO3dub3/uhRf+zNtv\nv3FM8bz88kvs2LENn8/He++9PWDtDjcyUkGIk1TD0iXdbos759xBi0MIIYQQ4nhaUbG6y+fnZJ42\nyJGIo/F6vdx99+388pe/ZtKkKQDs2LGNJ554lKeffm5AzvHvf79KXt695Obmcccdd/f6uPfff5vr\nr/8Ob731b371q4kDEgvADTfcCEBVVSXvvfc2V1zxtQFreziRpIIQQgghhBBCiONq5cplzJw5qz2h\nADBhwiSeeurPAFRX7+exx36P3+/DYrFy1133Eg6HeeCBX5GSkkpFRTkTJkzkjjvuobm5mUce+Q1u\ntxuAn/3sTqqr97N3724eeuh/uO++3/LQQ/fz3HMvsXLlcv761+cBGDNG5c4778FgODRgv7W1lfXr\n1/Lyy6/zve9dT0NDA3Fxce3bdV3n8ccfRdN2kJCQSFVVJY8++iQ+XxR33XU3wWAQRVG47bY7GDNm\nLF//+uXk5uaRm5tPc3MTF1wwl6VLP6OkpLg9juXLl/H554txu93Mm3czc+aczXXXfY1Jk6ZQXl7G\njBmn0NLSzM6d28nJyeW++3573H8+x0KSCkKMUEebR3csc+KOV7tCCCGEEOLEVVlZSWZmdvvju+++\nnebmZurr61iwYCH/938LuOaa6zj99DNZt+5Lnn32aebP/xFlZft48smnsVptXHvtldTX1/Gvf/2T\nmTNP5aqrrqGsbB+///2DLFz4AqNHj+XOO+/FbDYDEAwGefLJx3j++b8RH5/AX//6PDU1NaSlpbXH\nsXjxx5xzzvlYrVbOP/8i3n//bb7znRvbt69YsZTGRjfPP/93XC4X3/zmVQA89thjXHPNdZx11rns\n2aPxyCO/5YUXXqamppoXX3yF2Ng4fve7BwD47nd/QGHhXr7//Zt44YU/k5yczN1338eGDev45z//\nzpw5Z7N/fxULFjxLUlISl156Ps899xI///ldXHvtlTQ1NeF0Oo//D6mfJKkghBBCCCGEEOK4Sk1N\nZdeuHe2PH3nkCQDmz7+RUChEUdFeXn75r/zjH38DwGSKfFTNzMzC4YgCIDExCb/fT1HRXjZsWMfi\nxR8D0NTU1OU53e4GnE4n8fEJAHz/+zd12ue9997GaDRy++0/wefzUlNTw7e+9d327SUlJUyaNBmA\n+Ph4cnLyACgsLOS2234JREZA1NRUAxAbG0dsbBxHo6rj21+P1+sFICYmtj3ZYbfbyc8vACAqKhq/\n3wdIUkEIIYQQQgghxAg1Z845vPLKS2zbtrX9Q3p5eRm1tTUoikJOTh7f/OZ3mDx5KqWlJWzcuB4A\nRVE6tZWbm8fcuROYO/cSXK4D7UUQDQYD4XC4fb/4+ASam5tpbHQTExPLH//4B+bOvZQJEyYBUFi4\nl3A4zHPPvdR+zM9+9iNWrVre/rigYBQffbSIa6+FxsZGysr2ATBq1Ci2bNnInDnnsGePRkJCYnsM\nR1IUA7oePuxx5/7p6nWeKCSpIIQQQgghhBAjzGBPS3U4HDz66JM8++xTPPtsPaFQEKPRxF133Uta\nWjo//vFtPP74I/j9fnw+L7fddke3bX33uz/gkUd+y7vvvkVraws/+MF8ACZNmsJDD93PXXf9Coh8\nwL/99l9y550/w2AwMHasyvjxhwoxvvfef7j44ss6tH3FFVfx5puvt9d+OOOMOaxevYqbb/4BCQmJ\n2Gw2TCYTd911F7/85T28+uorBINB7rnnvm7jjY+PJxAI8swzf8Jqtfa7D4crRdf1oY4BgNrapuER\nyAkgOdlJbW3XQ3zEwDtR+7un1R+Gc02FE7XPT2TS54Ovt32enOw8cW9dnGBG+rWI/B0YONKXA6c3\nfSmrP/Se/G72XWlpCXv2aFx44cW43Q3ccMN1vPHGe2RmJo6ovjza9YiMVBBiGJNlIYUQQgghhBg6\nKSmpLFz4J15//VXC4TC33PITLBbLUIc1rEhSQQghhBBCCDEidTfCUlasEgfZ7fb2opKiaz0mFVRV\nNQDPAFMBHzBP07S9XezzX+AdTdOeVVXVDrwCpABNwPc0Tasd6OCFEODdV0rTmi8Itbai+3zo4TBR\nk6egB4MoJskbCiGEEOLkcmQioMjbAMDY7I4V97ubFgEyNUKIgdSbTxxfA2yapp2uquppwOPAlUfs\n8xCQcNjjW4CtmqY9oKrq9cCvgdsGImAhRIS/upr6d/5D05ed3zCb161FMZux5Y/CMXkKRodjCCIU\nQgghhBBCnOx6k1SYA3wIoGnaalVVTzl8o6qq1wBh4IMjjnms7fsPgO5LYQoh+syzexc1/3wZQiGs\nObkkfvVrWNLSUaxWdJ+PxtUraVi8GM/uXXj3lRB71jlY0tKHOmwhhBBCCCHESaY3SYUYwH3Y45Cq\nqiZN04Kqqk4CvgVcA/xPN8c0AbE9nSQ+3oHJZOxd1ILkZOdQhzCiDFV/h5ydl5xp3KXRtGY15rg4\nCm76AYlnnI5yxHq4mZPHUJWVhnvrNuq/WEPDpx+TePpsYqdOQVEUkpOdOKNt3Z63q9f7aeHyLvaM\nuHDUWe3f97XdgdhXDAzp88EnfS6EGO66KxotBaNPfEebHtIfMqVk5OpNUqEROPyqx6BpWrDt++8C\nmcBnQB7gV1W15IhjnEBDTydxuVp7FbCQpWAG21D2d1OTr8Nj775SGpctRbFYyPjZL9Czsqmrb+ny\n2OaWAMYClbjoOBqXLaF+1Wpa61xEn3oaxtommpq93Z73yNfb4g2wbXszDW4dgwEMBjCbFZISDcTF\nKh3270u73ZHf8cEnfT74+rCk5CBEI4QQQgyOl19+iXXrvsRgUFAUhfnzf8xHHy3iuuu+TVpaWr/a\nfOGFP5OYmMjXvnZNl9v379/P3r27mTPnbBYsePyYziU6601SYSVwBfB6W02FrQc3aJp218HvVVV9\nANivadqHqqpOBC4DvgQuBbq/xSmE6BV/VRWNy5eiGI3EXXAR1qzsXh1nSUkl/itX4F78KZ7dGorF\nSvy55x31mCWbKtB1nd1lbvaUN3Cg0dftvmYzfJm5kVnjUjh1fGqfXpMQQgghxLEK6H5cwRr27duM\nruvkxmSTG5OF1dh5xKcYWsXFRaxcuYyFC19AURT27NF46KEH+NvfXj2u592wYS2lpSXMmXM2t932\ni+N6rpGoN0mF/wAXqaq6ClCA76uqejuwV9O0d7s5ZiHwN1VVVwB+IlMkhBD9FA4EaFwVyc3FnncB\n5qTkbocj7m0o6vJ5ZdZY4r7YTuu2LVQu/D8czowu92uddCquJh9fbNtPnduLQVFIjbdjjW0i2qmT\nkRRNOKTj9enU1oWpqQ2zo8TFjhIXr366h6yUaCbmJxDfxdQNIYQYSP1ZoWrwoxRCHE97vJvY4lkJ\n6BCIfFip8x5gY80WZqRMYUz8qKEOURwmPj6B6ur9/Pe/7zB79hmMGaPy/PN/49Zb53Pnnffy6acf\nUVFRTkNDA01Nbq666hssWfIZZWWl/OpXD5KYmMj999/Lc8+9BMD8+Tfy4IO/b28/FArxhz/8npqa\natxuN6eddgY/+MF8XnnlJbxeL5MnT+G11/7BnXfeS0JCIr/97X20tLQQCoW46aZbmDlzFt/73vVM\nmzaDwsLI28kjjzxBdHT0UHTXCaPHpIKmaWHg5iOe3tXFfg8c9n0r8I1jDU4IEdGyeSPh1lYck6f2\nu+CibrUQd+FcXB9+QPP6tZjHzSCQ1nm0w7aiejbuqUPXIS/NyazxKditJoq8kUFKOVmHap+MGxv5\nd4JzGiu37Wfl1iqKKhsprmxkVGYs08Yk4rCZ+xWvEEL0Qn9WqBJCnCQ0zwa2eJZjwkKaOZeZOaNR\ngJLGcnYd2M26ms2YjRbyYno3ulMcf3FxcTzyyBO8+ea/ePHF57HZbMyf/6MO+1itVp544ilefvkl\nvvhiJY899iT//e+7LF78Mdde+82jtl9TU83EiZO5++778Pl8XH31Zdx00y185zs3to1UOIfXXvsH\nAH/72wuccspsrr32m9TW1vCjH83jX/96m5aWFi688GJ+/vO7ePDBX7N69UouvPDi49YnJwNZxF6I\nYS5QX49n106MTidRkycfU1vFwVoMs8cTtXIzdm0j9TYPvuio9u1lrQVsKK/DYTNx2sRUspJ7l5VN\niLFxxRl5XH56Lv/4ZDcbdteyt8JNcVUjM8YmMy43DkVRjil2IYToQn9WqBJCnAQ0z3q2eFZgV6Ip\nsE7CZnDgMNkBGJ8whjRHCovLlrG6ah1Wo4X0KJmiORyUl5cRFRXFvffeD8CuXTu4447bSExMbN9n\n7NhxADid0eTl5bd9H4Pf33k6rq7rHR7HxMSwc+d2NmxYR1RUFH5/oNtYSkuLmTv3EgCSk1NwOKJo\naHC1xaACkJKSit/v7+/LHTEkqSDEMKaHwzStWQW6jnP26SjGY/8vG3ZG4Zk+DvuX20jfWci+aeMJ\nm83saUlgS5MFh83AJbNziLb3fYSBoihkpUSTkRRFYaWbjbvrWLurhpoGD6dPkjdzIcSA688KVd2S\nlaikMOhAOln6squVqGBwX9+R52o0VrHFs4Ioo5NLU75Jpa8UAKfz0ApUTqeNS2znsGj3Z6yoXMM1\nEy8jxhrdqc3uVq06WX5+XWl/7Y3dr9h1LO0ezcaN5bz66qs8++yzWK1W7PaJxMbGYLGYiY93EBVl\nxem0kZzsJDrahtdrJTnZSWysHZvNTHp6Ao2NDSQkOGhpaaG6uoqEhCiioqxER9tYtuwTUlISufPO\nOyktLeXdd/9DUlI0sbEObDYTyclOLBYT8fEOxo9XKSzcyZlnzqK6uprW1mZGjcrCaDSQnByD1WrF\n4bC0x9Pf1zwSSFJBiGHMs1sjWF+PrWAUlvSuayD0lY7O/nQH+uhERu2tx1a8i7fPjidgKsduCKMD\nn3qt2HwO7IZokswZJJuyCOshDErvLrYNBoUxWXFkJkWzbHMlpfubcDV6mZiXSGZSVM8NCCFE7/R5\nhSpN0z7srrGRvhKVrAIzcE6mvjxyJaqDjMfh9XW1xKHTaaOpydu+XKE36GV5/QcoKJwedTmKz47P\nG2iLteMKVNHEMCt1Oqv3r2dl8XrmZM5u33bw59PdqlUny8/vSIf/bk6NmTagbfemz6ZPP50tW3Zw\n1VVfx+GwEw7r/PCHP+H11/+Jy9VKS4sPm81LbW0Tzc1eWlp81NY24XZ78HoDgI0ZM2bxta9dRWZm\nNhkZWRw40NJ+3JQp03n11XtZvfpLbDYbWVnZ7NxZRHJyJk8//X9kZxfg9wdxuVq55ppv8/DDv+H9\n9xfh8/n4xS/uweXyEAqFqa1twmr109rqp6nJ2+VrO5n+n/fG0RIoypFDRoZKbW3T8AjkBDDSfoGH\n2lD1d9jvp/D2n0IoROKVV2Ow23t1XHeFGkOEKTY1scPiot7oBV3niqVuCir9rBkbyxfjkkk2KihO\nJz7dgy/cik/3tB+vYCDRlEaqKRuboWNioMDW/bSMcFhn455athe7iLabuetb03ucViG/44NP+nzw\n9WFJSZk71A1VVb8OXKFp2o1tNRXu1zTt0i72e4DIClVHLdQ40q9F5O/AwDlZ+jLU3EzN668RPFAP\nug46GBwOrHl5JF3+1QE/X2+SCq9qb7GiYjVxLRPRq1RavAGaPX6MRohyGLDZFOw25bB/dQoNq2gK\nH2Bq1JkkWJJw2BTmjj0Nk9HAkk0VXcZy7rTMAX99w8HJ8rs5HIy0vjza9YiMVBBimHKvWIbu9eKY\nNKXXCYXulBmbWWmrwmMIoeiQE4gm3m3FlZ+Ku7aYU3e7iSKXrIx8WjNPbT/OH/ZSG6ygNlBBqX8n\ndcFK6oKVxBoSybCMwmHoueaCwaAwU03B6bCwens1f3h1I3d9a4aMWBBCDIT+rFAlhOjCwVWldF3H\nX15G684dBGqqI8mEI7Rs2kDLpo0kzL2E6FmnDlrdpC9Kt7GiYjXh1miqdmSC3orNYiQqWiccBp9P\nx93YOV4lSsU28Qs21m7Bt+0MQOEtZSlJcTYykqIYlxOHxTyypz4JcSwkqSDEMKQHg7g+XARGE47x\nE/rdThidTZY6NlvrMeoKk/wJjPPH4dQtVLe2ss6dwdbUHL5b/gHjineyL06h0ts5gRFjjGeS7XQa\nQrVUB8twh+txew+QZsol3ZzXq1jGZscxJiuOlz/S+MOrG/nlt6aTniiJBSFE//VnhSohRPf8lZU0\nb9pAsL4OAFNSMtbsbCxp6e11nQIH6vGVFOHbV0rVcwuJ3rCe1O98F+NxXnJv7a5qXi58C2xg3T+D\nUyZlkJvmxGQ0tK9QNTY7jnBYx+cDj1fH69Xb/k2iNJSN21FGzrRKLI054I+mvKaZGpeH7UUHGJcb\nx9TRSRgMMjhMiL6SpIIQw1Dj6lUEDxzAPm4CBlv/iuj4CLHUXkmFqYXosJnzPJkkhQ+1VeaJodQb\nR3y0h7q8TFJKykndU0zl5HHQxR0HRVGIN6UQb0rBHapnn38X+4MlNIRqSDCnkmBK6zGm86ZnEg7r\n/OOT3Tz5+mb+58ZZ/SoIKYQQQoiBE3S7cS9bgq+0BABrbh5RU6ZhiovrtK8pPh77qNE4xo1n/4vP\n07zuSzx7d5Nxy63YR40GDo16OFLcOef2OTZd19m0JcDm8o+xjGpmtH0S02ZO63Z0hMGgYLeD3d5x\ne0FwMu8XVdFs38MVEws4J3smHl+QFxbtZEfxAbYWHaCh2c/Z09IxGgx9jlOIkUz+xwgxzOjhMAc+\n+C8YjTgmTuxXG2F0PrdXUGFqITMYxVdb8jokFFqDBjY2pmNUwsyKq8CdmUpLXAxRrkYytmk9th9r\nTGSCbTbJpiy8eiufN75BkXdbr2K7YGYWXz0zjzq3l2ff2UYoHO7XaxRCCCHEsdF1ncZVKym57158\npSWYkpOJ/8oVxJ59bpcJhcNZUlPJ/uW9JF19DaHGRsqf+F88e3YPeHxLV7SyYYsPa3YhRsXI96Zf\n0a/pFmVVXhKN6XhCXtaUaizZVMGandVMyk/gqrMLSEt0UFbTzJKNlYRCcm0iRF9IUkGIYaZp3ZcE\nqquJPXMORkf/pgestdZQZWolOxDNRZ4srHScJ7iqJoGAbmRydDVOkx8Uheqx+QTNJvLWbiGq7kCP\n5zAqJnIsYxljnYpJMbO+dTHrWhYT0oM9HvvVOflMG53EjhIXby7turCkEEIIIY6fsNfL/heeY/+L\nz6OHQkTPmk38xZdhTkjsdRuKwUDCZZeT/sMfoQcDlP/xiQFNLGzbEWTzVh/OnHJ0SytnZ51Ogi2+\n3+2lmLJRUKgO7OPwYvVmk4HzZ2SSkeSgoraFJZsqCQ+TYvZCnAhk+oMQw4iu67g+/AAUhfhLvkLr\nzh19bmOPqYEdFhdxIQtne9NR6JjNr2ixstsdTZzJQ4HD1f58yGKmemw+mdv3MO6zVWz62sWELD1P\nTYgxJnJhzPWsav4vxb5tNIbqOSP6cmwGR7fHGBSFeZdP4Ld/X8eHa/aRm+pk9oTUPr9WIYQQQnTW\n0/QDX0U5lQufJrB/P7b8AtLn30LLju39Pp9z5inwwx9R9ednKP/j48RdMBdzYu+TE10pKgmydkOA\nqOgQxvRCDIqFi3PPP6Y2LQYbCcZU6kP7qQoUk2EpaN9mMho4b3omn22ooKK2haUbKzhvRtYxnW+4\n6+73pL/6M71FnBxkpIIQQ6xh6ZL2r7o3/41vXynW7Jx+JRTK9AZW2aqx6AYu8GRhOWKEQkiHZfsT\nAZ3psVWdSie0xsdSPmUc9sZmRq1a3+vzVgf2kW+ZQLwxlfpgFR+5X2Z76+r2wkldcdhM/OTqydgs\nRv724S7qGjzd7iuEEEKIgdG6cwdlDz9EYP9+4i66mOxf3os5OfmY23XOmEn6/JvRfT7cSz8n7PP1\nu63auhDLVvoxm2HimbX4wj7Oz5qD03LsxSBTzTkA7PKu67TNaDRw5uR0LCYDry8ppM4t1yYDacOG\ndcyZcwqLF3/c4fnvfe96fve7B3rVRmlpCbfeOh+A+++/h0AgMNBh9tn999/Dhg2df5+O1erVq3rd\nL4cf8847bw14LD2RpIIQw4iN6cWKAAAgAElEQVRnd6SegX2s2udjQ3qYt8JbCKNzrieTGN3SaZ/N\n9TG4/BYmxjWRYPZ22U7pzMk0JSeQsreE5D3FvT6/QTGSb5lAuikPv+5F866nMXT0aRQZSVF8+6Kx\neP0hXly0U4YaCiGEEMdR45rVlP/xcfRgkLT5N5Ny3TdRTAM3cNk5cxYJV1xJuKWZxhXLOkwx6K1A\nQGfJCj/hMJx7lpnilt0YFSPn5Zw1IDHaDdHEGhKpD1ZRF6jstN1hM3HKuBR8/hB/+1Dr12sQ3cvN\nzePTTz9qf1xYuBePp3/JmwcffBizWQp+H+60087gyiuvHvTzyvQHIYaJsNeLt6QYY0wM5rT0Ph+/\nRt9HDc2ogTgyQ51rMTQHjKyri8NuDDE7pQF3Y9ft6EYju847g+n/+ZBRq9bTmJaMz9m7OwOKopBh\nKcBqsFPq38Ue32ZiTUnkW7svOHnGpDQ27K5l4546Fq8r56JZ2b06lxBCCCF6z7N7F01rVmOw28n4\n8U9xjBt/XM6TeMWVNK9fh7+ygpYtm4ieOv2o+y/ZVNH+fZG3AW2nkaYmI1k5Icr9+2j2t5JsymLd\n9gagYUBiTDXn4vbVs9u7kSRzRqftozJjaGz1s63oACu2VnHWlM77iP4ZPXoMZWX7aGpqwul08tFH\ni5g791Kqq/cD8Nlnn/Kvf/0Dg8HAlCnTuOWWn1BXV8dvfvNrdF0n4bCaH9dccwX/+McbVFSU8dRT\nTxIO6zQ3N/Gzn93B5MlTuf76q5g8eSr79pWSkJDAQw89htF4aBTv7373AG63m8ZGN48++gQLFz5F\nTU01breb0047g5tuuoXf/e4BzGYz+/dXUV9fx733PoCqjuPNN1/nww/fIzY2HpcrMp04GAzy8MMP\nUlFRQSgU4vrrv80FF8zl1lvnM3r0WIqLC7Hb7UyZMp0vv/yC5uZmnnjiaWJiYtpjKikp5uGHf4PN\nZsdut+F0xnTbL1u2bOLpp/+IyWTC6XRy//0PsWTJZ5SWlnDLLT/hpZf+wrJlnxMXF4/X62XevJvZ\nuHE9VVWVuFwuqqur+MlPbmf27NOP+ecqIxWEGCY8hXsgHMY+dlyfqxq36D4W67uxYWKGP6nLfdbU\nxhPUDcxOcWEzHr2qsS8mmqIzZmIKBBm7dA30MUufaEpnjHUaRoysa/mUba2r0HWdJZsqOn39dc1H\nmJMrsVnh9SV7eH/HKj4tXM6KitV9OqcQQgghuuYtLqJpzWqMzhiyf3nvgCQUDp++efiXe/kyYuac\njSEqmtYtmwnU1va6zZr9BmqrjUQ7w2TnBqkO7AMUUk29u+Gwu6yh26/DRRtiiTMmUxEopCXU+S6L\noijceMk4rGYjby0rIhAM9fo1iJ6dffZ5LFv2Obqus3PndiZNmgJAY6ObF1/8MwsWLGThwheoq6th\n7drVvPbaK1x44cU89dSfOfvsczu1V1xcxK23/pwFC57huuu+zaJF7wFQWVnBvHk38+c//5WGBhc7\nu5haPHPmKTz77Iu0trYyceJknnjiaZ555i+8/fYb7fukpaXzxBNP8/WvX8e7775Fc3Mz//73a7z+\n+us88sgTBIORKRjvvPMmsbFxPPvsiyxY8AzPP7+QhobI796ECRNZsGAhfn8Am83GH//4DHl5+Wza\ntKFDPH/5y0LmzfshCxY802O/LF++lHPOOY+nn36Or3zlShobm9rb2bNnN6tXr+L55//Oww//L/X1\nde3bzGYLjz/+J2677Rf861//7M+PsBMZqSDEMKCHw5GpD0YjtlGjetx/b0PHFRNWWffjtQQ51ZuC\nTe/837rGY0FzR5No9TMutrlXMdWMziOxpJzE0goytmlUTh7XuxfTxmmMZ5xtJiX+Xez0rqU57GZW\n1EUYlc7xWSxwxmkWPlvqZ9lKP9/8hr1P5xJCCCFE13yVFTSuWoFiNhNz9jl4CgvxFBYe13MarFZi\nzjyLho8/oGnNKuIvuwLFcPR7mS2eAIV7jBiNOuqEIM0cwKM3k2RJw2qwH7VOU18pisIY23TWtnzM\nXt9mpjo6T61IiLFxwcwsFq0uZemmSi48RUZSDpSLLrqExx9/hIyMTKYeNpKlvLyMhgYXd9zxUwBa\nW1upqKiguLiIiy++DIDJk6fyn/+80aG9pKQUXnrpL1itVlpbW4mKiozYjY2NIzU1DYCUlFT8/s51\nPnJycgGIiYlh587tbNiwjqioKPz+Q7UaxoxR29vYunUzpaUl5OcXYLFYMJl8jB8fGZFbUlLCKaec\nCoDDEUVeXj4VFeUAjB0buY52OqPJy8tv+z6mU0zFxUWMHz+p7bVOo7S0pNt+ueGG7/P3v7/Ibbfd\nQnJyChMmTGpvp7S0mPHjJ2I0GjEajYw7LJE4duzB15PWZZ/0h4xUEGIY8FdVEm5uxpZfgMFi7dOx\n9QYvmrmB2JCF8YHOyyzpemQJSYAzUw9g6O0gCEVh75xZ+G1W8tZtwe5y9ykuAJshigtiriPJlEGZ\nfzfLm94hoHf9x8uvNJOUEqKuPszHyw6wu6yhfTSDEEIIIfoucKAe95LPQVGIPe+CPi0XeawsqanY\nRo8h6HL1WHxa13XW7KgmFFLIHxXCbqdtlAJk2PKPS3zZljFYFQfFvu0EdX+X+1x8ajZWs5FFq0tl\ntMIAyszMwuPx8MYbrzF37qXtz6enZ5KSksof//gMTz/9HNdccx0TJ04iNzeX7du3AHQ52mDBgj/w\n//7fD/n1rx9k1KjR7XUwejPyV1EiH4cXLXqf6OjIFILrr/8OPp+323YyMjIpKSnC6/USCoXY3VYT\nLS8vjy1bNgLQ2tpCYWEhGRkZvY4FICcnj23bIq91167tR+2XTz75gMsuu5ynnvoz+fkFvPvuoQKN\n+fmj2LVrO+FwGL/f3x5jJJZehdInPY5UUFXVADwDTAV8wDxN0/Yetv3HwI2ADvxG07T3VVVVgHJg\nT9tuX2iads8Axy7EScOj7QLArvZtNADAWmsNKDDbl4qBzn8lipsdVLbayItuJSuq6+KM3QnYbew9\naxYTPlnB2KWr2fzVi6CHOw1HshrsnO28ijXNH1IRKGRJ45uc5bwSm6Fz3YeCUSFc9QYK90BcHGDr\n06mEEEII0SbctgoDoSCx556Ppe2O7WCKnnEKvrIyWjZvxJab2+1+pdXNlNe2EBsXJjU9TEu4kaaw\nC6chnmhTDL7gwFf4NyomRtkms8OzhhLfTkbbpnbax+mwcP6MTD5Ys49lm6u4YObJtcTkUC4BecEF\nF/HRR4vIycmlsjJyAyk+Pp7rrvs2t946n1AoRHp6BueffxHz5t3C/fffw6effkxGRmantubOvZS7\n7/4FCQkJJCen4Hb3vfbGzJmzeOCBe9myZRM2m42srGzq6rqeuhMfH8+8eTdz/fXXEx0dg90eGWH7\n1a9ezaOPPsQtt/w/fD4fP/jBTcTHJ/Qpjl/84m7uv/8eXn31ZeLi4rBYrN32i98f4KGHHsDhcGAy\nmbjrrl+1T6cYNWo0p512Jj/84Y3ExsZhMpkwDWBR1iMpPVU0VVX1auCrmqbdqKrqacA9mqZd2bYt\nCVgKTCNy+b8DyAFGAU9qmnZFbwOprW2S0qq9lJzspLa2qecdxYA43v1dv+h96t96A1NSEgmXXt6r\nYw5Of6g1eHg/qpSMoIOLPTmd9gvp8FphJk0BE9cVVBBvDbZvq3a19jrGVK2YmNp6ik6bTuWkvq1M\nUWCbDICuh9nQ+jlFvm1EGWI513k1DmNMp+GMFeUGiveaSEkLccm0CQCcO63zG4gYWPJ3ZfD1ts+T\nk53H4Z6C6MpIvxaRvwMDZ6j70rXkc9xLPsNfXoZj8hSip80Ysli8RYU0rlyOJTOLvAcf6rT9o7X7\neGd5Mf5gmOmn+LA7oMi3DVeohjHWaSRHpeLzDnxSocA2GW+4hf82/JUoQwwXx97Q4W7ywWuPxlY/\ndy1chcNq4tGbT8dsMnbX5AlhqH83TybDuS9drgN8/vlirr76G/j9fm644VoWLHiWtLT+JxePdj3S\nm3TFHOBDAE3TVquqesrBDZqm1amqOlXTtKCqqnlAg6ZpuqqqM4FMVVU/BzzAzzVN07pqXIiRzrM3\nMqDHPqbvy0hutdQDMNnf9XDGHS4n7oCZyfGNHRIKfVVXkEWUq4G8tZshFCJk7bxcZfW40UdtQ1EM\nzHCcj1VxsNP7JUub/sN5Mdd02i8jI0xttU7NfiM1rlZS4h39jlsIIYQYiVq3b8NfXoY5LZ2oKdOG\nNBZrfgHmPbvxV5RT+8brmJNTOmzfvMWL129h+tgk7I5KfGEPrlANdiUap6HztM6BZDNEkW0ZS6l/\nJ/sDpaRb8jrtE+OwcP6MLD5cs48VW6o4b8bJNVpBnJxiY+PYtWsH8+Z9F0WByy//2jElFHrSm6RC\nDHD4ZOqQqqomTdOCAG0JhVuBB4E/te1TBTysadq/VVWdA7wCzDraSeLjHZhO8MzfYEpOdg51CCPK\n8epvPRSiqKgQxWwmaZKKoZdr7dq8Zlz4KDU1kxy2k2+ORTF3TB4GQgrr6+MwG8KcmdmC7Yi2+5Rp\nNxlxFeSQtLuY1JJyaieO6bSL1dZ17M7ojnMYTneeh7nBwJbG1axoeYcxUZMxGToeq06A9Wtg7a5a\nrr1wrPy+DxLp58EnfS6EGGje4iJaNm3A4HAQO+fsHgskHm+KohA1bQYNH39A8+ZNxF84t31baZPO\nrhYLcdEWJuYlUOKvpDpYBkCaOafPq2H1xxjbNEr9O9nj29QhqXB4TSenw4xBgfdWlYAC502XxIIY\n3gwGA/fee/+gna83SYVG4PCrHsPBhMJBmqY9rarqc8AHqqqeB6wBDiYdVqiqmqmqqqJpWrfDCl19\nGIo90g3noTYno+PZ381bNhNsbsY2Ziwt3jB4e1eB1esNsN5aDQpk1UWxz9N5OaRdzUm0Bo2cktSA\nIeTDe0R9ob4WHHIlJxBVVUNU7QEaag/QGh/bYXt3QxOb6FzHYazxVFqsrRT6trC9cV1k+cnDVoWI\nizeTkhqiptrLZq2GWWO6XiZTDBz5uzL4+jD9YRCiEUKcDMIBP/v/+hfQdWLOPAuDfXispmRJTcWc\nnkGgqhJ/dTWW1FTCus5/SiIfDU6dkIrBoBDU/dQFK7EoNuKNKT20OjDiTSkkmTKpDpTSGKonxth5\n9KfdaiIn1UnJ/iZqXJ5BiUuIE0lvUpcrgcsA2moqtE+AViPeaivMGCBSyDEM3A/8rG2fqcC+oyUU\nhBip3MuWAGAfM7ZPx7UoAQrNbhwBE2mezhcM/rCB3S2J2IwhpiX0fdWGLikKNaNz0YHkwn0o4fAx\nNKUw3XEuOZZxtIQbKfXv4sj6Lrn5IYwGhU176/AHpOKyEEII0ZP6d9/BX1mJfew4LGnpQx1OB9FT\nI9MwWjZHquOvr4V9zTDK7ictITLVsSZYgU6YVFN2e1X+wTDWFoltj3dTt/uouXEAaPv6XgRQiJNd\nb0Yq/Ae4SFXVVYACfF9V1duBvZqmvauq6mbgCyKrP3ygadpSVVW3AK+oqvoVIiMWbjw+4Qtx4go2\nNNCyZTOmhETMiX27E7/D4iKswKjGGJQuVnzQWpII6EZmJR7AYhy4fJ4/ykFDRirxldXEVtXSkJna\n4zFHW1c6yZjGAUMVrlANzmA8yeZDBRmtNhiXG8/24gN8tqGCS2Z3LkQphBBCiAhvcRGuDxdhTkom\nasbMoQ6nE3NyCpaMTPyVFTRXVPJ+VRpmA5weGxnRGNQD1ATKMWIi0TS4CZEMcwEOQwylvl1Mtp+J\nxdB5+amUODtx0RZKq5twN/uIje7bEuBCnMx6TCpomhYGbj7i6V2HbX+QSD2Fw49xAV8ZiACFOFm5\nVy6HcBj7mM71CY7GpwfRzA3YwyYyWjovy+gJmdjbkoDdEGBS/MAPZz+QnU5MdR3xZVW4U5PQj6EW\niqIYyLdMZId3LWWBPUQZY3AYDg31nlSQwJ7yBv77RQlnTU0nqpu6DUIIIcRIpgeD7P/rC6DrpN74\nA/zV1UMdUpeipk7DX1lB1YatNCWlcWm2QrSu0wqU+HYQIkCaKa/DlMjBoCgGxlinstmznCLfVsbZ\nO5eCUxQFNSeeNTuqWbq5kq+emT+oMQoxnA1t5RYhRig9HKZx+TIUiwVrXkGfjt2sVxJQwowLxGHs\nYpTCzuYkwhgYH12LyTDws47CZhOuzFRMwSDxlcd+0WIx2Mi3jkcnTJFvOyH9UMkWq9nI5IJEWrxB\nFn1ResznEkIIIU5GrsWf4K+sIPbsc3CMGz/U4XTLnJQMyanENlSRq7s5p21AQlgPs9u7EQUDKeah\nKYKYb52ISbGw27uRoN51naiCjBjMRgNLN1USOoZpoEKcbCSpIMQQaN2xjUBdLc5TZ2OwdF6esTu6\nrvOlvg9FhzGB2E7bm4IWSjzxRBt95NqP35y/hsxUgmYT8RX7MQaOfe3oWGMSqaYcfHor5f49HbaN\ny4kjIcbKJ+vKcTX1rpClEEIIMVIEXC7q330HQ3Q0SVd/Y6jD6dGWuMgS2pcHd2MxRm6OVPj30hJ2\nk2hKx6z0/rpoIJkNVsZYp+HTPRR2M3XTbDJQkBmDq8nH1sIDgxyhEMOXJBWEGAINn38GQNy5F/Tp\nuHLcVNFIdjCaKL3zVIAdzcnoKEx01mA4jqsw6UYjB7IzMITCxJdVDUibmeYC7Eo0daEqmoKHiksa\njQauOCOPYCjMx2v3Dci5hBBCiJNF3b9fQ/d5Sb76Gxijo4c6nKMqb9H5KJxDq8lOTOVewoEAOjqa\ndz0AqabsIY1vrG06Jixo3vXdjlYYnRm5qfPOymKWbKro8CXESCVJBSEGWaC+jpYtm7HlF2DLy+vT\nsV/qkQ/V4wLxnbY1BGyUe2OJM3nItB7/pQHdaUkErBZiq2ox+fzH3J6iGMi2ROpLFLfs7LAaxBmT\n0ol3WlmysZJmz7GPjBBCCCFOBq07d9D05Rps+QXEzDlrqMM5qt1lLl7X/IQUA01p+eiBAPvWb6XS\n6sYVqiHTPAqbwTGkMVoMNsbYpuLTWynybetyn4QYK7FRFspqmmV1KiHaSFJBiEHmXroEdJ3Yc8/r\n03EePcBWvZIEHGSEOr/pbmuKrOc8yVmDchxHKbQzGDiQk4FB14mrGJiCUE5jPPHGFJpDbg6E9rc/\nbzYZuPjUHHyBEJ+sLRuQcwkhhBAnMtfnn1H1wnMA2MdPwL18GQ1Ll9CwdMnQBtaNMq+Jcp+ZLGsA\nW3Y2uqJgrShiY3SkZtIE++xBjafIu7XLrzG26Zgwo3nWdajzdJCiKBRkxBAO65RWH/+bOEKcCCSp\nIMQgCgcCuJcvw+CIwjmrb2+eG/UKAoSZpWR3Wkayzu+g2h9NsqWFFEvLQIZ8VI3JCQQsZmL312Ly\nDky9gyzzaAwYKPcXEtAPtXnO1Ayi7WYWry/H4+v8Ji+EEEKMJN7CvYQaGrCNGt3npakHm67rrHVH\nlmA8LdaLbrURSM7E2NqM3dVAlmUMcabkIY4ywmqwM9o2Fa/eiubd0OU++RkxABRVNA5maEIMW4O7\nXosQI1zzhvWEmhqJv+jifhVoNKIwU8miio7z9nY0Ry4mJkZ3HKVQ7WodkLi7ZTDQkJFKckk56Tv3\nUjZ94jE3aTHYyLQXUObZyw7Pl0x1nNU+T3FMViwb99Txwn93MKkgEYBzp2Ue8zmFEEKI4aqrkQfh\nQICWzRvBaCJq2vTBD6qPdrigJmCiwB4gyRJZNcGbkYulppyJRR5QTxviCDsaZz+FYt8OdnnWkmcZ\nj8Po7LA92m4mNd5OtctDsydAtF2WvBYjm4xUEGIQuZdECjT2depDCS5qaWaikkaUYu2wrd5vp9Yf\nTYqlmUSLZ8Bi7S13WjIho5H07bsxBAdmBEGGLQ+LYmWPdxOaZ137kERrSiVGo87W4lqCIVnKSQgh\nxMjUumMbYY8Hx8SJGB1RQx1OB7vLXB2+tH0u3i4KAjqnxHjb9ytM1WmINjK6zE9saHi9BrNiZYrj\nTEIE2eJZ0eU+BZmR0QrFlTJaQQhJKggxSLylJXj27MYxcRKW1LQ+HfulHplveKqS22nbzrZRCuOi\n6449yH7QTUbc6clYvD5SdhcPSJtGxUiaKRedMNWBQzUUTGZIzwwTCCjyJi6EEGJECrW20rp9Owa7\nHceESUMdTo+KPCbqA0bGOAIkmCM3BEKE2Rhbzq58G6aQjq1w+xBH2VmuZTwJxlTK/LupDXRe2SE3\n1YnBoFBU2dihuLQQI5EkFYQYJK6PPgAgfu4lfTquWfexXd9PMtHk0XHVB1fARrXfSZK5hWTLcZ7q\ncBQNGamEjQaytu6C8MCMIDi4VnVtsKLDsk7pGSFAZ9e+BnkTF0IIMeK0bNkEoSBRU6djMA/vYfdh\nHdY12lDQOSXmUJ2kHdFVNJm8BFIiS0g6dm0cqhC7pSgK06LOBWBD6+edijZazEaykqNwt/hpaD72\nVbCEOJFJUkGIQRCoraVp7ZdYs7NxTOhb3YENejkhdE5VclCOWNbh4CiF8UM0SuGgkMVM9ZgCbE0t\nJJYOzDrNBsVIqimHMCFqDhutYLVBUnIYV5OPGtfgT/cQQgghhkqoqQnv3j0YY2KwjRo91OH0qMhj\nxhU0ojoCxJoiNx1aDX62RJdjDZlQw6MIxiZirSjC2Oga4mg7SzSlUWCdRGOonu2e1Z2256ZFai2U\n7pdVIMTIJkkFIQaB65OPQNeJn3tpp8TA0YR1nbV6GWYMTFc6FiSs85qp8sWQYG4leRBXfOhO5aSx\nAGRs3z1gbSaZMjBioiZY3uEOQXpm5MJkV+nwuwARQgghjpeWrZtB14maMg3FMLwv43UdNjZZUdCZ\nftgohfUxpQQNYWY05WDRTfjTIqMV7Ls3DVWoRzXVcRZRhlg073rqjpgGkZUcjcGgsE+WlhQj3PD+\nayTESSDU3Ix7xTJMCQk4Z53ap2MLqeMArUxRMrArHYc4bqyPBSK1FPqQpzhuPHExuLLSiN1fS1Td\nwHzYNyomUs3ZhAhSGzz0Rh4TqxPvtLKvppkDjd6jtCCEEEKcHIKNbrxFhRhj47Dm5Q91OD3a0uKm\nPmAky9aInzJqgxVohiKKHHUk+KMY3ZoCgD85A91owrFrUyQTMcQOFoc++LXPp5FlHgXAly0fE9AP\nTXUwmwxkJEXR0OzHLVMgxAgmSQUhjrOGJZ+h+/3Y8kfhXrmChqVLOnwdzZfhfQCcquR0eL4pYGRv\nYxQxJi9plubjFXqfVU4c+NEKyaYsDBipDpQR1iMjFBQFxuXGoeu0LzcphBBCnMxaNkc+dEdNm96n\nUY9DQddhV0syAGpUZIpmGJ1tCQcAmO3Ox0DbazCZ8RRMwNRQR3TtgSGJtyfRxjjSTLm0hBtZ1vgW\nhZ4t7UkHe0IDgIxWECOaJBWEOI7Cfj8Niz9BMZuxjRnbp2Pdupdd1JBBDJnEdti25UAMOgpjo+qH\nxSiFg1xZ6XhinCQXlmL2DMwIApNiJtmUQRA/DaGa9ufz02OwmA0s3VRJIBgakHMJIYQQw1GwoQFf\nSTGmhASs2Tk9HzDEKnxGXAE7GdZGYs2RqQ+FMY00WwLkNEWTEnB22N8zdgoAScVlndoaLtLN+UQZ\nYjgQqu4wejIxMYyi6JRKUkGMYJJUEOI4avh8MaGmJuzq+D5XaF6n7yOMTm5DEnvKG9rXe95a6mK7\nKxqbIUC2zX2cIu8nRaFy4hgM4TCpuwoHrNlkU6SeRM1hb+Imo4ExWXE0tQZYr9UO2LmEEEKI4aZ1\n+1aASC2F4XQ3oRsbmmzAoeWum00BCmPdWING1Ia4Tvv7skcTNltJKt43LKZAdMWgGCiwTMKEmfLA\nHlpCkWswkxni4nUONPqoaZAC0mJkkqSCEMdJyOPhwKL329aR7tuKDyE9zFq9DBsm8j1JHbbtaLEQ\n1I2MdhzAMAyvK2rG5BM0m0jfuRdlgJaXtBocxBgSaAm7aQ0fuhMwJisygmP5lqoBOY8QQggx3ISa\nm/EWF2GMjcOSlT3U4fSo1m+g0mcixdJMvNmLjs7WhAOEFZjoisesd/Hxw2TGmz8OW3Mr0XXDcwoE\ngMVgI986ER2dQv+29voKiUmR650NcpNDjFCmnnZQVdUAPANMBXzAPE3T9h62/cfAjYAO/EbTtPdV\nVbUDr/x/9u4sNo48P/D8NyIjbyaTSWaSFO9DUugq1V1dh6pPd2/7HA+M2fWOsZgxdrDjMRaLsZ9s\nYIyB98WzM/AOsFjMLPbBxhoezMLj2d62d7qru91dUqtKV+k+GRTvm0ySeTHPyIzYhyRVoiiJR1JM\nJvn7AIkqZmRE/JRSHvzH7wCagRTwjwxDXmXicIn9+BOsdJqmv/8bqG73tvb9WfouKW+eU4UQcXPu\nyf2WDXdSx9CUEr2+/TX5oGXgydsCqXAjodkF+j6/zkqkEYD5E5WNvoo4O0jml4kWp+l2nQCg3u+i\nJeTl0XiMv700SsDn2rDf199o33CfEEIIUSsyDx+AbeM7faYmshTurpS/8xzzLwEw6U8T8+RpyXhp\nzfpeuF/u6Bl8g3cIj0yyEmnak1h3ot7RSJuzjxlzhNH8A46536ApbDE8CDcGF/juV/Z/eYoQu20r\nmQq/DngMw/gA+APgT9c26LoeBn4X+BD4FvDvdV1XgH8G3DMM42PgL4B/sduBC7GflVIpYj/+EY5A\nPaFvfXvb+z9ylhcMThRC6+6fzAXJWU56vXFc6u5kAbwKibZmbKBhZn7XjhlUm3ApHpaLcxRt88n9\nR1ezFYamk7t2LiGEEGI/KKaSZIcGUf1+PL191Q5nU/G8zXDGSUgr0eJKk1NLDIRiaJbC6Vjopfvm\nuo5RdGrlvgr7tARiTavWTVBtImXFmDFHcbogEvIyMp0kmZYpEOLw2TRTATgHfAJgGMYVXdffWdtg\nGMairuuvG4ZR1HW9B4gbhmHrun4O+NerD/sh8EebnSQU8qFpjm3/AQ6rSCSw+YPErtnu8z36//0/\n2PkcXf/dP6SlM4L9cE2AVhoAACAASURBVOuZCjOlBPOlLB1WHS1uPzNaebqDbcNwpgkFmxP1cZz7\n+fUS8JNtbMC3HMefyVKor8Pt2V5Piec9vpVOJrKPSSpRAnXles3T/S6uPVpgdCbJuTfaUZ+5iiOv\nla2T52rvyXMuhHiZ+N/9BEolfKfOoKj7v2r5szkbC4WzgTyKAg9DMYqqzenlEJ7SJr92aE6Wu9pp\nHh6nbjH2JNNxP1IUhR73KR7lvmCuOIbfUU9HczsLsSz3Rpb46LUj1Q5RiD21lUWFeuDpbnAlXdc1\nwzCKAKsLCv8j8MfA//acfVLwTOv654jFMlsO+rCLRAJEo9Jhdq9s9/k2l5eZ/S8/RGtsxPH2B0Sj\nKVKp/Jb3/5lVLiM4ng+SK5pPJhssFbzETA9t7iQu8pjF7f059lrsSATfcpy6yTnm9V7yOXPznVa5\nPc7nPr6BFiYZYiY7QTKVfZIG2tMa4PFUgsGxZdoj/nX7yGtla+R9Ze9t9TmXhQchDicrnyf+6U9R\n3B68R49VO5xN5Us2l+fBo1oc85kMuDLM+TOE8i66Vuq2dIzF3k6ah8cJj07s60UFKE+n6ne/xkDu\nBuP5R3wUfgMMuD20KIsK4tDZypJnEnj6G426tqCwxjCM/x04AnxV1/VvPLNPAIjvQqxC1ITFv/4r\nbNOk6e/9/W1PfMjZJrftafyWRmdx/QfwcKb84drv278NjJ6Waain4PUQWFzGUdj6gsLLOBUXIUcL\neTuzbpzTWsPGoSl5qxFCCHEwJC9/jpXJ4NV1FG0r1wGr69oCZEtwpq6Aolg8aoij2HBmuRGFrfWC\niHe01kwJBIBPDdDh7KeIiWFfINLg4f7oMsXS/i1RFeJV2Mo71OfArwJ/pev6+8C9tQ26ruvAnwC/\nAZiUGzlaq/v8EnAN+EXg4u6GLcT+lBk0SF27grunl/oPPtr2/rfsaQqUOGOGUZ/6AM6WNKZy9dRr\nOSKuGsnqURTibc00D08QnIsyc/bkrhw2rB1huTTHWP4hzc4OAJqCHhrqXEwurJArFPG49v+XLyFE\n5XbSTLoacQqxXbZtE//Z34HDgfeYXu1wNmXbNp/N2TgUOO0v8Mg/R8ZZpCcZIGBubKL89IUBgPnc\n6q8XmsZyVxvNwxP4l2Kkw/s7WwEgonWQKC0xVxyn/2gH0esBjMk4p3v2f+xC7JatZCp8D8jpun4J\n+LfA7+m6/vu6rv+aYRgGcAe4DFwCrhiGcQH498BpXdc/A/4HyqURQhxotmUR/Y//AYDm//a3tl37\naNs2V+0JHKgcN9fPcB7NhLBR6PctUwONn59INjdRcjgIzi6glEq7csw6tQGX4mGqMERxdZSToigc\n7Qhi2TA6Iyn8QhwiO2kmLcS+lx14RGFmhsA77+LwvXhiwn7xOAnRHLzRBIqzwN3AFM6SytFk/Zb2\nbxkYenIrrmZ5dl+/u26y1H6lKArdrpO4FA/jjqsonjR3Hi9WOywh9tSml/MMw7CA33nm7oGntv8x\nzywaGIaRAf7BbgQoRK1IXLxAfnKC+g8+wtu//fGJIywRZYXXlTa89pcvTcuG0WwDTqVElyfxkiPs\nP7bDQbIlTGhmnvDoJNGjPRUfU1EUmrQjzJqjTBYe0+s+DUDvkXpuGFGGZxKc7Hl5h2khxIGx7WbS\nLzuYNI2WHh67qZLn8tH/+SkAvb/x90iPje1SRK/OteE8YPPtPhc/yU1jqiXOJBrxq66tXcJ8ihlp\nxBocJbAYI9lfHs+43WbPe82Nkw/93+H80t/g6Rng7miY/ylct29HgMrrfPfIc1kmOcJC7IJSOs3i\n9/4zittD+Dd2tp521RoH4H2lmwKxJ/dP5+rJWU6O+pbQ1P1fX/iseFszDTPztD0YJNrfzW6kWjQ5\nWpk1RxnLP3qyqOB1a7SH/UxF08RSeUKBrU/cEELUrJ00k36hw940Whq27p6dPJfxC+eB8ljq5Wtf\noDWFmbtnvILodlc8b3N7wabdBygxHrlnqTc9dCT8mOwsSzHdGCSwGENNlJ/D7TR7rpacXaDF18w8\nCyzOjfPnF35MqEHlXPv71Q5tHXmd757D9ly+bAFl/8+mEaIGLH3/e1grK/hOn2blzm3iF86vuz3P\nUHzkye1OwuChPU9jyU0+sb4R40imfNW9Vho0PqvocZNubCAQXSYQXdqVY7pVL81aB4vFaVZKXzZn\n7G8vN2wcmamtjA4hxI7tpJm0EPtaZrCcEOw7sTu9iF61Kws2FvBhq8LPGcFW4K1U17reUNu1stpL\noW4xtskj9w9FUXi7+SwKCs6uAcanCtUOSYg9I5kKQmzRixYHirEY8U9/iiMQwHfi1I6ObTjj2Aqc\nNEPrOiQv550smn6aXSvUaft/lf5F4m3N1C3HOfJgkFRzeFeO2eM+zUJxirH8I874PgCgo9mPS1MZ\nmUny5vEI6j5NOxRC7JqdNJMWYt+ySyVyQ0Mobg/u7p5qh7OpkmVzZR48DugNZ/iBPUOD6aUr18gi\nMzs+bjpUj6Wq5UWFGpgCsSborqcv0Mcww4zEhniDM9UOSYg9IYsKQlTAtm1S16+BbVP3znsoju3X\n4pawGXTGcdkqfeb6hkaP4uWxkr2+2lmpf55sMEA6FCQ8MsnYe1kKfm/Fx2x39aOlXYwXHnHa+z6K\nouBQVXqOBBicTDC7mKE94t+F6IUQ+9j3gG+vNpNWgN/Wdf33gSHDMP5G1/W1ZtI28MPVZtJC7Fv5\nyQnsQh7fqTM7+k6x1+7HIGnCuVa4qoxi2TavrbRveYTki9gOx5MSCN9ijHygdurW32g5xUhsklz9\nMCvZY3w2feWFj91vpRFC7JQsKghRgfzkBObcLK62dtwdnTs6xriWIquWOF0IoT1VkVSywEjU4VaL\ntLlrvF5LUZg5fYxjn12n9dFjJt45W/EhNcVJp/sYo/kHLBQnaXGWmzn1twUZnEwwMpOQRQUhDrid\nNJMWYj/LPh4EwHP0WJUj2ZqrC+Usgtdb8vyFPUUjPnqyu5ORuBIOEViMERoaJ/Zm7VzxdzmcRDjK\nguMht6Yf8/HR2oldiJ2SngpC7JBdLLJy/RqoKnXvvLfj4ww4y1kIemH9xIKRlJ9cyUG3N456ALL4\no0d7MN0uWgeGUYq7M16y21WuN53IP/kdgnCDh4DPycT8CoVdOo8QQgjxqpVSKcy5WZzNLWjBYLXD\n2VQsb2PEobsOBj1jFLH4WOmrqJfC09KhIJaq0jg0XjMlEIOTcQYn49TTjG06mTJHeDSxyOBkfPOd\nhahhsqggxA5lHj3ESqfxnTi54w//ZTXHvJalvegnaLvWbXu4WvrQ4z0YH0SWpjGv9+HK5YmMjO/K\nMcNaGz41wFRhmJJd7s2mKAr97UFKls343MqunEcIIYR41bLDQ0BtZCkMTsb4ZCiLDXQ4U1wtTeAt\nOQlM716G4FoJhCeRwrdcWw2Y6wMqVrQH1CIL5lS1wxHilZNFBSF2wMpmyTy4h+J243vt9R0f55Gz\nvGBwotCw7v54QWM646XdlyWgHZzuwbOnjmGpKp23H4FVeb80RVHocukUKTBjjj65v6+t3JtiZLq2\nvoQIIYQ4nGzLIjf8GMXpxFMDDRptGwbSLjTFJhsawFRLdKR8LBdniRaniRand+U8K03lLM7w2OSu\nHG+vKArUFzuwixrz5iQlWzInxcEmiwpC7ED67h1s08R/9g1Ul2vzHZ4jT4kRZ4I6S6OjVLdu26N4\nuSHRqYaDdaU9X+dn/ngv3mSKyPDuZCt0uXRgfQlEnddJS6OX+ViWaDy7K+cRQgghXpX0/XtYmQye\n3j4Ubf+3PJvJO0iVVPq8Babrkyg2dKZ3v49RujGI5XDQNFpbiwoATSEHxfluSorJYnHnkzCEqAWy\nqCDENhUTcbKPDRyBerzH9R0fZ8iZoKjY6GZoXf1hyYaBeB0eR4neQGY3Qt5Xpl4/haWqdN16uCvZ\nCkEtTNARZtYco2Dlntzf31YuSbn8YK7icwghhBCvUvLSZ0BtlD4ADGTKF1TaQsskXSbNWS+e0u4v\nhtgOB4nuNvzxJN5YbWUfNjRaFOe7wFKJFqexa6QvhBA7IYsKQmzTys0b5RGSb72Nou7sJWTZNgOu\nOA5b4bi5vh/DaMpHtuRAD66gqQfvAygfeDXZCjYWU4WhJ/d1twZwqAqX7s/JB7kQQoh9q5TJkL59\nC0cwiNbYVO1wNpUt2oxknAS1EksN5SvwXSt1m+y1c8v95elOtVYC4XRCwOekuNxK3s4wn4lWOyQh\nXhlZVBBiGwrzcxSmJnE2t+Dq7NrxcUZYJKkW6CkG8NjrV/YfrpY+nDxgpQ9P2+1shSclEIUvSyCc\nmkpXSx0LsSzD08mKzyGEEEK8Cis3b2AXi+XSB2V/jnsaio88uf14MkoJhTbfHCPeRbxFB+Gc55Wd\nO9HTgaWqhEdrr+FhqNGitFAeOT4UH93k0ULULllUEGIb0nduAVD31jsVffBfsSYAOPnMGMlEQWMq\n7eWIN0ej29x5oPtQy8DQk1vD9Cyp5ia8yRRHL16r+Ng+R4CI1k60OE2mlHpyf397OQvk0v3Zis8h\nhBBCvArJK5cA8PT0VTmSrTESdYCNFp7BUm26UgGUXRoj+Twlt4t4eyv+5TieRG1dJGhssrFWGlAL\ndUytzJAtSp8ncTDJooIQW1SYm8Wcn8fV1o4zEtnxceJ2lgHmaSp5CFvrV/YfrY6RPBVKPW/XA2W5\noxVLUWiamEEtFis+3pfZCsaT+1qbfDTUubj2aAGzKJ2XhRBC7C9mLEbWGMBz9BiOQKDa4WwqUdCY\ny3podqWJBlJgQ8craND4rMXe8tX+WstW8NfZOJ1gznVhYzMcH6t2SEK8ErKoIMQWpe/eAcB/9o2K\njnPNnsAGThYa1q3srzVodKsl+g9gg8ZnFT1u4u0tOPMF2u8NbL7DJjpcx1BQ1y0qqIrCB6dbyeSL\n3B5aqvgcQgghxG5KXbsCtk39+x9UO5QtKWcpQEv9Agl3gXDOg9tyvPLzLnW3YykK4RqbAqEo5RKI\nwkIbDkVjODGGZVde9inEfiOLCkJsQcYYwJyfqzhLoWiXuG5P4sVJb7F+3bbxlI9MSeN4MH0gGzQ+\nT6zjCEWnRsedR7jSlaUEulQPR5w9JEqLJIqLT+7/8EwrAJfuSQmEEEKI/SV15TI4HATeea/aoWzK\ntsFI+NEUC6txHoD2PchSgC9LIOqWYriTtdVzKtRkg6URKLaTKWaZyyxUOyQhdt2ms190XVeBfwe8\nDuSBf2IYxtBT238P+M3VH39gGMYf67quAFPA49X7LxuG8Ye7GrkQe2jpb78PgP/s6xUd5749R5oC\n55RetGfW9B6ulT40HPzShzWW5mCpu52WoXG6r9/h8dfer+h4Xe4TzJgjTBQMXtPCALRH6uhuDXBv\nZJlEukDQ79qN0IUQQoiK5KenyU9O4H/jTRx1r256wm6ZzbpJmU6OB1PM+dM4LIWWrHfPzr/U20Hj\n1CzhsUmmz57cs/NWKhSyAJvCfBu0jTOWmKTN31rtsITYVVvJVPh1wGMYxgfAHwB/urZB1/U+4LeA\nD4EPgO/oun4W6AduGobx9dWbLCiImpV48IDswCNcR9pwRporOtZVexwF+IrSve7+FdPBZNpLsydP\nk+dgNWjcTLIlTLqxgZbHY9RFlys6VpuzFw0XEwVj3RjJj860Ytk2Vx/OVxquEEIIsStSVy8DUP+V\n/Vv6MDgZY3Ayxnwsw+2Fch8ov3eajLNIc9aLZu9d0vNSdwd2DZZAaE6oD9osT9fj1/xMrcxgWofr\nu544+LbyTnAO+ATAMIwrwDtPbZsEvmsYRskwDAtwAjngbaBd1/VPdV3/ga7r+i7HLcSemf7P/y8A\nvgqzFGbsBBPEOUaERsW3bttgwo+NwokDPEbyhRSFkfffBKDv8o1yfuVTnp4a8fQtfft7jOTurbuN\n5x8RdDSSsVIsFmeeHOO9Uy04VEVKIIQQQuwLtmWRvHIZ1ePB/3plvZr2QslWmMrV41VNsg3lEsO9\nKn1YU/S4iR9pJhBdxp1K7+m5KxVqtLBthQa7g5JdYjI1s/lOQtSQTcsfgHog8dTPJV3XNcMwioZh\nmMDiarnDvwFuGYYxqOt6K/AnhmH8J13XzwF/Cbz7spOEQj407dU3ejkoIpH93yG4Fs396Mfrfi4s\nx4jduImntYWm/q6Kjn0jMwUF+Ib/KAGnG0/OCZR/h34Y86NiEVaXWU6tb+DjPASvi3hfB8v9XTQO\nT9A+OsHiqaO4PeXn52V//rXHPK3F0cFSao5Ze4i+un4ikQAR4J2TLVx9MMeKadHbFnxVf5SaJu8r\ne0+ecyEOp+zQY4rLS9R/eA7Vtf/L8ubydRRtB72+ZWb9GVwllXDOs/mOu2ypt5PQzDxNY1PMvFY7\n1yxDjTbjo2AutEGTwVhygr5g9+Y7ClEjtrKokASe/tajGobxZP6bruse4M+AFPC7q3dfB4oAhmF8\nput6u67rimEYL+w+F4sd/G73uyUSCRCNHp66+72USuXX/Zy8cRsAl35qw7btyNkmN6xJQnjpyDaQ\nyuXJ5cqpb/NZF8mimw5PAsUyMQ9hU+B8zmTo3dd5e3yGjks3ifV1kllNpHrZKMh8bmP6oMcO4FH8\njKYHOOM89+S18s7xMFcfzPGDiyP81988+mr+IDVM3lf23lafc1l4EOLgSV1ZLX344MMqR7I1E9ny\nYnx9aI4ph0VXqg71qQlWr1Lk/uCT7wKqaWIDRx4O1tSigr/OxutVmJ9yE2lvYj4TJWPK7z7i4NhK\n+cPnwC8B6Lr+PnBvbcNqhsL3gTuGYfxTwzDWvv3/S+Cfrz7mdWDiZQsKQuxHVi5HbmQYrb4ed0dn\nRce6bc9gYvGu0oWqrP8QHlht0NjtjVd0jlpXqPMz8eZpnLk8HVdu7/g4iqLQ6TpOwc4xZ44/uf9s\nfxi/R+PygzlK1iFcuRFCCFF18Qvnif3spySvXEL1esnPzRG/cJ74hfPVDu2F8lY5U6Fey5EKlJOX\nj2R8m+z1apRcTrLBAN5UGle6dn4pVxToaFPJ5SGsdgAwlqyt3hBCvMxWMhW+B3xb1/VLgAL8tq7r\nvw8MAQ7ga4Bb1/VfXH38HwL/CvhLXdd/mXLGwj/e7cCFeNWygwNQKtFw9jUUdWeNiIbiI9jYfO4b\nQ1GhNLXC59b9J9tLtsJgwo9HNWlx1VZ94Kswc+Y4LY9HidwfZKa/h5VI446O0+3WeZy/xUTBAD4G\nwKmpvHeqhU9vTvNwLMZrfU27GLkQQgixNYXpKexCAc+p0zv+frGXRrJOLFQ6PHGmfeXSh8a8u2rx\nrDSF8CVShEcnmTlTO9kKXZ0OHg+XKCy2oPpVWVQQB8qmiwqrDRh/55m7B576/xcVVP3yToMSotrs\nUpGMMYDichE4qZPO7fzK9pKaZ9mRpyXjxW2t7w8wmwtg2g56fTGUvcki3Ndsh4PhD9/mtR98Sv+l\n69z51V/Y0XEaHM0E1BAzhRFyxRwerfw29eGZVj69Oc1nd2dlUUEIIURV5EZHAPD09lU5kq0ZypR7\nPtQ3LDDqsOhM1aHsUenD86yEQ0RGJgiPTNTUokJbqwOHA6YnHbS93cLUyiwzK3O01cl4SVH79v/y\nqBBVkBsdxc7l8B47jurc2AxwOwad5bKGzpWNM6jHVmsUD3vpw9MSbS0sHeshEF2m1RjZ0TEURaHL\nrVOiyJ3ogyf39x2ppz3i5+ZglMTKzntkCCGEEDthFQrkpyZxBINooZ1l4+2llZLCdN5BkzNDPJAE\noDXrrWpMayUQ9QtLNTUFwulUaGtViSdsIs52AG4s3KlyVELsDllUEOIZtm2THXgEioJXP1nRsUws\nRpxJ/JZG5JkuydmSxnyhjkZnhnqtUNF5DprJj96m6NTovn4X1dzZLOcuV/nqxRfzt57cpygK33yz\nnZJl8/M7Ms5JCCHE3spPjINl4entR6mBFMXhjBNQ6PDGmfNmcZZUmqow9eFZqdXyyPDoRJUj2Z6u\nznKSuLkUQVMcXJ+/jW1L2zlR+2RRQYhnFBejFGPLuDu7cPgrm8E8qiUxFYtjZnBDqmC5k7JCtzfx\n/J0PMbPOx8Rbr+HMFwiPTe/oGHWOBhodrTxafswnNwc5f3ua87enKVo2mkPhR19MSsNGIYQQeyo3\nMgyAp7e3ypFszeOMCxWbQDBKXivRkvXu2dSHl1lpasBSFMIjtbWo0NleLoOdmlJorzvCYnaJidRU\nlaMSonKyqCDEM7KDBgDe45XX6Q264mDDMbNh3f22DePZBlQsOjyyqPA8M6ePkQ4FCc4v4kmubGvf\nkdw9RnL38KsBwOZW+sKT+yaLD+hrC5LJFbk7tPRqghdCCCGeYS4vY87P4WxuxlG3/0fFzmdtFk0H\nHZ4iS/7y53BrlaY+PMtyOom3txJYjOFJ1M44ZJ9PIdykMjdvccRbngJxY15KIETtk0UFIZ5i5XPk\nxkZx1NfjbD1S0bHm7RRRR472kp86e31fhpjpIVVy0+ZJ4VLlannLwNC6W+T+IC2DIyx3lJsXRUYm\nyisx2xTSWgCF5dLcuvv1rvIiz89u7SwLQgghhNiu1LUrQO00aLwZLX/uHvUVmPNl0CyF8D4ofVhT\n8JYnUPRcu7XuO8R+19XhwLahGGvCq3m5sXAHy5bvgqK2yaKCEE/JDQ2BZeE9pldc63jdLo8KOv5M\nlgKUsxRAGjRuJhcMkAo34lnJULe0/efKqbioV0NkrBQ568t51qGAm+aQlwejy8wv186cayGEELUr\ndfUyqCru7p5qh7Ip27a5uQiaYhMIxMjto9KHNenVEohANFbtULalq3O1BGIa3oicIZ5PMJIYr3JU\nQlRGFhWEWGVbFtnHBjgcePqPVnQs0y5xy57GaznoKq6f+lCyFSZzQTyqSYurdroWV8tSdxs20DQ+\nvaNshUatnO2wXHx+tsKnkq0ghBDiFctPT5GfnMTV1o7q3j9X+19kYgWW8tDjMZn2LwP7p/RhjaVp\nZEJB3Jksrky22uFsanAyzuBknGgqidtjMzFZRE22AXBj/naVoxOiMrKoIMSqzMMHlFIpPD29qG53\nRcd6aM+RxeSoGdywqj+bC2DaDrq8CWqg8XPVmV4PyZYwrmyOwML2eyA0OMKoqCyX5td1WO5qCVDv\nd3Hx7gzZfHE3QxZCCCHWSV65DICnr7/KkWzNzcUvSx/GPUs4LIVwlUdJPk8qEgKgLrpc5Ui2TlEg\nHLYolRSKiUbqnH5uLtylZJWqHZoQOyaLCkKsil/4FADv8RMVH+uLl5Q+jGWDgJQ+bMdyVxuWotA0\nMYOyzYkNDkUj6IiQt7NkrC+bOTlUhW+93UE2X+KijJcUQgjxitiWRerqZVSPB3d7R7XD2VTJtrm1\nBH4N/IEkK1qe5qwXxz4qfViTbmzAUlUCi7EdZTNWS7i5/F1mYi7NW81nWTHTDMaGqxyVEDsniwpC\nAMVEnPSd22ihRpzhcEXHWrTTjLJMH03U265127IljflCHSFnlnqtUNF5DpOi20XiSARnvkD93OK2\n92/SWgA2NGz8xpvtuJwqP74+SbEkTZKEEELsvqwxQHF5mbp33kXRtGqHs6mhBKyY8HoTTHrLGYJH\n9lnpwxrb4SAdCuLK5nCl938JxJq6gI3bbTO5sMIb4dcBuL4gJRCidsmighBA8tIlsCw8x45VfKy1\nBo3vKJ0btk1kg4AiWQo7EOs4gqWqNE7NbjtboV5tRMPJcnEB+6kOy3VeJx+fbWM5mef6wMJuhyyE\nEEKQuPQZAPUfnqtyJFuzVvrwZhjGvUtolkpkH019eNZKpBGAwGJtlUA0RSzMokV2OUCDO8id6H1M\nS8oxRW2SRQVx6Nm2TeKzn6NoGp6eysY8lWyLm/YUXpycUlqeOU956oOKRacnUdF5DqOSy0niSASt\nYG67dlJRVEJaM0UKpKz1XaK//W4nigKfXJtY13NBCCGEqJSVy7Jy4zrOSATvsePVDmdTRcvm3jI0\nuMBbt0JSy9Geb8Bh799fGdKhIJZDJRBdrq0SiEj5IscNI8rbza+TLeZ4uGRUOSohdmb/vkMIsUdy\nQ48x5+eoe/udihs0DrBAmgJvKu04Fce6bTHTQ6rkps2TwqVKqv1OxI80YwOh6fltf3FodJSnQCwV\n59fd39zg5W29mYn5FQbGa2sslRBCiP0tdf06dqFA/YfnKh5VvRcG4pArwRtN8IhyyWB3tqnKUb2c\n7VBZaWzAmS/gXqmdqVqBehufR+PW40XeiJwFZAqEqF2yqCAOvcTFnwMQPPfVio/1hfXi0ofxbLlp\nY7dXshR2quhxsxJpxJ3J4osnt7WvX63HpXiIl6IUbXPdtu++1wXAD69O7FqsQgghRHKt9OGDD6sc\nydbcelL6oHDfnsNhK3TkQ1WOanMr4dUSiGjtXBxQFOhuCZDJF0kt+oh4m7i3+JBcMV/t0ITYNllU\nEIdaKZsldf0aznAEr17Z1IeYnWWIKF000KIE1m0rWgqTuSAe1aTZtVLReQ67WHu5rKRhen6TR66n\nKAqNjhYsSswWRtdt62ur50RXA/dHlxmZ2d5ihRBCCPE8ZjRKdtDAq5/AGY5UO5xN5Us2D2IQ9oDL\nt8ICK7TlGnDajs13rrJMqJ6Sw0HdYm2VQHS31gFwfWCBd1repGCZ3Iner3JUQmyfLCqIQy117Wo5\nLfHcxyhqZS+HG/YkNs/PUhhb8WLaDrq8CdT9n/24r+Xr/GSCAfzxJL6l7TW8bNTKJRDjhYEN237t\no14A/ubz0Q3bhBBCiO1KXv4cgPoPP6pyJFvzKAYFq1z68JDywn1Pbn+XPqyxVZWVpgacBZP6+e1P\niaqWSIOXpno3NwajT6ZAXJu7WeWohNg+WVQQh1rys5+DolTUkXkoPsJgfJirpTGctoovmWcoPsJQ\nfOTJYwbi5ZVomfqwO+Kr2Qrt9zcuDryMV/XjVeqYM8fJWZl12050hzje2cDd4SVGZyVbQQghxM7Z\npRKJzy6iuN0Ez7SA0wAAIABJREFU3n6n2uFsanAyxsXJ8qjrxmKKG4UpVFuhI7f/Sx/WrE2BCI/U\nTimjoii8f7qVXKHEzDT01ndjxIaI56VUVtSWTYfl6rquAv8OeB3IA//EMIyhp7b/HvCbqz/+wDCM\nP9Z13Qv8JdAMpIB/ZBhGdLeDF6IS+ekpcqMj+F87i7OxsaJjTTvSZNQieqEB5zNrdWnTwWTaS8iZ\npV4rVHQeUZYOBSl4PUSGJxh77w1M79ZHXYW1I0yajxnPP+L87fVzt7tb6xicjPPnP3jE//zff2W3\nwxZCCHFIxG/fobi8RPCrX0P1eKsdzqbyFkzkNEJaCc2TJubM0JFrwGVv+qvCvpEJBihqGuHRSUbe\nfxMqzEDdK++fbuW/XB7n8v053vvgLUaT43wxd4tvd3+92qEJsWVbebX9OuAxDOMD4A+AP13boOt6\nH/BbwIfAB8B3dF0/C/wz4J5hGB8DfwH8i90OXIhKrTVorN+FBo2DznIGwnGzYeO2pB8bRbIUdpOi\nED8SQbUsmh9vr1yhUWtFxcFI/v6GEZKtjT6aQ16momnG5iRbQQghxM7M/egnAAS/+o0qR7I1Y1kn\nJRSO+kzGveWxzft96sMGqko6HMKVzRGcq41rmSO5e4zm79HUqHB3ZIlUJo+KwqeTn1U7NCG2ZSvL\nj+eATwAMw7ii6/rTOVyTwHcNwygB6LruBHKr+/zr1cf8EPijzU4SCvnQtP3fCGa/iEQCmz9IvJBl\nmoxcvYQzWE/Pt86hOp0AlALPHykZeMH9AKUcTGorhG0PHa71fy+2DYPJAA7Fpq9uBacq/8a3yrnJ\n+0HuSDPW+AxHjBEW332t3EZ5C9w46VVOMJx5QNoZ5Yina932988c4W8ujvDJtSn+6JBlK8j7yt6T\n51yIg6cYj7H8xXXcXd14enqqHc6WDGXL34P6vSafeZZQbIXOGip9WJMKhwjORQmPTJBoa6l2OFvW\n36uxtGwyM+Wgra6VqZVZplIzdATaqh2aEFuylUWFeuDpwp6SruuaYRhFwzBMYFHXdQX4N8AtwzAG\ndV1/ep8UENzsJLFYZrOHiFWRSIBoNFXtMGpW/MJ5cmOjFFMreE+dZvj7n7z08YGAm1TqxeN9HlhL\n2AocywXJmetHFc5nXSzlnPQH0iiWiWntyh/hwHNqDsxi6eUPUhSifZ20PB7DMzq9rS8PXY6TDPOA\n+/Eb1NU1r9sW9GlEGrxcezjH9XszdLcejl/65H1l7231OZeFhxfbSYnm3kcpDpvEZxfBsnAdaSN+\n4Xy1w9nUimkzndOIOIuonjRLrjRtuSBu21nt0LYtGwxQ8HrKJRAfvo1dIyUQfT0OvrhpMjxa4vWP\nuphameXq3A1ZVBA1YyuvtCTw9Dca1TCM4toPuq57gP+w+pjffc4+AUDyvsW+kht6DID36LGKjmPZ\nNoPOOJqt0GfWb9huJMoNGk80yBjJV2FO7wegdWB4W/s1aW0E1EamC8Pkrey6bYqi8PrRcsrn9z+T\nSRBC7HM7KdEU4pWxLYvExQsomoa7t6/a4WzJvWWwUOj3mYx6lwDoy+7/EZjPpSgs9nbizBcIbnP0\ndDX5fCpHWlUWohZ1djNuh4trczcxreLmOwuxD2wlU+Fz4FeBv9J1/X3g3tqG1QyF7wM/Mwzjf3lm\nn18CrgG/CFzctYiFqFBpZYXC7AzOSDNacGMPhO0YZYmUanLUDOJifbp+0VJ4nPDj04p0+rNEZWlt\n16VawqQb6mkam0LL5ihusWGjoij0uU9zJ3uR8cIjjnveWrf9SJOPo+1Bbg8tMj6XOjTZCkLUoJ2U\naL6QlGJKZkylYjdvUVxaInDqBMHGumqHsyX3jDxgE/ZOc9U7h2or1OdM4sw9ecxmJYmv2nbOnzjZ\nR9vDx7SOT5I91rX5DlU2Hk0D0BCGmVmF2/cLNLW3MZMbYyw/zIdduz89RF7nu0eey7KtLCp8D/i2\nruuXAAX4bV3Xfx8YAhzA1wC3ruu/uPr4PwT+PfB/6br+GVAA/uGuRy7EDuWGy5mxngqzFAC+sCcB\nOG5urPAZW/GStxy8GUqgbq3cX2yXojB34ij9V27S8niM6bMntrxrt/sk97KXGMnd55j7TZSnejIo\nikLPkQBD0wn+7AeP+MZb7ev2/fob7c8eTghRHdsu0XzZwQ57KaaUQVVu+nt/C0Dw1KmXlk7uF8mC\njbFs0+IqkneusOI0ac14wbQx2aQMcY9sqSTyKUsNDeTqfDQMT2C+/xaWVhsTLIJBUFUnM9Nwpq2F\nGcb44cAFjnn1XT2PvM53z2F7Ll+2gLLpq8wwDAv4nWfufno4/IsuDf6DTSMTYo/ZlkV2+HE5LbG7\np6Jjpe0CD+15giUXzaWN46IG4uUrFHpQSh9epejRbnq+uEPrwDDTr+lbb9ioeml39TNZGCRanKbZ\n2bFu+5EmH5EGD5MLKywnczTWb31spRBiz2ylRPPPKPd3+l2EeIUK83Ok797B038Ud3OEQg0sKtxZ\nAhs46jOZ8ZevmLel/dUNqlKKQrS/m847j2icmGGxb/9nKwA4NAg3WyzMOcgn6zja0osRG2Ihs0iz\nL1zt8IR4qdroXiLELsk8eoiVTuPu6X0y8WGnbtvTlLDQzQYU1v8imzYdTKa9NHvyNLrNFxxB7Iai\nx81SbyfeZIr6bY6QOup+HYDHuVsbtimKwtn+8of43eGlygMVQrwKa+WWvKRE845hGP90rQxCiFcl\n/tO/AyD0C9+pciRbd2vJRgH6vAVmfBk0SyGS3XihpNZEj/YAEBkaq2oc29XSWu7ovTCn8lFbeQLV\npZlr1QxJiC2pjXwgIXZJ4uIFALxHj1d0HNu2+cKexIFKf3Fjg8bBpB8bRRo0vmItA+VSloLHBUDP\nF3eYP94LwPyJo5vu36QdIeRoYcYcYaUUp86xvsdGW9hHOOhhYl6yFYTYp7ZdomkYxuXqhCoOslIm\nQ+Lzz9BCIerefAvr7hfVDmlTy3mbsRQcq4e0N0lOK9G+4sdB7ddsZkJBVpoaCE3OouXyFD0vHg2+\nn9QHbdwem8WoysmGk/g0L1dmr/Mrfd9BU+XXNrF/yb9OcWgUU0lWbt3E0dCAFq4sjWyCGFFWOKsc\nwWOvfxnZdrn0QVVsjtanKzqP2JpsMIDpdlG3GGOhvwvb8fKGTiO5JxczaXA0ESvNcyP9Uzpdx+nz\nvPZkW3kSRJif3pji7vASX39TeikIsZ9UUKIpxK5Kfn4RO5+j4Zd/BaVGavhvL5b/+0ZY4bG3/ENb\nxlfFiHZXtL+H3qXbhEcmmDtVeR+tvaAo0NxiMTnu4O7jOF9pfZtPpz7jdvQ+77S8Ue3whHghKX8Q\nh0bq8iUolfAePb6uKd9OrDVofEfpXHf/fCzDQNQiVnDR5k6SSK4wH8swf8ibf71yikKyJYxqWQQW\nY9vatcHRjFNxsVicpWRvHN30bLaCEEII8TTbsoj/7O9QnE6CX/16tcPZsttLNqoCpxpLjHoXcRcd\nhHMHZx0u2t+FDUSGx6sdyra0tJYrtT6/N8tXOz5AQeFnkxexbbvKkQnxYrKoIA4F27ZJXPw5iqbh\n6atsbnTGLnDPnqUJH700bdg+ni2n0Hd7Exu2iVcn2dyEDdTPL25rP1VRiWgdWJRYLM5u2L6WrQDS\nW0EIIcRG6bt3MKNRAu9/gKOuNsZIRrM2U2k4HoQJR5SCWqI97d/QI6qWFfw+Em3NBOcXcadqpxzV\n44X6oMXARBylUMeZ8EnGk5OMJmtrcUQcLrKoIA6F3PAQhdkZ6t56G9Vd2Sr8LXuaIhbvKV2oz2Q8\nlGyFyWwQj2rS7KqdD7CDoOhxkw0G8CZXcGa3l1EQ0dpRUFkoTmLb1obtT2crxFKSrSCEEKIsfuE8\n0b/+KwC0YIj4hfPEL5yvblBbcHt1jfzNsMJNewqAjlqf+rCqZWDoyS3vK5dz9F65+aQPUy1Ya9h4\n+f4c3+z8GICfTVysZkhCvJQsKohDIXHx5wAEP/5aRcexbZtr9gQaKm8qHRu2z+brMG0HXd4E6sFZ\n7K8ZyZZyRsF2sxU0xUmT1krBzjFtDm/Y/nS2wp0hyVYQQghRVozFMOdmcba0ooVC1Q5ny24t2mgK\ndIdyPCZKuFBHXbGyqVj70Uq4AUtRqF9YLje9qhHhiIXb6eCze7P0B3vpqGvjdvQ+S9nlaocmxHPJ\nooI48ErZLKkvruIMR/DqJyo61ijLLJLmjNKKX3Ft2P6k9MEjpQ/VsNLUQMnhILCwBNbGjIOXadHK\nc6wfZq89t27x6WyFqahkoQghhIDMwCMAfCdPVTmSzQ1OxhicjHFlJMFcFjrdJp8lh7GB/kyk2uG9\nEpamkW5swJXN4U7XTn8rhwbv6BEWEzmGphJ8s/NjbGzOT31e7dCEeC5ZVBAHXuraVexCgfpzH6Oo\nlf2Tv2qX69neU7o3bEubDubydYScWeqd+YrOI3bGdjhYiYRwFkwaZua3ta9H9dHoaCFRWmTWHN2w\nXVEUzvaXe2j84IrUNQohxGFXWlkhNzqMWleHq31j9uJ+NZQpZyT0+QoM+aKotkJvtrKpWPtZqrkR\ngMBCbV3l93vLf09/fWGY9FwEj+Ln55NX+NHN2injEIeHLCqIAy9x8QIoCvUffVzRcVJ2nof2PC0E\n6KJhw3Yj4QcUur3xis4jKpNYLYFoGdy4MLCZVmcPAA+zV5+brdAe8RMKuLn6cJ4FmeghhBCHWuLi\nBSiV8OknK75osVdsu7yooCk2dfUxEs4snblG3HZtjMHciXQoSElzEFhc3nYWYzW1NHrxezTG51KU\nSgq69y2KmDzO3a52aEJsUBvvgELsUH5ygvzYKP7XzuKssNbxhj2Jhc1XlK4NIyltGx7FA6hYdErp\nQ1Xl6/zkvR6axqfQctvLGPGqfjpcx4iVFpgzN2YjKIrCmb5GbBt+eHVit0IWQghRY+xSifinPy1P\nlTp6tNrhbFnUdJAsOejxmIz4yxl9xzLNVY7qFVNVVsIhtIJJcHah2tFsmaIo9LcHKZZsJuZT9Llf\nw614eZy/TcaUCxtif5FFBXGg7UaDxkfRIQbjw1wqjaDZCoFkgaH4yJMbwEzGTcJ00uFJ4lJrZxX8\nQFIUki1h1JJFZGT7v/if9LwLvDhbobs1QEvIy+f3ZomlpMxFCCEOo5VbNyguL+PpP4rqclc7nC1b\nK31o9E4z6l3EW3TgTK8QLU5XObJXKxkply82D41VN5BtGMndwxkuj7q+PznDRH6AsNZO0S7w6eRn\nVY5OiPUObq6TOPSsQoHklUs4gkH8r52t6FgT2gpptciJQgMuHBu2P4oHAOjxSenDfpBqbiI8Pk3z\n4Aizp45ta98GLUKbs58Zc5j54gStzvX9M1RF4Zfe7+bPfzjAj65N8Jvf2t7xhRBC1JbnjYiMffID\nALz6yT2OZudsG4azTpxKiVIoSkm16UzWoXDwx1Xl6usw3S6axqYY/qiIpdXGr0BeL9QHLRJxlVwO\nIu525s1xfjJxAa/mweVY3zT8XPv7VYpUHHaSqSAOrJVbN7AyGeo/PIdS4YfHI2e5uc9Jc2MJRa6k\nMpzyEXSZhJ2SjrYflFxOYh1HCCzG8C1vf6HnlPc9AO5nLj03W+GDM62EAm7O354mlSlUHK8QQoja\nYS4tYkYXcLW1owWD1Q5ny+YKDtIllXZPkqlACsWGjpW6aoe1NxSFVKQRzSzSNDZV7Wi2pbmlnAEb\nnVdxKA5anF2YlokRk4aNYv+QRQVxYD0pfThXWYPGRbLMaVnain4arI0pjo8Tfkq2yqmGFMrBX+yv\nGfPHe4GdNWwMac10uo4TKy0wWRjcsF1zqHz3vS4KpsX5Wwc7ZVQIIcR62dUxkt4TtZOlAPB4tfQh\nFJwn6TJpznrxWBuzLw+qZAWNnKspHLFQFJvovIptQ0Rrx+NwM7D8mGwxV+3whABkUUEcUIW5WbID\nj/Ae13G1tFZ0rHuOJQBOFTZmKdg2PIwHULHRg+mKziN213JXG6bHTWRoDGUH3Z7PeD9EQeV+9jKW\nXdqw/dzZI3jdGj+9OY1Z3LhdCCHEwWNls+TGRnHU1+Nqa692OFtWsm1Gsk68qsVKaBGAzsOSpbDK\n9HpItIRpmJnHnVqpdjhbpjmhsckmk1FJryg4FI0z4ZMU7RL3Fx9VOzwhgC0sKui6ruq6/n/oun5Z\n1/Xzuq5vaHGr63pE1/XHuq57Vn9WdF2fXn38eV3X/+RVBC/Ei8TPfwpAwze+VdFxMnaBx0qcgOWk\no+TfsD2ac7GUd9EdyODT5BfL/cR2OFg42o0rl6dxfPvZBHWOIP3us6StBMP5exu2e90aX3+jjWS6\nwJWH87sRshBCiH0uO2iAZeE9cXLDJKj9bCgBOUulx59l1p/GU3QQyXmqHdaem9f7gNrLVmhuLX/H\nXJgv/+rWH+wh4KxjODFGspCqZmhCAFvLVPh1wGMYxgfAHwB/+vRGXdf/K+DHQMtTd/cDNw3D+Prq\n7Q93K2AhNmPl8yQufIrq9VJMpYhfOL/uth3X7UlKis3JQui5jYzux8oNGk811M6K92Eyp/cD0Dow\nvKP9T3nfRVNcPMxew7Q3Tnr41tsdOFSFH38x+dzeC0IIIQ4Ou1Qi+9hAcTrx9NXOGEmAm4vlzyhP\nZIaSatO1cjgaND5rsbeLolOjeXAUdpDFWC2hRhtNWy2BsEBVVF6PnMbG5k70QbXDE2JLiwrngE8A\nDMO4ArzzzHYL+AVg+an73gbadV3/VNf1H+i6ru9GsEJsReraFWzTxHP0OIpj57WCJdviij2OZqsc\nMzc2YsoWVR4n6wi6TLr82UpCFq9INhQk0RImND2HJ7n9lXy36uOE520KdpaB7PUN2xvrPbx7opnp\naJoHY8vPOYIQQoiDIj85gZXNlsdIOp3VDmfLipbNvWXwO0rMBWdQ7MNX+rDGcmos9nXhSWdomKmd\nLENVhXCzhWkqxOPlxaCOujbCnkamVmZYyESrHKE47LbSEr8eSDz1c0nXdc0wjCKAYRg/AXhm3WAW\n+BPDMP6TruvngL8E3n3ZSUIhH5p2eJrFVCoSCVQ7hH3Jtm2mL54HRSHy5hm0up3Pjr5emCSRyXHG\naqTeszFF8M5cHSVb4c1IGq+3/OXCKf+Gd02lz6XbU/47WTqrE/zJIu1DY0x9+Nam+00zsO5nv8eP\nK+/ByN3kTOPb1GsN615//813TnDl4Tyf3prhG+/1VBRztcn7yt6T51yI2pE1yp8P3uMnqhzJ9gzE\nIVeCY82LTDmzHEn7cB+iBo3Pmtf7aDVGaDFGiHccqXY4W9bcYjE342BhToXXQVEU3mo+y48nznN9\n/g7f7flmtUMUh9hWFhWSwNPfetS1BYWXuA6sLTp8put6u67rimEYL8wPjsVkFN9WRSIBolGpn3qe\n7Mgw6ZFR3J1dZG0npDamrG+Fbdv8xBpEAV63IuRy5rrtJRtuR/04VYuj/gS5XPmftjTs2x1OzVHx\nc5lf/TubbW+j0+2i6eEQI6+fwt5B9kq71s9o4QGXon/HR4FfWff6C3oc6J0N3BqMcuvhLB2R2rz6\nI+8re2+rz7ksPAhRfcVYDHNhHmfrkZoaIwlflj6UwpMAdB3SLIU1qUgT6YZ6msancWZzmN7a6C0R\nqLfxeGyWFlVM08bpVGjyNtIf7GE4McZQfJSvdnxY7TDFIbWV8ofPgV8C0HX9fWBjx7KN/iXwz1f3\neR2YeNmCghC7JfHpzwDw6pVdRRhhiVmSnFZaqce1Yftoyke6qHEiuILLIf+09zNbc7BwrBdXLk/T\nDho2AoQczdSpQWbMYebNcc7fnl53a4uUm3j+xScG52/LiEkhhDhosoPlLAVfhd8v9lq+ZPMwBk11\neeb9SwRNL435nWdxHgiKwtyJo6iWRYsxUu1otkxRINJiYVkK45NfXng5Gz6NU3Vyd/EhqYL0+BLV\nsZVFhe8BOV3XLwH/Fvg9Xdd/X9f1X3vJPv8K+Jqu6xeA/xX4xxVHKsQmiqkkqS+u4mxpxdlaWTrb\nRavcFfic0vfc7feW6wF4LZSs6Dxib8ydWGvYOLSj/RVFodN1HFC4lf75hhGTHRE/AZ+TkZkk2fxm\niVxCCCFqiVUokBsZRvX5cXV0VjucbXkYg4IFkfYpLMVGT7ccygaNz1o43kNJ08rfC2qoYWNzS/n7\nx9DIl981PJqbs+FTmJbJ94d/WK3QxCG3afmDYRgW8DvP3D3wnMf1PPX/MeCXKw1OiO1InP8Uu1ik\n4RvfqmjM05yd5DFRemikU2lgivXpydGci9mshy5/hga3/AJZC7IN9SRaIzTMLOBJJMkF67d9DJ8a\noM99hpH8PYbydznuefPJNkVRONUT4urDBYyJOL/4le7dDF8IIUQV5UaHsYtFfGdeQ1G3cj1u/yiX\nPtgs10+hWSr92QgJaqdB4atScrlYONrNkYFhGidnWe5ur3ZIW+L1QaDeYnYOMhkLn6/87/FoQy/D\niTEuz37BR21foTfYVeVIxWFTW++MQryAZRaI/+ynqF4vwXMfb3v/ofjIk9sP83cB6M94GYpvTIu7\ntbSapdAo9ee1ZPbkMQDaHu4sWwHgjPcDnIqbB9kr5Kz1fWD624O4nCrGRJy8Kb01hBDiILBtu9yg\nUVXxHj1e7XC2bCg+wv2lMR7FbBrCs6SULEcyXhKmLCisWftecOTh4ypHsj3NLRa2DcNjX37XUBWV\nt5tfB+CvBr+HZddO9oU4GGRRQRwIqatXKaWSBL/2DdTnTGrYqrRiMqIlCZZcdJY2NjKK5Z0MJf2E\n3XkZI1ljlno7yPu8NA+O4CiYm+/wHG7VyxnvBxTtAvezl9Zt0xwqemcDebPE5ftzuxGyEEKIKssa\nA5QSCdxd3aheb7XD2ZaRlA8LBVfrBABdKWn6+rRMU8OXY6cTtVPOGm62UFUYHlmfLdvsC/Nuy5tM\npKa5PPNFlaITh5UsKoiaZ9s2sZ/8CBwOGr75CxUd655rGUuB1wqNz605vLEUBBTeCSeooMJCVIGt\nqsyeOoZmFmkZ3FljppHcPRQbvIqf0fwD7qU/ZyR3j5FcuX/tie4QqqLwoy8msWxp4CmEELUu/ulP\ngcobQFfDYKIOxZUh5Y0TKXkImhsbTx82LQND626ZhnL26ZFHO89i3GtOJ3S0OViO2SzH1mck/PrR\nX8LtcPH9kR+SNmWyntg7sqggalb8wnniF84T/b//I4XpKdyd3aTv3SV+4fyOjpdRigw649RZTvqL\nG8dFJQoajxN+Gt0FegPyRr3fPfvFoWVgiJJDxVIVOm4/3HFjJkVRV5s2wqQ5iP3U4oHXrdHbFmB+\n+f9n776D5Mruw95/7+3bOc305IiJaOS4IDZg85LLZRZpUaJsPYkuSqZklVxP9Vwll99z6T3LlmVb\nwZatSEkUJWoZRC53yV1uwmKxWGCR8wDoweScp3O8fc/7Y5DjYLpnuhtzPlVdmOlw+tcXd+49/bu/\nc06csz2zefkckiRJUmFk5ueJnjqJVl6Ouaq60OE8kHBaYyxuo6yhHxRYly4vdEhFKVpRhm42UxPo\nX3IVYyG0ty0sj93bf3O1QpnVy6daP04sE+fHfW8VIjRplZJJBankxS+eB8CxYUNO7Zy3zJFVBJvT\nPtQ7VSnMeBEodNqmmArGmZy//SYVN8OsEamqwJJM4RseW3I7blM55aZqYkaYuezNQx02tPgAePvY\nUE6xSpIkSYUV+uB9MAzsa9flNAF0IXSHnKAY6L5xrEKlRZdDH+5IVQnWV6NlMtRe6i10NIvW1GjC\nYobe/iyGcXNl5DONT1DjqObD0cMMRUYKFKG02sikglTS9Pl50mNjmKtrMFdULrmdpKITMM/jMDQ6\nM7dXKYTTGt0hF25TigZb6Yy7k24XrK8BoP58d07tNJjbUVAZSfeSFdevFJS7rWxsKefSUJDBCTmZ\npyRJUikSuk7og/2odju21jsvL12shBAEQi7MFWPoJp3OTBma7PLfVai2iqymUd8VQCmR5SU1k0LL\nGhPxuGBi8uaYNVXjy2s/j0DwvcCP5KSN0oqQRxippMXOnQHAsXFTTu10mefRr1QpmO7wZ3FspgwD\nhXWuaTmXQolLO+3Ey9yUjU/hnJ1fcjtW1U6teQ06acYzAzc9VlvhBODv3w7w/unRm26SJElS8Yue\nOkk2FMTzxB4Us7nQ4TyQwSiEMhr2ugEQsC5dVuiQipph1pj0t2GNJajsLZ0qw442Dbh9CATAOl8n\n26u30B8e4sj4iZUOTVqFZFJBKll6KEhqcADNV4GloXHJ7SREhouWeeyGibWZ20+84zEzgZCLSmuK\nJlml8FCYv1Kt0HD2Uk7t1GrNWBQbU/owkez1BEV9pQOvy0L/eJh4snTGaEqSJEkLrk7QWPbMcwWO\n5MEdnxYozhAZe5Qm3YVbyAka72d001qEotBw7hKUwETL3cNBQqkIVqugb0Dn4kCQ7uHgTc/5Usdn\nsKhmftT7BvGMXLFMWl4yqSCVrNi5swA4t2zNaazjAdFHRjHYmPbdVh4oBOwbWUg07Kmdk1UKD4l4\nuZdYuZeqviGskeiS21EVE43mDgSCM/EPrt2vKAob1pQjBFwaCt6jBUmSJKnYpIaHSXQHcGzchKW2\nrtDhPJCMITgxZWCt7Qegbs4h531ahLLRCaIVZbjmgrQePnnTJM/FSlGgusYgm1WYm7n9K125rYyX\nWl4gmonxk/63CxChtJrIpIJUktITE6QG+tHKy7E0Ni25nbBIckj04zA01mdunxk5EHIyEbfQ7o5R\n70jlErJUTBSFka3rUYSgMcdqhTJTFW61nPHMAOPp/mv3t9Z7sFlMdA8HyehyPKMkSVKpuFal8Ozz\nBY7kwZ2bg5SWQSmfwpU2U5GyFjqkkjHfUAtA+cjEfZ5ZPKpqsgBMTd75K92zzU9S7ajkg5FDjESW\nPkG1JN2PTCpIJWnujR+DEDg251alsE/0kMFgW7rytiqFdFbh8HQ5JkXweM1criFLRWa6rZmk20lN\ndx/m+NIz7oqOAAAgAElEQVTLAhVFocnSiYLC6fgHGGLhBK+ZVNY2lZHOGPSOhfIVtiRJkrSMsrEY\n4cOH0CorcW7ZWuhwHthHkwKtahhUwZqoC+UOq1lJd5ZyO4mVeXCEIthCpTHRssMJLrfB/JxCOg0f\njh6+6XZk/DgbfP6FSRu7f3TTMtiSlE8yqSCVnPTUFOHDH2HylmFtXrPkdmZEjONimEqcd1zx4fhM\nGXFdY1dNBLc5m0vIUjFSVUY2r0PNGjmvBGFXXbRbtxA1glxOnr52v7+5DFVVuDgwL0/kkiRJJSB8\n8ENEOk3ZM8+hqKXVTZ5KCHojBpaaITRDoSHmLHRIJWeuuR6AiqHSuapfXWMACjNTd95f65w1bK3a\nRG9ogGOTp1Y2OGnVKK2jpSQBMz/8PhhGznMpvCu6MRB8XF2Leksmfzxu5fScB485w66apY+5l4rX\nwjhJgW5eWEaq7vylnMZPbrQ/ikWxcSFxhIQRA8Bu1Wir9xCJZxiekvuRJElSMROGQXDfXhSzGe+e\npwodzgM7MiUwlU8gzGkaoy40Ibv5DyrpcV2vVgiXRrVCZbUBiLsOgQD4UsdnMasar/b+lJSeXrng\npFVDHm2kkpLo7SF6/Bi2tjasa1qW3M6oCHFOjFOPh43U3vRYOquwd6wSgOfrZzCr8grzw0qoKsGG\nGkxZA+/YVE5tWVQbm+2Po5PhXPzgtfs3rFmYq+PiwNKXr5QkSZKWX7zrPJnpKdy7H8XkchU6nAei\nG4JjU2CpHQIBa6KlFX8xmWtemJzTNzRe4EgWx2KBcp8gGlEJhu48h1OFvZxnm54kmArxevfeFY5Q\nWg1kUkEqGUIIpr/7MgBVP/uVJVcpCCF43bgAwIvqutvaOTTlI5wxs70iTJ2cnPGhF6qtJquZKB+b\nRNVvX+v5QbRaN1JmqmIwfZFZfaEzUua2Ul/pZHI+wUwomY+QJUmSpGUQfO9doDQnaDw/DzFrCFxB\nGlJlOHVzoUMqWUmPm7jXjTMYxhYujSrDhSEQ0Nt3937MJ9Y8i8vs5EcX3yKcLo0qDKl0yKSCVDKi\nx4+R7OvFtfMR7J2dS27njBhjkHnWU0OHUnnTYwMROxeCbiqsaT5WKa8srwaGZmK+oRaTnqUsx2oF\nRVHZ7ngagFOx96/No7Ch5Wq1gpzwU5IkqRilJyeJnT+Hrb0DWw6VkIXy0aRAqxkEYH2stJbBLEaz\nV+dWGBhZWF+8yPkqDUwmQW9/9o5zOH04epgTk6dZV95BUk/x1+f+4dpkjpKUD9r9nuD3+1XgT4Gt\nQAr4WiAQ6LnlOVXAIWBzIBBI+v1+O/APQDUQAX4pEAhM5zt4afUwMhlmfvB9MJmo/OLPLrmdlNB5\nU1xCQ+VT6vqbHotkTLw3XomK4Pn6aUwy5bZqBOurKRudpGx0kmB9dU5tVZobaLb4GUoHGEhfoNW6\nkboKB2UuCwMTEebCSXweW54ilyRJkvIh9P57IARlz71Q6FAe2HhccDmWwt45TiVO6lNeZogVOqyS\nlvS6iZV7cc6HKBuZINhU3IkakwkqqgymJhQmpwxqa0x3fF57WSs94X56Q/2sLW/Ha/WscKTSw2ox\nX5u+ANgCgcBjwG8Df3Djg36//0XgbaDmhrt/DTgXCASeBL4F/N/5CVdarebf+imZmWnKnn0eS03N\n/V9wF/tEDxFSPKW041Mc1+7XDYU3R6pJZk3sqZ2j0pbJR9hSiRAmE/ONtZiyWcpGJ3Nub4tjDybM\nnIsfJG2kUBSFDS0+hIB3jg/nIWJJkiQpX4xUitDBA6g2G9lYjOD+92+6FaPu4flrtx9fTqHVDIEq\naAtWyWUk82SmpQEBtBw7UxLVCleHQPTcYwiEqqjsbtyGAE5Pn1+hyKTV4L6VCsAe4E2AQCBw2O/3\nP3LL4wbwAnDiltf81ys//xT4f3KMU1rF0hPjzP3kNUxeLxWf+/yS25kWUQ6JfsqxUzdaTjcLwxuE\ngLdmvUwnrbTY56kUk0zeMPLBrJnI6HJJyYddqK6K8tEJyscm0ZIpdJv1gV7flzx30+815ibGMn18\nFH2dJksnrfUbOX15hn2nRnnp0TV4HJZ8hi9Jq9JSqilXPkqp2IWPfIQRj+PYshXFdOcrvMUqnlXo\nTipYawaxZjU6E7lV20nXpZ0OIlUVeKZnqeodZLqjpdAh3ZO3TOBwKAwMZtn9iMBsvnNyqdnbQLWj\nirHYBBOx3IZ9StJVi0kqeIDQDb9n/X6/FggEdIBAIPAOgN/vv9trIoD3fm9SXu5A00rrQF5IVVXu\nQoewIoRhcP6P/h6h63T+2q9Sseb6Sg1Z9+K/9Akh+GbsAllD8CXHFkw3fGE8E9QYTFrwmRPs8k1j\nUm7fD81y31xxK77NNROhNQ1U9AyypivAyBM7c2qu2drGbGicaX2EemczZR4HO9dXc+D0GAe7Jvk/\nPrUhT4Hnz2o5rhQTuc1zdq2a0u/3P8pCNeW17POVasr/ws3VlJJ0jRCC4N53wWTC3um//wuKTFfU\nglo9AprO+nATmpD9lXyaXVOPa3aeNSfOMdPahCjipJOigL9D49TZDJd7dTasu/NknYqisL1qE28N\n7uPU9Dm+2PkZVEWO+ZVys5ikQhi4sdejXk0oLPI1biB4vzeZn48vIhQJFjqh09OrY9bW4P73CXdd\nwLV9J0bHxps+dySy+JUZjhpDXBYzrKOalqSPy8mFXXIoqfH+jBmrqrO7bBgjq3PrYjyyUmHlFWqb\nz1dV4Bkao+bsJUb87aRczpzaa9Q66E2foy9ykQ51J01VTrxOC68d6OPJTbW47MUzO/dqOq4Ui8Vu\nc5l4uKelVFNK0jXxrvOkR0dw7/oYJofj/i8oIrqArriG1j6AZqisi8ncWb7pNivj6zto6Oqmvusy\no1vWFTqke1rn1zjbleH8RZ11azVU9c7VCj5bOS2eZgbCQxydOMmjdbceOiXpwSwmqXAQ+CzwvStX\nAc7d5/lXX/Mp4CjwEnBgyRFKq5YenGfmn76LardT/c//xZLbCYoEb4pL2ND4vLrp2hKSs2mVd2Yd\nqMBjZcM4TLktJyiVPmFSmV3TQO3lAZpPnOPy04/m1J7XVIlH9RE25hjL9NFgaeel3c18570e3jk2\nzM881ZanyCVp1VpKNeVdyarJ1ZfEmnj3TQDafuFniV7uuc+zH4z7ASoqH5TNZuZ8yESmfAKLJcWG\nRCNe6/WkiDn5cO3HhawYnXx0GzU9AzSd7iK4qQPdYS9YLPdTXWVnvd/g/IUUUzMmOtvvPNTS7bbx\nuHU7w+dGeWPgHV7c8AQWTQ7LXIrVdsy8m8UkFV4BPu73+w8BCvBVv9//W0BPIBB47S6v+TPg7/x+\n/4dAGviFvEQrrRrCMJj4629gJBJU/+IvoZWVL+p1PcG+m9tB8I59hJSm80VlMx5lYdb9WFbhjVkn\nGaHwcV8MjyWR988glaZIdQXumXmqLw8wumkd8YqyJbelKApNlk4uJI9yOr6fGnMzT29v4o3Dg7x7\nYphPfKwJp614qhUkqQQtpZryrlZ71eRqq1hK9PUSPt+FY+MmEu4qIpGuvLXtdlsfqKLyQcUSGY7M\nmdE29qEIhbWhapLG9UmmH6YKy0JXjMYVlcEdm2j/6CS1h07Ru2dXwWK5n0gkib9D4fwFOHYiTk1V\n9trFtKvcbhuRSBIwsba8nYtz3fzgzNu80Px0YYIuYavtmHmvBMp9kwqBQMAAvn7L3Zfu8LyWG36O\nA0tf909a9ebffIP4xS6cW7bifeqZJbfTq4UZ1WLU6052WBoBSGYFP51xEsuq7PYkaHfoTMsiBekq\nRWHgY1vZ+NYHtBw7w4VP5naStalOarRmJvRBLiSO8IK5hRd3N/P9fb28c2yYLzwpqxUkKQdLqaaU\nJADmf/oGAL6XPl3gSB5cIGYm7pvAYovTGavBaSxfVYQEE+s7qLvYQ22gj4n1HcQqFnexqxC8XpXm\nRhNDI1mmpg1qqu9e5bHBt5aB8DBvD+zjifqPYdeKtwpDKm5yVg6p6CR6e5j50Q/Rysup/erXbsuw\nLlZUyXDENokmVJ5I1qIoCllD8HcBwUzGxHpnmm3udJ6jlx4G8411BOur8Y2M4x3LfYnJOnMLTtVD\nd/IUo9Fxnt3egNth5q2jw4Siy3clS5JWgVeA5JVqyj8C/k+/3/9bfr//cwWOSypy6fExoqdPYmtt\nw+4v7nHyt9INwYmoGXN9L6qh0Bg0Ma2P3nST8kuoKn2PbkcRgtbDp4p+iclNGxauG589f+8l0i0m\nC59ofoaYHufdwf0rEZr0kJJJBamoZGMxxv/yz0AIar/2rzC5lzZOyUDwgW2MtGKwO1mNS5gRQvD9\nPkEgBM22DE+WJVhivkJ62CkK/R/bBrDQeTBunb7zwaiKie2OZxAYfCfwChazyheebCOVyfLKgb77\nNyBJ0h0FAgEjEAh8PRAIPB4IBB4LBAKXAoHAH946PDMQCLTI5SQlWJgAOrj/fSa++TcgBJbmNYQ+\n2E9w//uFDm3RPpqEVOUIijVJS9SFLbuY0cxSroKNdcw211M2PkVV72Chw7mnmmqVmmqV4VGD8Yl7\nDx15pukJvBY37w0fIJRaPaX8Un7JpIJUNIRhMPGNv0CfnaXis5/HkcOVg/OWOSa1BGsybjr1hRVN\n3xoRHJ2GJid83BfnLhPiShIAsUofk50tuOaC1AZy/+JfZ2ml0dxBX2iAj8aP8dTWOuornRw4O87w\nVDQPEUuSJEmLoYdCJPt6MXnLsDY2FTqcB5LOCt4Zz6DV9WE2TLSFPYUOaVXpe2wHWZOJ1sOnMKWK\nt9pVURQ+tnNhzqYjx9MYxt0rKywmCy+1vkDayPDmwN6VClF6yMjUplQ0Zn7wPWLnzuLYtBnfZz63\n5KsGM2qCk5ZpHIbG48laFBQuzLt4fwIqrPC19QrjE/mNXXo4DezaSsXACGuOn2WmtQndltuY1W3O\np5mJDPNKz+ts8Pn58rMd/PH3z/C99y7zWz+3bclDfSRJkqTFi51ZKF93bduOopbW9bX945Cs6sNs\nzrAp3ITFkOeN5VZz6eZVQeYba6kcHKXl+Fl6nyjepRirKk20t5ro7c/S05dlbcedv/Z9OHoYIQQu\ns5MDox/htbhxWRaW1N7TkNsqWNLqUVpHUumhc7UMcfxvvsH8W29i8nhxbNxM6MAHS2ovg8F++xhC\ngSeTddgwMRi1s3+iAqcGv7pewW2WJ2BpcTIOO8PbN2FOpWk+eT7n9uyqiy92foaEnuTbl/6JTa3l\nbGz10TUwz7m+uTxELEmSJN1LZnaW1OAAWkUFlqbmQofzQGaTgndmIphr+3HoFtbH6god0qo031BD\nymGj9mIPrqnZQodzTzu3mzGZ4MTpDJnM3asVVEVlS+VGBIKzMxdWMELpYSGTClLBZaamiBw+hGKx\n4H32eVTL0tbJFULwkW2CsJphU9pHfdbJZMLCWyNVmBTBi43jhFL99AT75IRG0j3VXOq5dtM1lbTd\nRt2FyzSdOJtz24/XfYwNFX4uznXz0fgxfu7ZDhQFXn63m3Tm4VkCTJIkqRjFTp8EwLVtZ0lVhwkh\n+EG/gbrmAqiC3eFWzOLus/pLy0hVmWpfgwJ0HjiKki3ec7fLqbJ5g0YiITh55t6TNja7Gyi3ehmM\nDDOfDK5QhNLDQiYVpILSQ0GC+/aCEHifegbNs/SxgafEKL3mMFVZGztSVfROZ/jJUDW6UNjlHUFJ\nzjM5H2dyla9DLj0gVWW6rQkFqO4dWvKMz33Jc/Qlz3Fw7Aid3jbMqpnvdb/K+fgRXtjZxOR8glc/\n7M9v7JIkSdI18e4A6bFRzDW1mOtK6yr/uTm4bBrH5JnDTxVNyeJd0nA1SHrdTPjbcM6HaDpd3Ff2\nN28043ErdF3UGRm9ewJEURS2Vm0C4OxM10qFJz0kZFJBKpjM3BzBd99BpFO4H3scS139ktuaEhFe\nE11YhMrTiXrSuomD882kDI1tngnqbXIiPGnp4uVeIhXl2MNRai/15tRW93CQkYkUDVoHutDZN3CE\nCq8Fl93Mm0eH6BsL5ylqSZIk6SqRzTL98rcBcG3fUVJVCkld8MpwCnPzJUxC5TPqRhRKJ/6HVf/u\n7SSdDhpPX8A5M1/ocO7KbFZ45kkrqgofHEoRi999RataRzXVjirGYpNMxWdWMEqp1MmkglQQ2WiU\n0T/+7xjxGM7tO7G3dy65rbTI8h3jFBmyPJGsxZa18sZINdGsFb9zhnZH8R7opdIx3d5M1mSi5ehp\nLLHcq118plrKTFVEjSDdmWM8vqkWIeBv37hIRs9tCUtJkiTpZsF9e0kND2Fra8dcVV3ocB7IP/Ub\nJBq6UMxpXlA78SmOQockAVmLmZ4nd6EKQecHR4p6GERlhcquHWaSSXjr3SjiLlWXiqKwtXIjAGem\nz9/1eZJ0K5lUkFackUww+j//iPTYGPZ163Fs3LTktoQQvCrOM0mU3UozzRkP745WMZmw0WwLstE1\nlcfIpdUsazEz09qIltFpP3h8ycMgrlIUhTWWdVgUGxeTR8EzzbPbGxidifHjQ3IYhCRJUr7owXlm\nf/RDVIcT185dhQ7ngRyfFpxRRjD5JmnBxx6lrdAhSTcINtYx4W/DNRek6VTxDhnoHg6iOWOU+wyG\nR3Teej9KYChI9/DtcydU2n00uuqZSc5xTk7aKC2STCpIK8pIpRj9H39Esq8X96OP4XrkYzmVIB4V\nQ5wWozTi5SXWcWDCR3/UQaMjwU7vGCVU3SiVgHBNJcG6aiqGxqjsH865PU0x02bZhIqJI9G3+Phj\nlVR4rLz+0SBdA3I1CEmSpHyY/u7LGMkklV/6WVSbrdDhLNp0QvCD0Qjm5ktYhcbPqltRZcem6PTv\n3kbS5aTp9AU848V7MUtRYO16HYdTMDZiYnT47l8Dt1RuQAFe63sTQ8jqSen+ZFJBWjFGOs3on/wx\nicvduB7ZRe1Xv5ZTQmFIzPO6uIADC19Rd/DBuImuoIcKa5oXG6dQ5XlXyjdFoWfPLrImE+2HTmCO\nJ3Ju0mnysNXxJGmR4NuXv8vXPrcOVVH4i1e7mAsn8xC0JEnS6hU9c5rIsaPY2trwPvlUocNZtHRW\n8K3eDLSfRjFl+aJpM2WKvdBhSTe4ukpUZd8Q021NAKx/5wBaMlXgyO7ObIbtj4DFKhjo05gYv/NX\nQa/VQ6t3DeOxSY5NnFrhKKVSpBU6AOnhF9z/PkLXCe3fR3psFEtjE3b/ekIfHnjgtnqCfQAkFZ1X\nHQMYiuDJRA0H58LsHbPi0nQ+3TSJ1STHgEnLI+l1M7BrK+2HT7J2/xG6Pvk0uZbEKEKh3FRDX2iA\n18Q/suuRrRw+muH3v3eY3/3lpzBrMv8rSZL0oDJzc0z87TdQNI2aX/wqilq8x9Lu4evzPwkB787Z\nmG7swuSIsltZwyaltFarWG2SHheza+qpHByj48AxLr3wRM59g6W403CGW9nssGlLhrOnzPQETNRX\n6nS03f6VcFPFeoYio/yk/2121GzFrMqvjdLdFe/RVXpoCF0nuG/vQkKhoRHvU8/kdGI3ELxvGyOu\n6mxPV5INV7BvrBKLavCZ5klc5uKdKEd6OIxv7GSusY7y0Qnqu7pzbk9RFFos66iw+RgID6P7emhv\nNTE9Y/CdvZfzELEkSdLqIrJZJv7qzzGiUap+7itYm5oKHdKinYxYGawYxFQ+RRsVrAvb6An23XSb\n1keZ1kcLHap0g/nGOuJeN5WDI3npGywnhxM2btExafDBwTSXe/XbnuM0O3iq4THmkvN8OHq4AFFK\npUQmFaRlZSSTBN97l8zEOJbGJrxPP4tiMuXU5inLDONanCbdRX24ljdHqkGBlxon8VkzeYpcku6s\n5lIPNYFegvXV6GaNliOnaTpxlppLPTm1qyomnmp4FJfZSdfcJRo2jFNeprDv1ChvHhnKU/SSJEmr\nw+yPX10YbrnzEbzPPFfocO7rapLgdDTMScsM5vo+7BmNRyM+VLl8ZGlQFCbWtpK222g9chrv2GSh\nI7ont0eweauO1QIHDqW51H17YuHFluewmWy8ObCXpC6HZEp3J5MK0rLJxmOM/PEfkJmcwNq8ZqFC\nIceEwqAW4ax1Frdhpnm0gh8P1pAxVB7xjKKl55mcj1+7SdJyylrMTHa2oApB7aU+FD33ChmbZuPp\nxsexqGaOT59i82NzlLutfG9fD4e7JvIQtSRJ0sMvcvQIc6//GK2igppf+mpO8zetpLmMjeOKhrn1\nPFpWZdd0FVZy6zdJKytrtXDp+ScQwLr3DmGNxgod0j253IJPftyGzQqHjqS5ELj54pzL7OSF5qeJ\nZmLsHX7wYcvS6iGTCtKy0INBhn//90j2XMba0ornyadzTijMiBgHbOOYhMIT0SaOzLaSNMxsdk/Q\nZA/nKXJJWry4r4z5+mqsiSS1l/tzXmayezjIxGSWVvNmFBSOzx5l3aY0Zk3lr1+/KFeEkCRJuo9Y\n13nG//ovUTQN96OPEzl2jOD+96/dilVMN3NId6G1n8UkFD42XYVLNxc6LGkJwrVV9D22A3Myxfp3\nPkTN3F4BUExmY2HWb8lgNgsOH82w71D4prkZnm3ag9vsYu/QfsLpSAEjlYrZfZMKfr9f9fv9f+73\n+z/y+/3v+/3+jlse/xW/33/c7/cf9vv9n7lyn8/v989cef77fr//3yzXB5CKT3pykuH/8p9Ij47g\nffY5PE88mfPkSHGR5lvGMTKKwe5EHYcGm4noNtods3Q65BctqXBmWhqJe924ZoM0ns7Pes4uUxkd\n1q2Awtns22zdYaAoCv/rh+e4PHL/SZgkSZJWo2R/H2N/+icoioL3mecw+yoKHdKiJHTBh7obpeMM\nKvDIdBVlaSvATRWYshqzNNRc6kEoEKqpxDU7z9bX3qHmQnfOwySXk9Mp2Lwtg8Ui6O/Vblpu0qZZ\n+VTrC6SyaX7U80YBo5SK2WK+6X0BsAUCgceA3wb+4OoDfr+/FvhN4AngReD3/H6/FdgBvBwIBJ65\ncvsf+Q9dKkbJoUGGf/8/kZmZpuJzX6D6F34x54SCLrJ82zjBLHE2pnwE+juZTNhosoXY6p4sxOS6\nknSdqjKxro2M1cKaE+coHxrLS7NuUzkd1i0AXOQdXvqEBV03+MPvnZGJBUmSpFvEL11k5A//GyKd\npvZXfw1LbWmslqAbgj8fnkFvP4eiGOyYraAyZSt0WFKuFIWp9mZi5R6c8yGqewZzrmZcbg4nNyUW\nApd1Phw9fG2SxnKrlyMTJ/jh5Z8UOFKpGCniPju43+//Q+BoIBD4zpXfRwOBQMOVnz8HfCoQCHz9\nyu+vAP8ZeA74HKADU8BvBgKB8Xu9j65nhabJcWOlauKtt0mMjjHx07cw0mkqn3wC7+ZNObcrhOBb\n8eOcyIywVatnuquD3pCDNk+CR9xDqDKhIBUJSyRG7emLCFXl4hc/QaLKl5d23VoZe6d/SFbodCh7\nOH/Uicmk8tk9bdRVOgH45GMteXkvqWjJI90KmZ6OFHevf5lVVbmZni698ubwkcNM/u03EEJQ+y+/\nhmf3YwUf6uB2W4lEUvd8jhCCb4xO0199EkUR7JyppCZpX6EIS4dZM5HJw7xFhaBkszSeC2CLxplr\nrOXCi7kvQ50rq81MKnn3ic3jMTh72oyeUXhmj4W21oWlJGcSc7wz9D5ei4f/+Pi/w6TK722lesxc\nqqoq91133sUsOOoBQjf8nvX7/VogENDv8FgE8AKXgBOBQOBdv9//z4E/Af7Zvd5kXpZyLVox7sAz\nFy4T+uB9ADx7nkJtabvvyfR+hBB8J3SG8+4xqlIuZro66Y3ZqbLE2GIfIpsVrMQpppRPZqWqFLd5\nxm6j++nd+N87xNrX9nL2s8+T9LhzbrfBVsvT7i/yYeQ1LosDtOzYQv/JOl470MuzOxqoq3Dm5XhQ\njMeVh91it3lVVe77kSQ9jIRhMPvjV5n78auodjsN//o3caxbX+iwFu0fZ8fprzmDgsL26SpqZIXC\nQ0eYTIxt6KTx7CV8IxOsOX6OwUc2FzyxcC8OJ2zaotN11sz+g2k0DZqbNCrtPjq8rfSE+nlv+AAf\nX/NMoUOVishi6tLDwI09GvVKQuFOj7mBIPAesO/Kfa8A23OMUypSQgjm332H0P59oKh4n30eW2tb\nXtreKy5z3j2GW7fhHNhKT8xOuTnBY2XDmJRVfTFJKlIzbc30PbYDSyLJxjf3Y47nZ/kln1bLc54v\n41K9jJvOUr+zGwOdvcdHGRiXk5RKkrT6ZOZmGfnvv8/cj19Fq6ig6bf/fUklFH4QHqKr7DSKUPl5\n8Qh1MqHw0MpazIxu9pO2WWk6c4GWY2eKfiiEyy1YvymDogj27k9x9GyI7uEgznQjVpOV1/vfZjxW\n3EtmSitrMUmFg8CnAPx+/6PAuRseOwo86ff7bX6/3wusB84D3wC+dOU5zwMn8haxVDRENsvUP/49\n09/5NqrVSvknXsRa35CXtvcal9knenDrVmr7t3Mx5ManZdlTPohZNfLyHpK0HMY3rmVo+0bs4Sgb\n33ofLZlbxc5VLlMZz3m+TIVWx5zaT/mO45jscT44M87eEyN5eQ9JkqRiJ4QgdPBDBn/nP5DoDuDa\n+Qhr/sP/h7WhsdChLYoQgu8nApx0ngfdzM9ld7PZUlnosKRlplstjGz2E/e6aTx7ibZDJ8Ao7v6s\nxytYv2nhOvKFcxrhkIKmmNlVs42MofPNrpfRjeJe2UJaOYsZ/vAK8HG/33+IhXGdX/X7/b8F9AQC\ngdf8fv//BA6wkKD494FAIOn3+38b+Bu/3//rQAz42jLFLxVINhZj/C//jHjXeSwNjbh3P4rJ6cq5\nXSEE74ke3hOXKcdOzeAWTs178ZiyfLoqRlwU9wFYkgCGdmzCnExRd7GHza+/x/mXniHjyH2crFV1\n8Iz7S5yJH6AndQbbpo8w9W3h2+/AdDDBl5/tQJUTjUiS9JC5Oj+CHgwSOfIRmalJMC0sGWnr6CRy\n/K/SiHYAACAASURBVFhhA1wkXWR5OXOOS5YxRNLOz2QfYUsehslJpSFrtXDu08+x6afvU3+xB1s0\nzqXnHsMwF+/SoeU+gX+DzqUuja5zGlu26axtauDxul0cGj/GT/re5gsdnyp0mFIRuG9SIRAIGMDX\nb7n70g2P/xXwV7e8ph94Nh8BSsUnNTLM2P/+EzLTUzi3bKXuV79O+MiRnNvVhcGr4jwnxQhl2PFP\n7WbfrA2nyeAzVTGcJkFcJkSlUqAo9D6+E6Gq1Hd1s+Unezn/0rOk3M6cm1YVE9udz1CuVXMi9h5K\n23G8vnbePp5lbDbG1z+3CYdtMfliSZKk0iB0ndjZM8QvnAchsDQ24d61G5Mr94sZKyUiUnwjcZQZ\nawQj6mXdeD1p6yAHZwsdmbSSMg47Zz/7POv2HsI3PMaWn7zHhY/vIe3KvX+wXCqrBGvXZem+pHH+\njEZbg8GXOj9Hd7CPd4f2s87XyTpfZ6HDlAost7X+pFUncvQIQ//5P5KZnsL36c9S/xv/BtWW+xXY\nhMjwd8YxTooRKrI2agbXsW/AhkNN82R5LylGmNZH8/AJJGmFKAp9j25naNsG7OEom3+yF+fs/AM3\n05c8d8ebIbI87/k53KqPdFkv3u3H6Bof5He/dZzRmdgyfCBJkqSVJYQgevoUs6+9QrzrHKrDgfeZ\n5yl79vmSSigMijn+l/EhM9YI+mwta4ba6LDK4/RqlbVYuPDiU4yva8c1O8/2V96ifDg/y1Evl+pa\ng/ZOnUxG4c13UkRjBr+84Suoiso3zv8DE7GpQocoFdh9l5RcKat9GacHUYhZ2o1UiunvvUxo//uo\nNhs1//JXcO/Yee3xXJZuGhFBvmecZpY4G6hB71vDmRkfHnOGx8sGcJruvuzNSijFlQhK3cO2zctH\nxqkcGCWrmeh+ajezbc15abfNthldZJh2nOTD0cMomEgPt6FOt/PzL/h5ems9yiJnmJarP6y8B1j9\nQY5pWSGrvS9STMeB5NAg09/7DolLF0FRcGzYiHPzVpQiLhW/kdttJRxOclgM8oa4iCEgM7yW2mA5\nH/OOFfPk/0XnYeoTTK7ruP6LENRe6qXto5OohsHw1vUM7dyMUJf3mu/9lpS8l5EhlYE+jaoyG//2\n57fTm7jAty5+lwqbj3/7yG/gtpROsi8fiumYuRJyXVJSWuVSI8OM/+WfkR4bw9LQSP3Xfx1LXX3O\n7WaFwX7Ryz7Rg4HgSdqY6+/kzIyC15Lh880TxKKFTShIUj7MN9Yx3dFK5/7DrH/vEMOzQQZ3boI8\ndBw0xcxX/F9ko8/Py4EfEm66DJWT/P0HYbr62/mlT67DZS+NTrgkSatbcP/7ZOMxYqdPkeztAcBS\n34Br5y60srICR/dg0kLn++IMZ8QYWtZConsr1Skvj5RflgkFaYGiMLG+g0iVj3V7D9J05iJloxN0\nP/0oiXJvoaO7o8Zmg3KXmVNnk/zet0/yf/38Nj7V8gJvDLzLX5z9Jv9629ewa3Ilk9XI9Du/8zuF\njgGAeDz9O4WOoVQ4nVbi8fSyv48QgtC+vYz/2f8mGwpR9twL1P3ar6N5bz+xJwcHHqjtURHiZeMU\npxnDg40vs4Oz3Y2cnVOotqX4fPMETrNBbImZ1HwyqSqGsaovXq24h3GbT3e0MLemgbLRCSqGRikf\nGSdcU4luX/rJd16fYl6fIqbMkMqmafE0kdSTBI0ptKoRxmajvH8wjtdhpanadc+qhZU6rkjXLXab\nO53W/3cFwpGQfZFCHgeMZJLZ139M+MB+9NlZTGXleJ94CufWbai20vqSMiki/HX6CD1iBk+6jLnz\nu6gUHj7li5JBLgP8oB6mPkGs0nfbfRmHnam1rVjiCXwjE9R292GoKtHqCpYjA6VpJrL60ic+37TW\nSWfFGk4Epjl2aYrPbX0EXYvSNXuJi7MBtlRtxGqy5jHi4rXa+k736o/I4Q8laLlKbW4cwmAkk4Q/\nOkh6ZBjFasXz2B6sTU05v0dYJHlHdHNKjCCALUodT6Y38nK3xmgM1pfBnppBzOrC7jA5H8/5PXP1\nMJXdlYqHcZtfLXk0pdK0f3SC6p5BDJPK4M7NjG3y57XcMZSdZSh9ibRIIRIuUn2bWOtr4SsvdNJc\nc+eZxldbCV8xkMMfis9q74sU4jggDIPwhweYefWHZEMhVLsd59bt2No7UJa5DDzfDCH4SAzwtgig\nY9AYb+Zy1zrKLSq/sVFheioo54dagoexT3A3ztl5qnsG0TI6KYedS889TqS2Kq/vkcvwB4C1TWXs\naXiU90+N8vdvBTBrKv/ixU6GzB9xcOwoVfYKfmPb16i0V+Qx6uK02vpO9+qPyKRCCVrupEJqbJTI\noYMYiTjm2jo8TzyJyeHIqe2ISHFQ9HNEDJImSw1uPq2uJxuq4JuBLElDZb0zzZ6yBHPZ4jrhrqaT\nWbF4GLf5TeMoAd/ACB0fHsOSTBH3uhl8ZAuzLY15uyqRFToRI0hv6iwI0KcbyYys5ZGORj6/p5WG\nyptnml5tJ8ZiIJMKxWe190VW8jgghCB29gwzP/wn0qMjKBYL9nXrcWzYhFoC8yb0BPtu+j2mZDhg\nG2dci2PLajRObeDccD0O1eAL1VE82sKuJZMKD+5h7BPci5rRqRwYwTs5A8Dk2lb6d23NqbLxRvlI\nKlw1NKyz/2CaTAb8a004W3u4OB/Artn5iv+L7KzZmo+Qi9Zq6zvJpMJDZrl24Ll33iJ6/DjJ3sug\nKDi3bcexcfOiJ3q7kxkR46Do56QYQcfAhZXnlU48oQxnZss4Or1wYNrmGafNEczXR8mr1XYyKwar\nZZurmQwVg2N4J2dQhCBS5WNk6wZmm+vzMt8CQCQ7z4ToIZyOQFYjPdJBdqqZHZ01PLujgfVrylEV\nZdWdGIuBTCoUn9XeF1mp40D80kVmXvnBwrwJioLn8T1UfOGLxM6eWfb3zpcbkwr9WphDtgnSikFj\nxkmmZy0DkRpsaoYnfYN4tNVTHr0cVkuf4Fa2cJTykQlcc0EyVgsDu7Yw6W/P+eJDPpMKAKGwwXv7\nU8wHBR63whN74ND8u6SNDLtrd/LPOj+Lw5zbxclitdr6TjKp8JBZjh04evYME9/4C4x4HK3ch/vx\nPZh9t4/7WgxDCAJMcdgYpIeFLGs5dp5S2tmuNDCfVPnbQILJhA2nprPLM0yFJZHPj5NXq/VkVkir\nbZubE0mccyGq+ocBSLocjK/vZLqjhbQz9yVbhTCY1kcZy/STRYekk9TAeoxwJTXldvZsqeOTT7Rh\nMpY+xlJ6cDKpUHxWe19kuTvIib5eZl/5AfGLFwBwbd9JxRd+BmtDI5DbSlIrrSfYR1zJcNg6yaA5\niiYUdiRqGRjoYDDqpMyc5LGyIRwmvdChlrzV1ie4iRB4x6eoGBzFlDVIOe3MrGkkXu5hcn3nkprM\nd1IBIJMRnDid4WJARwjY4DcTrznOZHIcp+bg022fQAFU5c4XTPY0PLrkeApJJhWuk0mFEpTPHTgb\nizH93X8kfOggqCrOzVtxbNq8qHGMt5b+zalJesxh+rQwCXXhJFqj21mXKadFdyOEwtk5D0eny8gK\nlQ5PlCdr5ghHonn5LMtlVZ/MCmQ1bvPJdR045kPUdV2muqcfk55FAOHaKmbamplrqiPlzm2ppoxI\nM5bpY0ZfWA/bmmgg2tuBHl9IXLTWudmxtopNrRU01bhQ5RTly0omFYrPau+LLFcHOTU8zMyrPyR2\n+hQAlrp6nNt2YK6szPt7rQRDCN6In+S4dZqMYlCj22mbW8ORkUZiuka1JcqTleNgFH6y6YfBauwT\n3MqUSlM5MIp7ehYFiHtcXH7mUSLVD/43lGtS4V4qXR66Tlu5PBICxaDOP0nMe5GMSOO2uNjg89Pi\nabotuSCTCqVBJhUeMvnYgYUQRE8cZ+rlb5MNBbE2r8G5ZSta+eKrE3qCfcSUDH3mML1amHlTCgCL\nUGnLePBnyvAZNoSAnoiDI1PlhDNmbKYsT9fO0u5ZmISxGCZjvBd5Mlt5q32bq7qOe2oO98wctnCU\nq0fwhNtJqL6GYH0NofoaMkscXxk3Igylu4kZIRQUKpRmjIkOxobMXD0leBxmNrb62NRawcZWHx6n\nJT8fTrpGJhWKz2rvi+S7g5yeGGf2tVeJHDsCQmDvXEvFz3yJ9Ph43t5jpU2KCD8yzjPEPBahsjle\ny/RIC4GQBxXBzsogjaZxrObVfR7Lp9XeJ7iRJRancmAU53wIgJk1jQw+svmBlqBczqTC2qYynqjf\nTVf/HG8dHaJrYB60FNbmHtSKEVAEZqzUmpup1OpZ17wwmaNMKpQGmVR4yOS6A6fGRpl++dvEL15A\n0TR8n/08vhdfInTww0W9flbEuCSmOJkZZMIUBwVUAY26iw7dS6PuxIRKVkBv2MmZOQ/TSSsqgk3l\nEXZWBrFr18usZVJBupXc5teZUmmEplE2Nol3fAotfb0jECv3EqqrJlRbRbi2ioxj8UMlhBDMZ6eY\nEYNEMlFMisoaVwvuZBtqqJGu/jlCsevjgNfUuNnU5mNzWwVt9R40U2nNyl6MZFKh+Kz2vki+OsjJ\noUEm/+5vSV1Zblrz+XBu24GlviGneZoKKSEy7Be9HBL9ZBE0pjyYRtfSPVuBIRQqrGmer5+h0pZm\ncj4uz2N5JLfl7WyhCN7JGTxTswhgtqWRkS3rF5ahvI/lTircmCAYnopy8Nw4B86OkxQRtNoBTFXD\nKCYD1TDTWdbBhqo2Xljz9LLEs9xkUuE6mVQoQUvdgTNzs8y98TqhA/shm8W5eQtVP/8LWGpqgbuP\nZYyKFAPM0Sfm6BMzTBO79li1bqdd99Ca8WDFBEAordEdctIVdBPXNUDQ4Ymzu2oer+X2sYUyqSDd\nSm7zuxACazSGIxjBEQpjC0dRb1i7O22zkvS4SHhcJDxuRrZvvO+ETkIYzGYnmNAHSBlJQKHZspa1\n1h2IhIexmRhjM3Gm5uNcfSuzprKlreJaksHnKa015IuFTCoUn9XeF8m1gxzvDjD3xk+Inz8HgOar\nwLF5C9am5pJNJlwcnuWyY4rT7mFSJh1rxopleB1TM7WAgsecYWdliLXeKKYrH1EmFfJLbsu7EALn\nXBDf8Di26EJfOuFxMbxtIzNtTRiadseXLWdS4W6EgFBQYX5WZS6kk/EModUMomg6GArVajtPNTzG\nnvYNmDXTisaWC5lUuE4mFUrQg+7Amelp5t766bVkgsntwfXILqyNTTc9LyEyTBJhSkSZIsqUiDBJ\nlCipa88xY6KdCtYp1VgjSRxCWzhQpDXOTWuMJL3MZxaulmpKlhZ7kHbHHO1Vd18eSiYVpFvJbb44\nimFgjcawh6PYQ1Fs4Sim7PXtlrFZCddULlQy1FQRqyxH3GW+FLPVxERshInMEEmxkDgsN1XTZt1E\nk3UtZM1MzMUZm4kxOh0jmrjeIamvdLKpdSHBsLbJW1IdgkKSSYXis9r7IkvpIAtdJ3ryBPPvvUuy\n5zIA9rV+LE3NWOrqSzaZoIssJ8QIb2UCpDQdsib0sTYyEy0gTPjMcbZVxum8IZlwlUwq5Jfclvch\nBPZQhPLRCZzzYQB0s5nZ1kZmWpoINtQgTNfPy4VIKtwqmYCZOYOIMkXMOohiX+h3iLiHOrGe3fXb\n2NZeT3VZ7pNVLyeZVLhOJhVK0GJ2YCOdJnrqJOEPP7g2y7K5qhpb51pESxPTaozJK8mDwcwU82r6\n2uSKNyrDTjUu1ijltCoVNOBFU1TCacGhiUnG4jaGonbCmatJA0G1JUaTLUSDLYJZLf3Z5OXJbOXJ\nbb5EQmCJJxaSDOEolngCa+z6yipZzUSkuoJwTRWh2ioi1RUYV9aDv9rJEELgMLnpTZ1jPDMACFRM\n1JibabC0UWduw6rYicQzjM7EGJuJMTEbJ3uljMGkKlSX29mzuY4NLT454eM9yKRC8VntfZEH6SCn\nRkeIHDlM8L13MZJJACwNjTg3bcFcXb2cYS6r8UyCfekhAuZhdFMakVXRp5rRx1vxIKizRmi2h+67\nTKQ8j+WP3JaLpyVTmPQsNd39WOML53/drBGurV4YLllXhV5XRVIvnv65rgv0hI2+zDkS1lFQBMJQ\nMYJVOJPNbKr2s7Gpho4Gb9FVRsqkwnUyqVCC7rQDG+k06dER4t0B4he6SHQHEJmFLKTe0sDU5iYu\nNpsZmh8kTPK2Np2GRplhpcywUp61XPnZwjpvBzEdJuIwEoPhqGA4BjM3NGFRDRqdCcqUEHXWCDbT\nw3XglyezlSe3ef5oyRT28EIVgz0cwRq//scrFIVoRTnh2koSjbWEnE6SXjetjq0AJIwoA6kLDKe7\nCWVnr73OrfqoMtdTodVTbqrCgZfpYPrKUIkYwej1zrbbYWb9mnI6G8torfPQXOOS8zFcIZMKxWe1\n90XutU8KwyDZ30e86zyRE8dJj44AoFgs2No7sHf60byLnyyuGGQNwXQS+mIZzmYnGbONo7tmURSB\n0DXETBNls5XUm1LUWqMPtDykPI/lj9yWD2ZyXQcIgXtqloqBYSoGx7CHr/9dC0Uh7nUT95URqygj\n5isjXuYl5XLcd8jkcmmzbQYWJpIORM8xnO4mpS5MRimEghH1YoR9OIwq2suaWVtXQ3uDl/oKJw7b\nnYd5rASZVLhOJhVKhJHJkA2H0INBnCLFbP8ImdlZ9NlZUuOjZCYn4Yb/y5DPTm+diXOtFoKe639s\njqvJg6wFV9aGM2PDlrGTzliI66YrN4141kQkYyKYNpPK3lzKbFay+MxxqixxKixxfOYE6kPc5ZUn\ns5Unt/nyUTM69kgUQ9PwTMzgmplDNa5fsTAUhWxZJXp51cLNV43uKSfsNDGsTTKuDzKrT5Dleumk\ngorbVI5bLUMXGUxZG+mYk8S8nfCMk3Tq+jFEVRQaqpw0VDqpr3RSVWbH57Hic9soc1swLWI524eF\nTCoUn9XeF7m6TxrJBJnZWdKTk6SGBkgODJLs68WIL5QoK5qGY/MWPLt2o0ciKHcZu10s0lnBXGrh\ngshEAsYSOqMiTNAyh+KZQXUFUdSF/3pL0kNLspmPafV0uE0cHexa0nvK81j+yG2ZOy2Vxh6KYAtH\nscUTmGNxTNmbqxUMk0rC7SLpdZPwuEl43QvzNHndpB32ZU04XE0qXCWEIJSdYTTdy0iyn7CYBuX6\n4VnoGiLlwEg6sBgevFoZXouHcoeHSoeXarcXn9uOx2nB47TgsGnLUjUpkwrX3Tep4Pf7VeBPga1A\nCvhaIBDoueHxXwH+FaADvxsIBH7i9/srgX8E7MAY8NVAIHDPgfOr9URuZNJkgyH0UBA9GLz2bzYU\nJNnfTzYRx0gkEKnUXdtImRVmyjRmyjQmKjSGay3E7BqmlANTwgUJFyLuQY+50TM2MoaC4P5/WCoC\nj0WnzJKh3JrBrEcoNydwmjKFSmQWhDyZrTy5zVeOkl2Yl8EZi2OKxrEkkljiyZvmZrjKUBR0qwWj\nqpGE00bILgjZdOasKWYscSJ2g7hNJXvLAGMNC0rWhpZxk0mYSScs6EkLImOBrBmR1SCrgVCxWTQc\nFjM2q4ZV07CaVaxmE2Emaay1Y7GA1aIs/GsFi6bxVOPjt615XQpkUiF3S+mj3Ku9Uu2LCCEQqSTZ\nWJxsLIoRjxM+dhSRSmGk04h0GqFnEHoWkdUxl5djpDOIdAqRyVx7DnqGbDKJkUjc9h6qy4Wlrh5L\nfQOW2jpUS3EsM5s1BJEMhNLXb8G0wVxGZzabYl6kSKopFGscxR5DtUdR7FGUq19QBFiTdqoTDloS\nFtzZu88B9SDkeSx/5LbML7NmIpPR0VJprLE41liCrFnDHopiD0XQMrfPt2CoKhm7lbTNRsZmRbda\nmGlrJu10kHLaF5a4XsYvB7rIEDPCxLJhDC1BKBkjJWII5c7DOIQAdAtCX+hfCEPDJMyowoKmmDEr\nFsyKlXqfB7fVjsfmxGt3UO5w4HO58NgcWE1WrCbLPfsXMqlw3WKSCl8EPhcIBH7Z7/c/Cvy7QCDw\n+SuP1QLvAI8ANuDDKz//N+BkIBD4pt/v/20gFQgE/uhe75PvE3k2FkPoOiD4/9u72xBJjjqO49+q\n6u6Z3b29SzRnLuCRiEolgtEXQWIefZEgMTGaV4II5owkooIafKFi3kl8ExVBg74w+ISIGgIxahQC\nPiQaEn0hEUlBXuiLiLnkgpfbh5meripf9Oze7t1mczfXu3O3+/tA0w81M/y3Yab++++qbjIsjZZo\nYgM5tZ1vSkAmpQQ5k9ccz2SIsd1OiRwjKTak2DAc1tSjEalpyLEhxoa02h5hvJ1TJMdIbhrMoMYM\nhphhjRvW2HrUfpGXhlT15kPphqVhccauLgszjqUZy7FZy7E5xytzjsU8Sx7sJS3vIS/Nt+vBHOT2\nS1CYRGkzpU0UNkNqKEw6vtjEjG3o24YD+xyzLjJbRGaKuG4Ewtl+Q8Wtos5s++mcb7915zxn3GhE\ntTSgWh5QDIaUw5pyMKQY1hSjzX+3msIyKh11aalLGJYwKGBUQHSGZA3RQrSG6MZr27ZFa0ir2+tf\nk01b2Mim/XlLph3GmQzkbMEUYBzGFBhbUpiK0lRUrqKyfXquomf72Ll5ekWfnutR2oLSFVSuoHQl\nlSupCkdhHc5ZnLVYDNYYnHXMFXOreZMxBmNoS7TGYIBe5eiVp3ajShUVztwkOUoI4VWr9F3nIjln\n0sICOcU210i5zXZTm3OQxznISi4SI3k0Itd1+4/+qCYNa9JgmbS4SFxcXC0arG4vLhKXlmCDQuCp\nMGWJKStsr6Lo90iupDjvPMrXX0B5wX56Bw8yfP55bP/U5zIP8oiGRJ0yg5RJOZOBlCGR2/MC42OZ\nRCYCo5wY5ESdE3WO7TollnNimGLblhJDIkMahjnSmAZcu5iVdVFj3Mb/bNhkOW80x4WjPeyv93BR\nvY9j9eGJzt1m1I91R+eyW5uez5xxo4ZyMKBcHlItj9fj/bUjG9daueiwbqkqYlWSnCVZR3aWZC3Z\nufaYs2TryMaQrSEbA6vb9oT9cfuatmSgYcTQ1AzygEEaMUiRESOwhiFDIjVN0VD3zuCnPTkK2iJE\nZXr0XI++69OzffbO7sHGgtmyT9/NUNmKwhRY43DGYnBYHNZYnHFY0+YHZnxx12CwxtJ3M+P9tjZj\njMHaNsewps1BVo+b4/lH+xqD5fj2yntmegVl0e0Fl83ykVMZr3YN8ChACOFJ7/0Va9reBTwx7qCH\n3vvngMvH77l3/JrfjLc3LSp06ejjf+SF7z+wJZ9taTOTM5EM1KXh2Ixl8fySxRm3rnCwOGNZ6JUs\nlRWNLTHRYZuCqpmlbCpmU5+yLtl3tOKil/vMYFnOL40LBMuUc4sUe44XDU6rcDiCNIIF2kVEdiFj\niFXFclWxfN7ek5pffPMl9BYWqZaWV0c2lMsDqqXldjpFE3ExMrccmV+I6x57eTZ47o09fnXdZHO/\n639dRjx88au2V4Xl3juvPOtuJrWDTZKjPL1dwR156EFe/vWmgyMm5xxudg6MoTj/ddheD1NV2KqH\n6Y3XVbV63BQFxhXjtWunLDi37ukM8/M9jh1bX3MZHTlyWgWFkA/zo/RXVr/1WzyIaLWEl9uCgUuW\nclTSHzhmk6WfLP2mYCY69oxK+tGtJvQw5BjdFxREzlnGEKuSWJUM9s6vb8sZV48ohzXFsGawby/V\n0hK9hSWqxeX24sN4msXZVAnPwD9vuJoXLz5AzA2jGKmbhmETGcVI00RGqSGmSJMjkUimIZlINg3Y\nSO0aRm6RJXcUQ4aVmszJt6mbSP3vS4kvXNLNh43tnau475NXbdt9rE6lqLAXOLpmP3rvixBCs0Hb\nMWDfCcdXjm2qyysx+2+7mbfcdnNXHyciIjvI1cBHpx3E2P7986/9ItnMJDnKq+p6VMj+uw7BXYe6\n/Mgtd+AM3/9W4Bbu6CIUEZFOXDPtAHaBUyldvAKszXrsuLPeqG0e+N8Jx1eOiYiIiHRpkhxFRERE\nOnQqRYUngPcBjOcrPrOm7SngWu9933u/D7gM+Mfa9wA3AX/qLGIRERGR1iQ5ioiIiHTodJ7+cDnt\n/SMO0Xbgz4UQHh7fWflO2gLFvSGEB733FwI/oL0q8BLw4RDC4tb9GSIiIrLbTJKjTC1YERGRHeo1\niwoiIiIiIiIiIhs59x7sLSIiIiIiIiJnBRUVRERERERERGQiKiqIiIiIiIiIyESKaQcgp2d8B+sf\n0z5/uwLuDiH8ZbpR7UxrbgD2DmAIfDyE8Nx0o9rZvPcl8ABwCdADvhJCeHiqQe0C3vs3AH8Dbgwh\nPDvteHYD7/0XgVtpf8fvDyF8b8ohiSjH6IByh+4oJ+ie+vtuqA8/mUYqnHvuBh4LIVwP3A58e7rh\n7GgfBPohhHcDXwC+NuV4doOPAEdCCNfSPo72W1OOZ8cbJ23fBZanHctu4b1/D3AVcDVwPXBwqgGJ\nHKcc48wpd+iOcoIOqb/vhvrwjamocO75Bu0PArQjTQZTjGWnuwZ4FCCE8CRwxXTD2RV+DtyzZr+Z\nViC7yH3Ad4D/TDuQXeS9wDPAQ8AvgUemG47IKuUYZ065Q3eUE3RL/X031IdvQNMfzmLe+zuAz51w\n+FAI4Wnv/QHaIYqf3f7Ido29wNE1+9F7X4QQ1KltkRDCAoD3fh74BfDl6Ua0s3nvbwdeDCH8djyU\nT7bHBcDFwC3Am4CHvfeXhhD0jGfZNsoxtoxyh44oJ+iO+vtOqQ/fgIoKZ7Hx/JyT5uh4798O/BT4\nfAjhD9se2O7xCjC/Zt8qKdh63vuDtNXf+0MIP5l2PDvcx4Dsvb8BeCfwQ+/9rSGE/045rp3uCPBs\nCKEGgvd+AOwHDk83LNlNlGNsGeUOHVJO0Bn1991RH74BFRXOMd77t9EOB/tQCOHv045nh3sCeD/w\nM+/9lbRDnWQLee8vBH4HfDqE8Ni049npQgjXrWx7738PfEIJxrZ4HPiM9/7rwEXAHG2SIjJVvCaj\ntQAAAMxJREFUyjE6odyhI8oJuqP+vlPqwzegosK556tAH/im9x7gaAjhA9MNacd6CLjRe/9nwACH\nphzPbvAl4HzgHu/9yjzKm0IIuqmQ7BghhEe899cBT9He2+hTIYQ45bBEQDlGF5Q7dEc5gZx11Idv\nzOS8q6d/iIiIiIiIiMiE9PQHEREREREREZmIigoiIiIiIiIiMhEVFURERERERERkIioqiIiIiIiI\niMhEVFQQERERERERkYmoqCAiIiIiIiIiE1FRQUREREREREQm8n/Q3lTgRSNqqAAAAABJRU5ErkJg\ngg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBUAAAEFCAYAAAC8b987AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4HNXV+PHvbN+VVr13yWXcK8YU08GUQAiEACkkJD/jQEJCQoAACS+QkFDyAnHgxQQCIYEEQoDQYqrBHRv37rGtZjWrebVq23d+f6wsW5ZkFcuSbJ3P8+ixdmfmztkrWTt75t5zFV3XEUIIIYQQQgghhOgrw1AHIIQQQgghhBBCiBOTJBWEEEIIIYQQQgjRL5JUEEIIIYQQQgghRL9IUkEIIYQQQgghhBD9IkkFIYQQQgghhBBC9IskFYQQQgghhBBCCNEvpqEOQAjRPVVV84BiYJmmaeccse0l4HtAsqZpdUdp4zfAXk3T/j5AMS0ELgH+CSwFngeqgXM0TfP0sa2vALM1TfufgYhNCCGEEH2nqqoRuA34FpHPBxbgPeB/NE3z9bPNWOA/mqadP0Ax9qs9VVXncuha5SJgERAH3Kdp2luDEYMQJzsZqSDE8OcFVFVVcw8+oapqFHBmbw7WNO1/Biqh0OaHwFmapv0KuB54XtO0U/uaUGgzC0gYwNiEEEII0XcLgdOBCzRNm0bk/VkF/nIMbcYDpw5AbMfaXvu1CjAVSNU0bWJfEwrHGIMQJzVF1/WhjkEI0Y22kQrbgBeAak3Tft/2/A1E3hh/ASQDB4AngdMAJ6AA8zRNW9k2omGbpmn/q6qqF3gEmAukA49pmrawi/OOBxYAiYAR+JOmaS+qqrocmNMW0+vAzwEP8E9N0+5UVfVXwNeJJCxLgB9pmlapqmoa8CwwDgi3fb8GeKet/efakhRCCCGEGERt1xrbgXRN0xoPez4NOFPTtDfb7tD/HzAN0IEPgHs1TQt2d22hqurnwNnAVmAm0ErkfX8q8G1gCpEbFRYiNxgeaTsuDfg7kNQWyn81TbvvyPY0TQsdFqsFeBQ4h8h1xUbgp23t30PkWuVLYDKQCWhEkijT246LAkLAg5qmvd/W5j1ERoQGgT3AjcDb3cUgxEgmIxWEODH8HbjhsMffA1467PFsIAM4XdO0CcDfgLu7aMcK1GmadgZwDfCkqqq2w3dQVdUEvAHcrWnaTCJv0Heoqnqapmlnte12nqZpvwXeBZ5sSyh8l8ib9altdzkWcegOxzPAbk3TxhF5E58P1BNJLvxLEgpCCCHEkJkJbD88oQCgadp+TdPebHv4JyLv25OBU4gkBu5o29bdtcX3AY+madPaPnxbgPc0TVOBXcBNwGWapk0HrgMea2vvJqBI07QZwFnAmLakxpHtHe5uIh/+Z2qaNhWoJJKk+AOHrlWuAuYBhW3XKTbgr8ANbee6ElioqmqOqqpfJZJEOF3TtElEpqLe2kMMQoxYUlNBiBOApmnrVVUNqao6E6gBnJqmbVNV9eD2L1RV/TXwQ1VVRwHnAk3dNPdO278biFwIRBGZYnHQWGAU8OLB9gE7kWz+6qOEeTmRIYHr2o4zAo62bRcCd7XF6gYmARzWvhBCCCGGRpiebzReSmTUgg74VFV9FvgZkREK0PW1RVeWA2ia1qyq6uXAV1RVHUNkBER02z4fAotUVc0BPiVyk8Otqmr8UeK7nEidhIvari0sRK6XjuZ0IiMr3j7sekQnMoLiQuDfmqa52uK9HdpHdQghjiBJBSFOHC8D3wFq275v11bwcAHwOJE39l1t+3bFA6Bpmt72Jqocsd0IuNuy+AfbTwXcPcRnBB49OJ1CVVUrkbmHELl70D7XSlXVAqDb4pJCCCGEGDRrgPGqqjo1TWu/IaGqaibwHJHRBwYOex9ve2w+7HFP1xYHNbe1nQV80db+CiIjJC9va2Otqqr5RD7Ynw98qarqpURGSnTHCNymadoHbe1HExmJcDRGYKemabMPe80ZRK6zzqfjdUsckaSFEKILMv1BiBPHK8A3iAwR/OcR2y4iMqRwIbAO+BqRN8v+0ACPqqrfAVBVNZtIDYWZPRz3ETBPVdWYtse/4VDy41MiQwYPVk5eDIwhkmwwI4QQQoghoWlaJfAPIiMUYwDa/n0GqG8rxPwRcKuqqkrbTYP5wCc9NB0EjKqqdpVgOIXIh/eHgI9pSyioqmpUVfURIiszvE1kRYrtREY4Hq29g/FZVFU1EFnt4eEe4ltNZGrF2W3nnkakdkImkeuWqw+7pnkAuL2HGIQYsSSpIMQJQtO0CmAnsEfTtANHbH4WOFdV1a1Ehh4WAvltb6x9PY+fyLzCeaqqbiHyZn+fpmkrezj0L8D7wGpVVbcTGT54Y9u2W4ncBdkCrAQe1jRtPfAZcLGqqk/1NU4hhBBCDJgfATuAVaqqbiIyemEHkRoEECl6mEKkQOFWIjcgftdDm1VEiiNuV1U18YhtHwPlbe3sBHKIJBlGA38Epqmquo3IjZJi4LUe2vstkQLRG9viVogUs+6Wpmm1RIpL/0FV1c1EboTcoGlaiaZpi4jUW1jZdm2VBvyqhxiEGLFk9QchhBBCCCGEEEL0i4xUEEIIIYQQQgghRL9IUkEIIYQQQgghhBD9IkkFIYQQQgghhBBC9IskFYQQQgghhBBCCNEvpqEO4KDa2iapGNlL8fEOXK7WoQ5jxJD+HnzS54NP+nzw9bbPk5OdsnTZIBnp1yLyd2DgSF8OHOnLgSX9OXBGWl8e7XpERiqcgEwm41CHMKJIfw8+6fPBJ30++KTPxXAjv5MDR/py4EhfDizpz4EjfXmIJBWEEEIIIYQQQgjRL5JUEEIIIYQQQgghRL9IUkEIIYQQQgghhBD9IkkFIYQQQgghhBBC9IskFYQQQgghhBBCCNEvklQQQgghhBBCCCFEv0hSQQghhBBCCCGEEP1iGuoAhBBCCCGEEEIMriWbKga0vXOnZQ5oe+LEISMVhBBCCCGEEEIcdxUV5fz613cxf/6N/PSnN3PnnbdRVFQ4YO0vXfo5dXW11NfX8b//+0ivj9u+fRvnnnsaO3dub3/uhRf+zNtvv3FM8bz88kvs2LENn8/He++9PWDtDjcyUkGIk1TD0iXdbos759xBi0MIIYQQ4nhaUbG6y+fnZJ42yJGIo/F6vdx99+388pe/ZtKkKQDs2LGNJ554lKeffm5AzvHvf79KXt695Obmcccdd/f6uPfff5vrr/8Ob731b371q4kDEgvADTfcCEBVVSXvvfc2V1zxtQFreziRpIIQQgghhBBCiONq5cplzJw5qz2hADBhwiSeeurPAFRX7+exx36P3+/DYrFy1133Eg6HeeCBX5GSkkpFRTkTJkzkjjvuobm5mUce+Q1utxuAn/3sTqqr97N3724eeuh/uO++3/LQQ/fz3HMvsXLlcv761+cBGDNG5c4778FgODRgv7W1lfXr1/Lyy6/zve9dT0NDA3Fxce3bdV3n8ccfRdN2kJCQSFVVJY8++iQ+XxR33XU3wWAQRVG47bY7GDNmLF//+uXk5uaRm5tPc3MTF1wwl6VLP6OkpLg9juXLl/H554txu93Mm3czc+aczXXXfY1Jk6ZQXl7GjBmn0NLSzM6d28nJyeW++3573H8+x0KSCkKMUEebR3csc+KOV7tCCCGEEOLEVVlZSWZmdvvju+++nebmZurr61iwYCH/938LuOaa6zj99DNZt+5Lnn32aebP/xFlZft48smnsVptXHvtldTX1/Gvf/2TmTNP5aqrrqGsbB+///2DLFz4AqNHj+XOO+/FbDYDEAwGefLJx3j++b8RH5/AX//6PDU1NaSlpbXHsXjxx5xzzvlYrVbOP/8i3n//bb7znRvbt69YsZTGRjfPP/93XC4X3/zmVQA89thjXHPNdZx11rns2aPxyCO/5YUXXqamppoXX3yF2Ng4fve7BwD47nd/QGHhXr7//Zt44YU/k5yczN1338eGDev45z//zpw5Z7N/fxULFjxLUlISl156Ps899xI///ldXHvtlTQ1NeF0Oo//D6mfJKkghBBCCCGEEOK4Sk1NZdeuHe2PH3nkCQDmz7+RUChEUdFeXn75r/zjH38DwGSKfFTNzMzC4YgCIDExCb/fT1HRXjZsWMfixR8D0NTU1OU53e4GnE4n8fEJAHz/+zd12ue9997GaDRy++0/wefzUlNTw7e+9d327SUlJUyaNBmA+Ph4cnLyACgsLOS2234JREZA1NRUAxAbG0dsbBxHo6rj21+P1+sFICYmtj3ZYbfbyc8vACAqKhq/3wdIUkEIIYQQQgghxAg1Z845vPLKS2zbtrX9Q3p5eRm1tTUoikJOTh7f/OZ3mDx5KqWlJWzcuB4ARVE6tZWbm8fcuROYO/cSXK4D7UUQDQYD4XC4fb/4+ASam5tpbHQTExPLH//4B+bOvZQJEyYBUFi4l3A4zHPPvdR+zM9+9iNWrVre/rigYBQffbSIa6+FxsZGysr2ATBq1Ci2bNnInDnnsGePRkJCYnsMR1IUA7oePuxx5/7p6nWeKCSpIIQQQgghhBAjzGBPS3U4HDz66JM8++xTPPtsPaFQEKPRxF133UtaWjo//vFtPP74I/j9fnw+L7fddke3bX33uz/gkUd+y7vvvkVraws/+MF8ACZNmsJDD93PXXf9Coh8wL/99l9y550/w2AwMHasyvjxhwoxvvfef7j44ss6tH3FFVfx5puvt9d+OOOMOaxevYqbb/4BCQmJ2Gw2TCYTd911F7/85T28+uorBINB7rnnvm7jjY+PJxAI8swzf8Jqtfa7D4crRdf1oY4BgNrapuERyAkgOdlJbW3XQ3zEwDtR+7un1R+Gc02FE7XPT2TS54Ovt32enOw8cW9dnGBG+rWI/B0YONKXA6c3fSmrP/Se/G72XWlpCXv2aFx44cW43Q3ccMN1vPHGe2RmJo6ovjza9YiMVBBiGJNlIYUQQgghhBg6KSmpLFz4J15//VXC4TC33PITLBbLUIc1rEhSQQghhBBCCDEidTfCUlasEgfZ7fb2opKiaz0mFVRVNQDPAFMBHzBP07S9XezzX+AdTdOeVVXVDrwCpABNwPc0Tasd6OCFEODdV0rTmi8Itbai+3zo4TBRk6egB4MoJskbCiGEEOLkcmQioMjbAMDY7I4V97ubFgEyNUKIgdSbTxxfA2yapp2uquppwOPAlUfs8xCQcNjjW4CtmqY9oKrq9cCvgdsGImAhRIS/upr6d/5D05ed3zCb161FMZux5Y/CMXkKRodjCCIUQgghhBBCnOx6k1SYA3wIoGnaalVVTzl8o6qq1wBh4IMjjnms7fsPgO5LYQoh+syzexc1/3wZQiGsObkkfvVrWNLSUaxWdJ+PxtUraVi8GM/uXXj3lRB71jlY0tKHOmwhhBBCCCHESaY3SYUYwH3Y45CqqiZN04Kqqk4CvgVcA/xPN8c0AbE9nSQ+3oHJZOxd1ILkZOdQhzCiDFV/h5ydl5xp3KXRtGY15rg4Cm76AYlnnI5yxHq4mZPHUJWVhnvrNuq/WEPDpx+TePpsYqdOQVEUkpOdOKNt3Z63q9f7aeHyLvaMuHDUWe3f97XdgdhXDAzp88EnfS6EGO66KxotBaNPfEebHtIfMqVk5OpNUqEROPyqx6BpWrDt++8CmcBnQB7gV1W15IhjnEBDTydxuVp7FbCQpWAG21D2d1OTr8Nj775SGpctRbFYyPjZL9Czsqmrb+ny2OaWAMYClbjoOBqXLaF+1Wpa61xEn3oaxtommpq93Z73yNfb4g2wbXszDW4dgwEMBjCbFZISDcTFKh3270u73ZHf8cEnfT74+rCk5CBEI4QQQgyOl19+iXXrvsRgUFAUhfnzf8xHHy3iuuu+TVpaWr/afOGFP5OYmMjXvnZNl9v379/P3r27mTPnbBYsePyYziU6601SYSVwBfB6W02FrQc3aJp218HvVVV9ANivadqHqqpOBC4DvgQuBbq/xSmE6BV/VRWNy5eiGI3EXXAR1qzsXh1nSUkl/itX4F78KZ7dGorFSvy55x31mCWbKtB1nd1lbvaUN3Cg0dftvmYzfJm5kVnjUjh1fGqfXpMQQgghxLEK6H5cwRr27duMruvkxmSTG5OF1dh5xKcYWsXFRaxcuYyFC19AURT27NF46KEH+NvfXj2u592wYS2lpSXMmXM2t932i+N6rpGoN0mF/wAXqaq6ClCA76uqejuwV9O0d7s5ZiHwN1VVVwB+IlMkhBD9FA4EaFwVyc3FnncB5qTkbocj7m0o6vJ5ZdZY4r7YTuu2LVQu/D8czowu92uddCquJh9fbNtPnduLQVFIjbdjjW0i2qmTkRRNOKTj9enU1oWpqQ2zo8TFjhIXr366h6yUaCbmJxDfxdQNIYQYSP1ZoWrwoxRCHE97vJvY4lkJ6BCIfFip8x5gY80WZqRMYUz8qKEOURwmPj6B6ur9/Pe/7zB79hmMGaPy/PN/49Zb53Pnnffy6acfUVFRTkNDA01Nbq666hssWfIZZWWl/OpXD5KYmMj999/Lc8+9BMD8+Tfy4IO/b28/FArxhz/8npqaatxuN6eddgY/+MF8XnnlJbxeL5MnT+G11/7BnXfeS0JCIr/97X20tLQQCoW46aZbmDlzFt/73vVMmzaDwsLI28kjjzxBdHT0UHTXCaPHpIKmaWHg5iOe3tXFfg8c9n0r8I1jDU4IEdGyeSPh1lYck6f2u+CibrUQd+FcXB9+QPP6tZjHzSCQ1nm0w7aiejbuqUPXIS/NyazxKditJoq8kUFKOVmHap+MGxv5d4JzGiu37Wfl1iqKKhsprmxkVGYs08Yk4rCZ+xWvEEL0Qn9WqBJCnCQ0zwa2eJZjwkKaOZeZOaNRgJLGcnYd2M26ms2YjRbyYno3ulMcf3FxcTzyyBO8+ea/ePHF57HZbMyf/6MO+1itVp544ilefvklvvhiJY899iT//e+7LF78Mdde+82jtl9TU83EiZO5++778Pl8XH31Zdx00y185zs3to1UOIfXXvsHAH/72wuccspsrr32m9TW1vCjH83jX/96m5aWFi688GJ+/vO7ePDBX7N69UouvPDi49YnJwNZxF6IYS5QX49n106MTidRkycfU1vFwVoMs8cTtXIzdm0j9TYPvuio9u1lrQVsKK/DYTNx2sRUspJ7l5VNiLFxxRl5XH56Lv/4ZDcbdteyt8JNcVUjM8YmMy43DkVRjil2IYToQn9WqBJCnAQ0z3q2eFZgV6IpsE7CZnDgMNkBGJ8whjRHCovLlrG6ah1Wo4X0KJmiORyUl5cRFRXFvffeD8CuXTu4447bSExMbN9n7NhxADid0eTl5bd9H4Pf33k6rq7rHR7HxMSwc+d2NmxYR1RUFH5/oNtYSkuLmTv3EgCSk1NwOKJoaHC1xaACkJKSit/v7+/LHTEkqSDEMKaHwzStWQW6jnP26SjGY/8vG3ZG4Zk+DvuX20jfWci+aeMJm83saUlgS5MFh83AJbNziLb3fYSBoihkpUSTkRRFYaWbjbvrWLurhpoGD6dPkjdzIcSA688KVd2SlaikMOhAOln6squVqGBwX9+R52o0VrHFs4Ioo5NLU75Jpa8UAKfz0ApUTqeNS2znsGj3Z6yoXMM1Ey8jxhrdqc3uVq06WX5+XWl/7Y3dr9h1LO0ezcaN5bz66qs8++yzWK1W7PaJxMbGYLGYiY93EBVlxem0kZzsJDrahtdrJTnZSWysHZvNTHp6Ao2NDSQkOGhpaaG6uoqEhCiioqxER9tYtuwTUlISufPOOyktLeXdd/9DUlI0sbEObDYTyclOLBYT8fEOxo9XKSzcyZlnzqK6uprW1mZGjcrCaDSQnByD1WrF4bC0x9Pf1zwSSFJBiGHMs1sjWF+PrWAUlvSuayD0lY7O/nQH+uhERu2tx1a8i7fPjidgKsduCKMDn3qt2HwO7IZokswZJJuyCOshDErvLrYNBoUxWXFkJkWzbHMlpfubcDV6mZiXSGZSVM8NCCFE7/R5hSpN0z7srrGRvhKVrAIzcE6mvjxyJaqDjMfh9XW1xKHTaaOpydu+XKE36GV5/QcoKJwedTmKz47PG2iLteMKVNHEMCt1Oqv3r2dl8XrmZM5u33bw59PdqlUny8/vSIf/bk6NmTagbfemz6ZPP50tW3Zw1VVfx+GwEw7r/PCHP+H11/+Jy9VKS4sPm81LbW0Tzc1eWlp81NY24XZ78HoDgI0ZM2bxta9dRWZmNhkZWRw40NJ+3JQp03n11XtZvfpLbDYbWVnZ7NxZRHJyJk8//X9kZxfg9wdxuVq55ppv8/DDv+H99xfh8/n4xS/uweXyEAqFqa1twmr109rqp6nJ2+VrO5n+n/fG0RIoypFDRoZKbW3T8AjkBDDSfoGH2lD1d9jvp/D2n0IoROKVV2Ow23t1XHeFGkOEKTY1scPiot7oBV3niqVuCir9rBkbyxfjkkk2KihOJz7dgy/cik/3tB+vYCDRlEaqKRuboWNioMDW/bSMcFhn455athe7iLabuetb03ucViG/44NP+nzw9WFJSZk71A1VVb8OXKFp2o1tNRXu1zTt0i72e4DIClVHLdQ40q9F5O/AwDlZ+jLU3EzN668RPFAPug46GBwOrHl5JF3+1QE/X2+SCq9qb7GiYjVxLRPRq1RavAGaPX6MRohyGLDZFOw25bB/dQoNq2gKH2Bq1JkkWJJw2BTmjj0Nk9HAkk0VXcZy7rTMAX99w8HJ8rs5HIy0vjza9YiMVBBimHKvWIbu9eKYNKXXCYXulBmbWWmrwmMIoeiQE4gm3m3FlZ+Ku7aYU3e7iSKXrIx8WjNPbT/OH/ZSG6ygNlBBqX8ndcFK6oKVxBoSybCMwmHoueaCwaAwU03B6bCwens1f3h1I3d9a4aMWBBCDIT+rFAlhOjCwVWldF3HX15G684dBGqqI8mEI7Rs2kDLpo0kzL2E6FmnDlrdpC9Kt7GiYjXh1miqdmSC3orNYiQqWiccBp9Px93YOV4lSsU28Qs21m7Bt+0MQOEtZSlJcTYykqIYlxOHxTyypz4JcSwkqSDEMKQHg7g+XARGE47xE/rdThidTZY6NlvrMeoKk/wJjPPH4dQtVLe2ss6dwdbUHL5b/gHjineyL06h0ts5gRFjjGeS7XQaQrVUB8twh+txew+QZsol3ZzXq1jGZscxJiuOlz/S+MOrG/nlt6aTniiJBSFE//VnhSohRPf8lZU0b9pAsL4OAFNSMtbsbCxp6e11nQIH6vGVFOHbV0rVcwuJ3rCe1O98F+NxXnJv7a5qXi58C2xg3T+DUyZlkJvmxGQ0tK9QNTY7jnBYx+cDj1fH69Xb/k2iNJSN21FGzrRKLI054I+mvKaZGpeH7UUHGJcbx9TRSRgMMjhMiL6SpIIQw1Dj6lUEDxzAPm4CBlv/iuj4CLHUXkmFqYXosJnzPJkkhQ+1VeaJodQbR3y0h7q8TFJKykndU0zl5HHQxR0HRVGIN6UQb0rBHapnn38X+4MlNIRqSDCnkmBK6zGm86ZnEg7r/OOT3Tz5+mb+58ZZ/SoIKYQQQoiBE3S7cS9bgq+0BABrbh5RU6ZhiovrtK8pPh77qNE4xo1n/4vP07zuSzx7d5Nxy63YR40GDo16OFLcOef2OTZd19m0JcDm8o+xjGpmtH0S02ZO63Z0hMGgYLeD3d5xe0FwMu8XVdFs38MVEws4J3smHl+QFxbtZEfxAbYWHaCh2c/Z09IxGgx9jlOIkUz+xwgxzOjhMAc++C8YjTgmTuxXG2F0PrdXUGFqITMYxVdb8jokFFqDBjY2pmNUwsyKq8CdmUpLXAxRrkYytmk9th9rTGSCbTbJpiy8eiufN75BkXdbr2K7YGYWXz0zjzq3l2ff2UYoHO7XaxRCCCHEsdF1ncZVKym57158pSWYkpOJ/8oVxJ59bpcJhcNZUlPJ/uW9JF19DaHGRsqf+F88e3YPeHxLV7SyYYsPa3YhRsXI96Zf0a/pFmVVXhKN6XhCXtaUaizZVMGandVMyk/gqrMLSEt0UFbTzJKNlYRCcm0iRF9IUkGIYaZp3ZcEqquJPXMORkf/pgestdZQZWolOxDNRZ4srHScJ7iqJoGAbmRydDVOkx8Uheqx+QTNJvLWbiGq7kCP5zAqJnIsYxljnYpJMbO+dTHrWhYT0oM9HvvVOflMG53EjhIXby7turCkEEIIIY6fsNfL/heeY/+Lz6OHQkTPmk38xZdhTkjsdRuKwUDCZZeT/sMfoQcDlP/xiQFNLGzbEWTzVh/OnHJ0SytnZ51Ogi2+3+2lmLJRUKgO7OPwYvVmk4HzZ2SSkeSgoraFJZsqCQ+TYvZCnAhk+oMQw4iu67g+/AAUhfhLvkLrzh19bmOPqYEdFhdxIQtne9NR6JjNr2ixstsdTZzJQ4HD1f58yGKmemw+mdv3MO6zVWz62sWELD1PTYgxJnJhzPWsav4vxb5tNIbqOSP6cmwGR7fHGBSFeZdP4Ld/X8eHa/aRm+pk9oTUPr9WIYQQQnTW0/QDX0U5lQufJrB/P7b8AtLn30LLju39Pp9z5inwwx9R9ednKP/j48RdMBdzYu+TE10pKgmydkOAqOgQxvRCDIqFi3PPP6Y2LQYbCcZU6kP7qQoUk2EpaN9mMho4b3omn22ooKK2haUbKzhvRtYxnW+46+73pL/6M71FnBxkpIIQQ6xh6ZL2r7o3/41vXynW7Jx+JRTK9AZW2aqx6AYu8GRhOWKEQkiHZfsTAZ3psVWdSie0xsdSPmUc9sZmRq1a3+vzVgf2kW+ZQLwxlfpgFR+5X2Z76+r2wkldcdhM/OTqydgsRv724S7qGjzd7iuEEEKIgdG6cwdlDz9EYP9+4i66mOxf3os5OfmY23XOmEn6/JvRfT7cSz8n7PP1u63auhDLVvoxm2HimbX4wj7Oz5qD03LsxSBTzTkA7PKu67TNaDRw5uR0LCYDry8ppM4t1yYDacOGdcyZcwqLF3/c4fnvfe96fve7B3rVRmlpCbfeOh+A+++/h0AgMNBh9tn999/Dhg2df5+O1erVq3rdL4cf8847bw14LD2RpIIQw4iN6cWKAAAgAElEQVRnd6SegX2s2udjQ3qYt8JbCKNzrieTGN3SaZ/N9TG4/BYmxjWRYPZ22U7pzMk0JSeQsreE5D3FvT6/QTGSb5lAuikPv+5F866nMXT0aRQZSVF8+6KxeP0hXly0U4YaCiGEEMdR45rVlP/xcfRgkLT5N5Ny3TdRTAM3cNk5cxYJV1xJuKWZxhXLOkwx6K1AQGfJCj/hMJx7lpnilt0YFSPn5Zw1IDHaDdHEGhKpD1ZRF6jstN1hM3HKuBR8/hB/+1Dr12sQ3cvNzePTTz9qf1xYuBePp3/JmwcffBizWQp+H+60087gyiuvHvTzyvQHIYaJsNeLt6QYY0wM5rT0Ph+/Rt9HDc2ogTgyQ51rMTQHjKyri8NuDDE7pQF3Y9ft6EYju847g+n/+ZBRq9bTmJaMz9m7OwOKopBhKcBqsFPq38Ue32ZiTUnkW7svOHnGpDQ27K5l4546Fq8r56JZ2b06lxBCCCF6z7N7F01rVmOw28n48U9xjBt/XM6TeMWVNK9fh7+ygpYtm4ieOv2o+y/ZVNH+fZG3AW2nkaYmI1k5Icr9+2j2t5JsymLd9gagYUBiTDXn4vbVs9u7kSRzRqftozJjaGz1s63oACu2VnHWlM77iP4ZPXoMZWX7aGpqwul08tFHi5g791Kqq/cD8Nlnn/Kvf/0Dg8HAlCnTuOWWn1BXV8dvfvNrdF0n4bCaH9dccwX/+McbVFSU8dRTTxIO6zQ3N/Gzn93B5MlTuf76q5g8eSr79pWSkJDAQw89htF4aBTv7373AG63m8ZGN48++gQLFz5FTU01breb0047g5tuuoXf/e4BzGYz+/dXUV9fx733PoCqjuPNN1/nww/fIzY2HpcrMp04GAzy8MMPUlFRQSgU4vrrv80FF8zl1lvnM3r0WIqLC7Hb7UyZMp0vv/yC5uZmnnjiaWJiYtpjKikp5uGHf4PNZsdut+F0xnTbL1u2bOLpp/+IyWTC6XRy//0PsWTJZ5SWlnDLLT/hpZf+wrJlnxMXF4/X62XevJvZuHE9VVWVuFwuqqur+MlPbmf27NOP+ecqIxWEGCY8hXsgHMY+dlyfqxq36D4W67uxYWKGP6nLfdbUxhPUDcxOcWEzHr2qsS8mmqIzZmIKBBm7dA30MUufaEpnjHUaRoysa/mUba2r0HWdJZsqOn39dc1HmJMrsVnh9SV7eH/HKj4tXM6KitV9OqcQQgghuuYtLqJpzWqMzhiyf3nvgCQUDp++efiXe/kyYuacjSEqmtYtmwnU1va6zZr9BmqrjUQ7w2TnBqkO7AMUUk29u+Gwu6yh26/DRRtiiTMmUxEopCXU+S6LoijceMk4rGYjby0rIhAM9fo1iJ6dffZ5LFv2Obqus3PndiZNmgJAY6ObF1/8MwsWLGThwheoq6th7drVvPbaK1x44cU89dSfOfvsczu1V1xcxK23/pwFC57huuu+zaJF7wFQWVnBvHk38+c//5WGBhc7u5haPHPmKTz77Iu0trYyceJknnjiaZ555i+8/fYb7fukpaXzxBNP8/WvX8e7775Fc3Mz//73a7z++us88sgTBIORKRjvvPMmsbFxPPvsiyxY8AzPP7+QhobI796ECRNZsGAhfn8Am83GH//4DHl5+WzatKFDPH/5y0LmzfshCxY802O/LF++lHPOOY+nn36Or3zlShobm9rb2bNnN6tXr+L55//Oww//L/X1de3bzGYLjz/+J2677Rf861//7M+PsBMZqSDEMKCHw5GpD0YjtlGjetx/b0PHFRNWWffjtQQ51ZuCTe/837rGY0FzR5No9TMutrlXMdWMziOxpJzE0goytmlUTh7XuxfTxmmMZ5xtJiX+Xez0rqU57GZW1EUYlc7xWSxwxmkWPlvqZ9lKP9/8hr1P5xJCCCFE13yVFTSuWoFiNhNz9jl4CgvxFBYe13MarFZizjyLho8/oGnNKuIvuwLFcPR7mS2eAIV7jBiNOuqEIM0cwKM3k2RJw2qwH7VOU18pisIY23TWtnzMXt9mpjo6T61IiLFxwcwsFq0uZemmSi48RUZSDpSLLrqExx9/hIyMTKYeNpKlvLyMhgYXd9zxUwBaW1upqKiguLiIiy++DIDJk6fyn/+80aG9pKQUXnrpL1itVlpbW4mKiozYjY2NIzU1DYCUlFT8/s51PnJycgGIiYlh587tbNiwjqioKPz+Q7UaxoxR29vYunUzpaUl5OcXYLFYMJl8jB8fGZFbUlLCKaecCoDDEUVeXj4VFeUAjB0buY52OqPJy8tv+z6mU0zFxUWMHz+p7bVOo7S0pNt+ueGG7/P3v7/IbbfdQnJyChMmTGpvp7S0mPHjJ2I0GjEajYw7LJE4duzB15PWZZ/0h4xUEGIY8FdVEm5uxpZfgMFi7dOx9QYvmrmB2JCF8YHOyyzpemQJSYAzUw9g6O0gCEVh75xZ+G1W8tZtwe5y9ykuAJshigtiriPJlEGZfzfLm94hoHf9x8uvNJOUEqKuPszHyw6wu6yhfTSDEEIIIfoucKAe95LPQVGIPe+CPi0XeawsqanYRo8h6HL1WHxa13XW7KgmFFLIHxXCbqdtlAJk2PKPS3zZljFYFQfFvu0EdX+X+1x8ajZWs5FFq0tltMIAyszMwuPx8MYbrzF37qXtz6enZ5KSksof//gMTz/9HNdccx0TJ04iNzeX7du3AHQ52mDBgj/w//7fD/n1rx9k1KjR7XUwejPyV1EiH4cXLXqf6OjIFILrr/8OPp+323YyMjIpKSnC6/USCoXY3VYTLS8vjy1bNgLQ2tpCYWEhGRkZvY4FICcnj23bIq91167tR+2XTz75gMsuu5ynnvoz+fkFvPvuoQKN+fmj2LVrO+FwGL/f3x5jJJZehdInPY5UUFXVADwDTAV8wDxN0/Yetv3HwI2ADvxG07T3VVVVgHJgT9tuX2iads8Axy7EScOj7QLArvZtNADAWmsNKDDbl4qBzn8lipsdVLbayItuJSuq6+KM3QnYbew9axYTPlnB2KWr2fzVi6CHOw1HshrsnO28ijXNH1IRKGRJ45uc5bwSm6Fz3YeCUSFc9QYK90BcHGDr06mEEEII0SbctgoDoSCx556Ppe2O7WCKnnEKvrIyWjZvxJab2+1+pdXNlNe2EBsXJjU9TEu4kaawC6chnmhTDL7gwFf4NyomRtkms8OzhhLfTkbbpnbax+mwcP6MTD5Ys49lm6u4YObJtcTkUC4BecEFF/HRR4vIycmlsjJyAyk+Pp7rrvs2t946n1AoRHp6BueffxHz5t3C/fffw6effkxGRmantubOvZS77/4FCQkJJCen4Hb3vfbGzJmzeOCBe9myZRM2m42srGzq6rqeuhMfH8+8eTdz/fXXEx0dg90eGWH71a9ezaOPPsQtt/w/fD4fP/jBTcTHJ/Qpjl/84m7uv/8eXn31ZeLi4rBYrN32i98f4KGHHsDhcGAymbjrrl+1T6cYNWo0p512Jj/84Y3ExsZhMpkwDWBR1iMpPVU0VVX1auCrmqbdqKrqacA9mqZd2bYtCVgKTCNy+b8DyAFGAU9qmnZFbwOprW2S0qq9lJzspLa2qecdxYA43v1dv+h96t96A1NSEgmXXt6rYw5Of6g1eHg/qpSMoIOLPTmd9gvp8FphJk0BE9cVVBBvDbZvq3a19jrGVK2YmNp6ik6bTuWkvq1MUWCbDICuh9nQ+jlFvm1EGWI513k1DmNMp+GMFeUGiveaSEkLccm0CQCcO63zG4gYWPJ3ZfD1ts+Tk53H4Z6C6MpIvxaRvwMDZ6j70rXkc9xLPsNfXoZj8hSip80Ysli8RYU0rlyOJTOLvAcf6rT9o7X7eGd5Mf5gmOmn+LA7oMi3DVeohjHWaSRHpeLzDnxSocA2GW+4hf82/JUoQwwXx97Q4W7ywWuPxlY/dy1chcNq4tGbT8dsMnbX5AlhqH83TybDuS9drgN8/vlirr76G/j9fm644VoWLHiWtLT+JxePdj3Sm3TFHOBDAE3TVquqesrBDZqm1amqOlXTtKCqqnlAg6ZpuqqqM4FMVVU/BzzAzzVN07pqXIiRzrM3MqDHPqbvy0hutdQDMNnf9XDGHS4n7oCZyfGNHRIKfVVXkEWUq4G8tZshFCJk7bxcZfW40UdtQ1EMzHCcj1VxsNP7JUub/sN5Mdd02i8jI0xttU7NfiM1rlZS4h39jlsIIYQYiVq3b8NfXoY5LZ2oKdOGNBZrfgHmPbvxV5RT+8brmJNTOmzfvMWL129h+tgk7I5KfGEPrlANdiUap6HztM6BZDNEkW0ZS6l/J/sDpaRb8jrtE+OwcP6MLD5cs48VW6o4b8bJNVpBnJxiY+PYtWsH8+Z9F0WByy//2jElFHrSm6RCDHD4ZOqQqqomTdOCAG0JhVuBB4E/te1TBTysadq/VVWdA7wCzDraSeLjHZhO8MzfYEpOdg51CCPK8epvPRSiqKgQxWwmaZKKoZdr7dq8Zlz4KDU1kxy2k2+ORTF3TB4GQgrr6+MwG8KcmdmC7Yi2+5RpNxlxFeSQtLuY1JJyaieO6bSL1dZ17M7ojnMYTneeh7nBwJbG1axoeYcxUZMxGToeq06A9Wtg7a5arr1wrPy+DxLp58EnfS6EGGje4iJaNm3A4HAQO+fsHgskHm+KohA1bQYNH39A8+ZNxF84t31baZPOrhYLcdEWJuYlUOKvpDpYBkCaOafPq2H1xxjbNEr9O9nj29QhqXB4TSenw4xBgfdWlYAC502XxIIY3gwGA/fee/+gna83SYVG4PCrHsPBhMJBmqY9rarqc8AHqqqeB6wBDiYdVqiqmqmqqqJpWrfDCl19GIo90g3noTYno+PZ381bNhNsbsY2Ziwt3jB4e1eB1esNsN5aDQpk1UWxz9N5OaRdzUm0Bo2cktSAIeTDe0R9ob4WHHIlJxBVVUNU7QEaag/QGh/bYXt3QxOb6FzHYazxVFqsrRT6trC9cV1k+cnDVoWIizeTkhqiptrLZq2GWWO6XiZTDBz5uzL4+jD9YRCiEUKcDMIBP/v/+hfQdWLOPAuDfXispmRJTcWcnkGgqhJ/dTWW1FTCus5/SiIfDU6dkIrBoBDU/dQFK7EoNuKNKT20OjDiTSkkmTKpDpTSGKonxth59KfdaiIn1UnJ/iZqXJ5BiUuIE0lvUpcrgcsA2moqtE+AViPeaivMGCBSyDEM3A/8rG2fqcC+oyUUhBip3MuWAGAfM7ZPx7UoAQrNbhwBE2mezhcM/rCB3S2J2IwhpiX0fdWGLikKNaNz0YHkwn0o4fAxNKUw3XEuOZZxtIQbKfXv4sj6Lrn5IYwGhU176/AHpOKyEEII0ZP6d9/BX1mJfew4LGnpQx1OB9FTI9MwWjZHquOvr4V9zTDK7ictITLVsSZYgU6YVFN2e1X+wTDWFoltj3dTt/uouXEAaPv6XgRQiJNdb0Yq/Ae4SFXVVYACfF9V1duBvZqmvauq6mbgCyKrP3ygadpSVVW3AK+oqvoVIiMWbjw+4Qtx4go2NNCyZTOmhETMiX27E7/D4iKswKjGGJQuVnzQWpII6EZmJR7AYhy4fJ4/ykFDRirxldXEVtXSkJna4zFHW1c6yZjGAUMVrlANzmA8yeZDBRmtNhiXG8/24gN8tqGCS2Z3LkQphBBCiAhvcRGuDxdhTkomasbMoQ6nE3NyCpaMTPyVFTRXVPJ+VRpmA5weGxnRGNQD1ATKMWIi0TS4CZEMcwEOQwylvl1Mtp+JxdB5+amUODtx0RZKq5twN/uIje7bEuBCnMx6TCpomhYGbj7i6V2HbX+QSD2Fw49xAV8ZiACFOFm5Vy6HcBj7mM71CY7GpwfRzA3YwyYyWjovy+gJmdjbkoDdEGBS/MAPZz+QnU5MdR3xZVW4U5PQj6EWiqIYyLdMZId3LWWBPUQZY3AYDg31nlSQwJ7yBv77RQlnTU0nqpu6DUIIIcRIpgeD7P/rC6DrpN74A/zV1UMdUpeipk7DX1lB1YatNCWlcWm2QrSu0wqU+HYQIkCaKa/DlMjBoCgGxlinstmznCLfVsbZO5eCUxQFNSeeNTuqWbq5kq+emT+oMQoxnA1t5RYhRig9HKZx+TIUiwVrXkGfjt2sVxJQwowLxGHsYpTCzuYkwhgYH12LyTDws47CZhOuzFRMwSDxlcd+0WIx2Mi3jkcnTJFvOyH9UMkWq9nI5IJEWrxBFn1ResznEkIIIU5GrsWf4K+sIPbsc3CMGz/U4XTLnJQMyanENlSRq7s5p21AQlgPs9u7EQUDKeahKYKYb52ISbGw27uRoN51naiCjBjMRgNLN1USOoZpoEKcbCSpIMQQaN2xjUBdLc5TZ2OwdF6esTu6rvOlvg9FhzGB2E7bm4IWSjzxRBt95NqP35y/hsxUgmYT8RX7MQaOfe3oWGMSqaYcfHor5f49HbaNy4kjIcbKJ+vKcTX1rpClEEIIMVIEXC7q330HQ3Q0SVd/Y6jD6dGWuMgS2pcHd2MxRm6OVPj30hJ2k2hKx6z0/rpoIJkNVsZYp+HTPRR2M3XTbDJQkBmDq8nH1sIDgxyhEMOXJBWEGAINn38GQNy5F/TpuHLcVNFIdjCaKL3zVIAdzcnoKEx01mA4jqsw6UYjB7IzMITCxJdVDUibmeYC7Eo0daEqmoKHiksajQauOCOPYCjMx2v3Dci5hBBCiJNF3b9fQ/d5Sb76Gxijo4c6nKMqb9H5KJxDq8lOTOVewoEAOjqadz0AqabsIY1vrG06Jixo3vXdjlYYnRm5qfPOymKWbKro8CXESCVJBSEGWaC+jpYtm7HlF2DLy+vTsV/qkQ/V4wLxnbY1BGyUe2OJM3nItB7/pQHdaUkErBZiq2ox+fzH3J6iGMi2ROpLFLfs7LAaxBmT0ol3WlmysZJmz7GPjBBCCCFOBq07d9D05Rps+QXEzDlrqMM5qt1lLl7X/IQUA01p+eiBAPvWb6XS6sYVqiHTPAqbwTGkMVoMNsbYpuLTWynybetyn4QYK7FRFspqmmV1KiHaSFJBiEHmXroEdJ3Yc8/r03EePcBWvZIEHGSEOr/pbmuKrOc8yVmDchxHKbQzGDiQk4FB14mrGJiCUE5jPPHGFJpDbg6E9rc/bzYZuPjUHHyBEJ+sLRuQcwkhhBAnMtfnn1H1wnMA2MdPwL18GQ1Ll9CwdMnQBtaNMq+Jcp+ZLGsAW3Y2uqJgrShiY3SkZtIE++xBjafIu7XLrzG26Zgwo3nWdajzdJCiKBRkxBAO65RWH/+bOEKcCCSpIMQgCgcCuJcvw+CIwjmrb2+eG/UKAoSZpWR3Wkayzu+g2h9NsqWFFEvLQIZ8VI3JCQQsZmL312LyDky9gyzzaAwYKPcXEtAPtXnO1Ayi7WYWry/H4+v8Ji+EEEKMJN7CvYQaGrCNGt3npakHm67rrHVHlmA8LdaLbrURSM7E2NqM3dVAlmUMcabkIY4ywmqwM9o2Fa/eiubd0OU++RkxABRVNA5maEIMW4O7XosQI1zzhvWEmhqJv+jifhVoNKIwU8miio7z9nY0Ry4mJkZ3HKVQ7WodkLi7ZTDQkJFKckk56Tv3UjZ94jE3aTHYyLQXUObZyw7Pl0x1nNU+T3FMViwb99Txwn93MKkgEYBzp2Ue8zmFEEKI4aqrkQfhQICWzRvBaCJq2vTBD6qPdrigJmCiwB4gyRJZNcGbkYulppyJRR5QTxviCDsaZz+FYt8OdnnWkmcZj8Po7LA92m4mNd5OtctDsydAtF2WvBYjm4xUEGIQuZdECjT2depDCS5qaWaikkaUYu2wrd5vp9YfTYqlmUSLZ8Bi7S13WjIho5H07bsxBAdmBEGGLQ+LYmWPdxOaZ137kERrSiVGo87W4lqCIVnKSQghxMjUumMbYY8Hx8SJGB1RQx1OB7vLXB2+tH0u3i4KAjqnxHjb9ytM1WmINjK6zE9saHi9BrNiZYrjTEIE2eJZ0eU+BZmR0QrFlTJaQQhJKggxSLylJXj27MYxcRKW1LQ+HfulHplveKqS22nbzrZRCuOi6449yH7QTUbc6clYvD5SdhcPSJtGxUiaKRedMNWBQzUUTGZIzwwTCCjyJi6EEGJECrW20rp9Owa7HceESUMdTo+KPCbqA0bGOAIkmCM3BEKE2Rhbzq58G6aQjq1w+xBH2VmuZTwJxlTK/LupDXRe2SE31YnBoFBU2dihuLQQI5EkFYQYJK6PPgAgfu4lfTquWfexXd9PMtHk0XHVB1fARrXfSZK5hWTLcZ7qcBQNGamEjQaytu6C8MCMIDi4VnVtsKLDsk7pGSFAZ9e+BnkTF0IIMeK0bNkEoSBRU6djMA/vYfdhHdY12lDQOSXmUJ2kHdFVNJm8BFIiS0g6dm0cqhC7pSgK06LOBWBD6+edijZazEaykqNwt/hpaD72VbCEOJFJUkGIQRCoraVp7ZdYs7NxTOhb3YENejkhdE5VclCOWNbh4CiF8UM0SuGgkMVM9ZgCbE0tJJYOzDrNBsVIqimHMCFqDhutYLVBUnIYV5OPGtfgT/cQQgghhkqoqQnv3j0YY2KwjRo91OH0qMhjxhU0ojoCxJoiNx1aDX62RJdjDZlQw6MIxiZirSjC2Oga4mg7SzSlUWCdRGOonu2e1Z2256ZFai2U7pdVIMTIJkkFIQaB65OPQNeJn3tpp8TA0YR1nbV6GWYMTFc6FiSs85qp8sWQYG4leRBXfOhO5aSxAGRs3z1gbSaZMjBioiZY3uEOQXpm5MJkV+nwuwARQgghjpeWrZtB14maMg3FMLwv43UdNjZZUdCZftgohfUxpQQNYWY05WDRTfjTIqMV7Ls3DVWoRzXVcRZRhlg073rqjpgGkZUcjcGgsE+WlhQj3PD+ayTESSDU3Ix7xTJMCQk4Z53ap2MLqeMArUxRMrArHYc4bqyPBSK1FPqQpzhuPHExuLLSiN1fS1TdwHzYNyomUs3ZhAhSGzz0Rh4TqxPvtLKvppkDjd6jtCCEEEKcHIKNbrxFhRhj47Dm5Q91OD3a0uKmPmAky9aInzJqgxVohiKKHHUk+KMY3ZoCgD85A91owrFrUyQTMcQOFoc++LXPp5FlHgXAly0fE9APTXUwmwxkJEXR0OzHLVMgxAgmSQUhjrOGJZ+h+/3Y8kfhXrmChqVLOnwdzZfhfQCcquR0eL4pYGRvYxQxJi9plubjFXqfVU4c+NEKyaYsDBipDpQR1iMjFBQFxuXGoeu0LzcphBBCnMxaNkc+dEdNm96nUY9DQddhV0syAGpUZIpmGJ1tCQcAmO3Ox0DbazCZ8RRMwNRQR3TtgSGJtyfRxjjSTLm0hBtZ1vgWhZ4t7UkHe0IDgIxWECOaJBWEOI7Cfj8Niz9BMZuxjRnbp2Pdupdd1JBBDJnEdti25UAMOgpjo+qHxSiFg1xZ6XhinCQXlmL2DMwIApNiJtmUQRA/DaGa9ufz02OwmA0s3VRJIBgakHMJIYQQw1GwoQFfSTGmhASs2Tk9HzDEKnxGXAE7GdZGYs2RqQ+FMY00WwLkNEWTEnB22N8zdgoAScVlndoaLtLN+UQZYjgQqu4wejIxMYyi6JRKUkGMYJJUEOI4avh8MaGmJuzq+D5XaF6n7yOMTm5DEnvKG9rXe95a6mK7KxqbIUC2zX2cIu8nRaFy4hgM4TCpuwoHrNlkU6SeRM1hb+Imo4ExWXE0tQZYr9UO2LmEEEKI4aZ1+1aASC2F4XQ3oRsbmmzAoeWum00BCmPdWING1Ia4Tvv7skcTNltJKt43LKZAdMWgGCiwTMKEmfLAHlpCkWswkxni4nUONPqoaZAC0mJkkqSCEMdJyOPhwKL329aR7tuKDyE9zFq9DBsm8j1JHbbtaLEQ1I2MdhzAMAyvK2rG5BM0m0jfuRdlgJaXtBocxBgSaAm7aQ0fuhMwJisygmP5lqoBOY8QQggx3ISam/EWF2GMjcOSlT3U4fSo1m+g0mcixdJMvNmLjs7WhAOEFZjoisesd/Hxw2TGmz8OW3Mr0XXDcwoEgMVgI986ER2dQv+29voKiUmR650NcpNDjFCmnnZQVdUAPANMBXzAPE3T9h62/cfAjYAO/EbTtPdVVbUDr/x/9u4sNo48P/D8NyIjbyaTSWaSFO9DUugq1V1dh6pPd2/7HA+M2fWOsZgxdrDjMRaLsZ9sYIyB98WzM/AOsFjMLPbBxhoezMLj2d62d7qru91dUqtKV+k+GRTvm0ySeTHPyIzYhyRVoiiJR1JMJvn7AIkqZmRE/JRSHvzH7wCagRTwjwxDXmXicIn9+BOsdJqmv/8bqG73tvb9WfouKW+eU4UQcXPuyf2WDXdSx9CUEr2+/TX5oGXgydsCqXAjodkF+j6/zkqkEYD5E5WNvoo4O0jml4kWp+l2nQCg3u+iJeTl0XiMv700SsDn2rDf199o33CfEEIIUSsyDx+AbeM7faYmshTurpS/8xzzLwEw6U8T8+RpyXhpzfpeuF/u6Bl8g3cIj0yyEmnak1h3ot7RSJuzjxlzhNH8A46536ApbDE8CDcGF/juV/Z/eYoQu20rmQq/DngMw/gA+APgT9c26LoeBn4X+BD4FvDvdV1XgH8G3DMM42PgL4B/sduBC7GflVIpYj/+EY5APaFvfXvb+z9ylhcMThRC6+6fzAXJWU56vXFc6u5kAbwKibZmbKBhZn7XjhlUm3ApHpaLcxRt88n9R1ezFYamk7t2LiGEEGI/KKaSZIcGUf1+PL191Q5nU/G8zXDGSUgr0eJKk1NLDIRiaJbC6Vjopfvmuo5RdGrlvgr7tARiTavWTVBtImXFmDFHcbogEvIyMp0kmZYpEOLw2TRTATgHfAJgGMYVXdffWdtgGMairuuvG4ZR1HW9B4gbhmHrun4O+NerD/sh8EebnSQU8qFpjm3/AQ6rSCSw+YPErtnu8z36//0/2PkcXf/dP6SlM4L9cE2AVhoAACAASURBVOuZCjOlBPOlLB1WHS1uPzNaebqDbcNwpgkFmxP1cZz7+fUS8JNtbMC3HMefyVKor8Pt2V5Piec9vpVOJrKPSSpRAnXles3T/S6uPVpgdCbJuTfaUZ+5iiOvla2T52rvyXMuhHiZ+N/9BEolfKfOoKj7v2r5szkbC4WzgTyKAg9DMYqqzenlEJ7SJr92aE6Wu9ppHh6nbjH2JNNxP1IUhR73KR7lvmCuOIbfUU9HczsLsSz3Rpb46LUj1Q5RiD21lUWFeuDpbnAlXdc1wzCKAKsLCv8j8MfA//acfVLwTOv654jFMlsO+rCLRAJEo9Jhdq9s9/k2l5eZ/S8/RGtsxPH2B0SjKVKp/Jb3/5lVLiM4ng+SK5pPJhssFbzETA9t7iQu8pjF7f059lrsSATfcpy6yTnm9V7yOXPznVa5Pc7nPr6BFiYZYiY7QTKVfZIG2tMa4PFUgsGxZdoj/nX7yGtla+R9Ze9t9TmXhQchDicrnyf+6U9R3B68R49VO5xN5Us2l+fBo1oc85kMuDLM+TOE8i66Vuq2dIzF3k6ah8cJj07s60UFKE+n6ne/xkDuBuP5R3wUfgMMuD20KIsK4tDZypJnEnj6G426tqCwxjCM/x04AnxV1/VvPLNPAIjvQqxC1ITFv/4rbNOk6e/9/W1PfMjZJrftafyWRmdx/QfwcKb84drv278NjJ6Waain4PUQWFzGUdj6gsLLOBUXIUcLeTuzbpzTWsPGoSl5qxFCCHEwJC9/jpXJ4NV1FG0r1wGr69oCZEtwpq6Aolg8aoij2HBmuRGFrfWCiHe01kwJBIBPDdDh7KeIiWFfINLg4f7oMsXS/i1RFeJV2Mo71OfArwJ/pev6+8C9tQ26ruvAnwC/AZiUGzlaq/v8EnAN+EXg4u6GLcT+lBk0SF27grunl/oPPtr2/rfsaQqUOGOGUZ/6AM6WNKZy9dRrOSKuGsnqURTibc00D08QnIsyc/bkrhw2rB1huTTHWP4hzc4OAJqCHhrqXEwurJArFPG49v+XLyFE5XbSTLoacQqxXbZtE//Z34HDgfeYXu1wNmXbNp/N2TgUOO0v8Mg/R8ZZpCcZIGBubKL89IUBgPnc6q8XmsZyVxvNwxP4l2Kkw/s7WwEgonWQKC0xVxyn/2gH0esBjMk4p3v2f+xC7JatZCp8D8jpun4J+LfA7+m6/vu6rv+aYRgGcAe4DFwCrhiGcQH498BpXdc/A/4HyqURQhxotmUR/Y//AYDm//a3tl37aNs2V+0JHKgcN9fPcB7NhLBR6PctUwONn59INjdRcjgIzi6glEq7csw6tQGX4mGqMERxdZSToigc7Qhi2TA6Iyn8QhwiO2kmLcS+lx14RGFmhsA77+LwvXhiwn7xOAnRHLzRBIqzwN3AFM6SytFk/Zb2bxkYenIrrmZ5dl+/u26y1H6lKArdrpO4FA/jjqsonjR3Hi9WOywh9tSml/MMw7CA33nm7oGntv8xzywaGIaRAf7BbgQoRK1IXLxAfnKC+g8+wtu//fGJIywRZYXXlTa89pcvTcuG0WwDTqVElyfxkiPsP7bDQbIlTGhmnvDoJNGjPRUfU1EUmrQjzJqjTBYe0+s+DUDvkXpuGFGGZxKc7Hl5h2khxIGx7WbSLzuYNI2WHh67qZLn8tH/+SkAvb/x90iPje1SRK/OteE8YPPtPhc/yU1jqiXOJBrxq66tXcJ8ihlpxBocJbAYI9lfHs+43WbPe82Nkw/93+H80t/g6Rng7miY/ylct29HgMrrfPfIc1kmOcJC7IJSOs3i9/4zittD+Dd2tp521RoH4H2lmwKxJ/dP5+rJWU6O+pbQ1P1fX/iseFszDTPztD0YJNrfzW6kWjQ5Wpk1RxnLP3qyqOB1a7SH/UxF08RSeUKBrU/cEELUrJ00k36hw940Whq27p6dPJfxC+eB8ljq5WtfoDWFmbtnvILodlc8b3N7wabdBygxHrlnqTc9dCT8mOwsSzHdGCSwGENNlJ/D7TR7rpacXaDF18w8CyzOjfPnF35MqEHlXPv71Q5tHXmd757D9ly+bAFl/8+mEaIGLH3/e1grK/hOn2blzm3iF86vuz3PUHzkye1OwuChPU9jyU0+sb4R40imfNW9Vho0PqvocZNubCAQXSYQXdqVY7pVL81aB4vFaVZKXzZn7G8vN2wcmamtjA4hxI7tpJm0EPtaZrCcEOw7sTu9iF61Kws2FvBhq8LPGcFW4K1U17reUNu1stpLoW4xtskj9w9FUXi7+SwKCs6uAcanCtUOSYg9I5kKQmzRixYHirEY8U9/iiMQwHfi1I6ObTjj2AqcNEPrOiQv550smn6aXSvUaft/lf5F4m3N1C3HOfJgkFRzeFeO2eM+zUJxirH8I874PgCgo9mPS1MZmUny5vEI6j5NOxRC7JqdNJMWYt+ySyVyQ0Mobg/u7p5qh7OpkmVzZR48DugNZ/iBPUOD6aUr18giMzs+bjpUj6Wq5UWFGpgCsSborqcv0Mcww4zEhniDM9UOSYg9IYsKQlTAtm1S16+BbVP3znsoju3X4pawGXTGcdkqfeb6hkaP4uWxkr2+2lmpf55sMEA6FCQ8MsnYe1kKfm/Fx2x39aOlXYwXHnHa+z6KouBQVXqOBBicTDC7mKE94t+F6IUQ+9j3gG+vNpNWgN/Wdf33gSHDMP5G1/W1ZtI28MPVZtJC7Fv5yQnsQh7fqTM7+k6x1+7HIGnCuVa4qoxi2TavrbRveYTki9gOx5MSCN9ijHygdurW32g5xUhsklz9MCvZY3w2feWFj91vpRFC7JQsKghRgfzkBObcLK62dtwdnTs6xriWIquWOF0IoT1VkVSywEjU4VaLtLlrvF5LUZg5fYxjn12n9dFjJt45W/EhNcVJp/sYo/kHLBQnaXGWmzn1twUZnEwwMpOQRQUhDridNJMWYj/LPh4EwHP0WJUj2ZqrC+Usgtdb8vyFPUUjPnqyu5ORuBIOEViMERoaJ/Zm7VzxdzmcRDjKguMht6Yf8/HR2oldiJ2SngpC7JBdLLJy/RqoKnXvvLfj4ww4y1kIemH9xIKRlJ9cyUG3N456ALL4o0d7MN0uWgeGUYq7M16y21WuN53IP/kdgnCDh4DPycT8CoVdOo8QQgjxqpVSKcy5WZzNLWjBYLXD2VQsb2PEobsOBj1jFLH4WOmrqJfC09KhIJaq0jg0XjMlEIOTcQYn49TTjG06mTJHeDSxyOBkfPOdhahhsqggxA5lHj3ESqfxnTi54w//ZTXHvJalvegnaLvWbXu4WvrQ4z0YH0SWpjGv9+HK5YmMjO/KMcNaGz41wFRhmJJd7s2mKAr97UFKls343MqunEcIIYR41bLDQ0BtZCkMTsb4ZCiLDXQ4U1wtTeAtOQlM716G4FoJhCeRwrdcWw2Y6wMqVrQH1CIL5lS1wxHilZNFBSF2wMpmyTy4h+J243vt9R0f55GzvGBwotCw7v54QWM646XdlyWgHZzuwbOnjmGpKp23H4FVeb80RVHocukUKTBjjj65v6+t3JtiZLq2voQIIYQ4nGzLIjf8GMXpxFMDDRptGwbSLjTFJhsawFRLdKR8LBdniRaniRand+U8K03lLM7w2OSuHG+vKArUFzuwixrz5iQlWzInxcEmiwpC7ED67h1s08R/9g1Ul2vzHZ4jT4kRZ4I6S6OjVLdu26N4uSHRqYaDdaU9X+dn/ngv3mSKyPDuZCt0uXRgfQlEnddJS6OX+ViWaDy7K+cRQgghXpX0/XtYmQye3j4Ubf+3PJvJO0iVVPq8Babrkyg2dKZ3v49RujGI5XDQNFpbiwoATSEHxfluSorJYnHnkzCEqAWyqCDENhUTcbKPDRyBerzH9R0fZ8iZoKjY6GZoXf1hyYaBeB0eR4neQGY3Qt5Xpl4/haWqdN16uCvZCkEtTNARZtYco2Dlntzf31YuSbn8YK7icwghhBCvUvLSZ0BtlD4ADGTKF1TaQsskXSbNWS+e0u4vhtgOB4nuNvzxJN5YbWUfNjRaFOe7wFKJFqexa6QvhBA7IYsKQmzTys0b5RGSb72Nou7sJWTZNgOuOA5b4bi5vh/DaMpHtuRAD66gqQfvAygfeDXZCjYWU4WhJ/d1twZwqAqX7s/JB7kQQoh9q5TJkL59C0cwiNbYVO1wNpUt2oxknAS1EksN5SvwXSt1m+y1c8v95elOtVYC4XRCwOekuNxK3s4wn4lWOyQhXhlZVBBiGwrzcxSmJnE2t+Dq7NrxcUZYJKkW6CkG8NjrV/YfrpY+nDxgpQ9P2+1shSclEIUvSyCcmkpXSx0LsSzD08mKzyGEEEK8Cis3b2AXi+XSB2V/jnsaio88uf14MkoJhTbfHCPeRbxFB+Gc55WdO9HTgaWqhEdrr+FhqNGitFAeOT4UH93k0ULULllUEGIb0nduAVD31jsVffBfsSYAOPnMGMlEQWMq7eWIN0ej29x5oPtQy8DQk1vD9Cyp5ia8yRRHL16r+Ng+R4CI1k60OE2mlHpyf397OQvk0v3Zis8hhBBCvArJK5cA8PT0VTmSrTESdYCNFp7BUm26UgGUXRoj+Twlt4t4eyv+5TieRG1dJGhssrFWGlALdUytzJAtSp8ncTDJooIQW1SYm8Wcn8fV1o4zEtnxceJ2lgHmaSp5CFvrV/YfrY6RPBVKPW/XA2W5oxVLUWiamEEtFis+3pfZCsaT+1qbfDTUubj2aAGzKJ2XhRBC7C9mLEbWGMBz9BiOQKDa4WwqUdCYy3podqWJBlJgQ8craND4rMXe8tX+WstW8NfZOJ1gznVhYzMcH6t2SEK8ErKoIMQWpe/eAcB/9o2KjnPNnsAGThYa1q3srzVodKsl+g9gg8ZnFT1u4u0tOPMF2u8NbL7DJjpcx1BQ1y0qqIrCB6dbyeSL3B5aqvgcQgghxG5KXbsCtk39+x9UO5QtKWcpQEv9Agl3gXDOg9tyvPLzLnW3YykK4RqbAqEo5RKIwkIbDkVjODGGZVde9inEfiOLCkJsQcYYwJyfqzhLoWiXuG5P4sVJb7F+3bbxlI9MSeN4MH0gGzQ+T6zjCEWnRsedR7jSlaUEulQPR5w9JEqLJIqLT+7/8EwrAJfuSQmEEEKI/SV15TI4HATeea/aoWzKtsFI+NEUC6txHoD2PchSgC9LIOqWYriTtdVzKtRkg6URKLaTKWaZyyxUOyQhdt2ms190XVeBfwe8DuSBf2IYxtBT238P+M3VH39gGMYf67quAFPA49X7LxuG8Ye7GrkQe2jpb78PgP/s6xUd5749R5oC55RetGfW9B6ulT40HPzShzWW5mCpu52WoXG6r9/h8dfer+h4Xe4TzJgjTBQMXtPCALRH6uhuDXBvZJlEukDQ79qN0IUQQoiK5KenyU9O4H/jTRx1r256wm6ZzbpJmU6OB1PM+dM4LIWWrHfPzr/U20Hj1CzhsUmmz57cs/NWKhSyAJvCfBu0jTOWmKTN31rtsITYVVvJVPh1wGMYxgfAHwB/urZB1/U+4LeAD4EPgO/oun4W6AduGobx9dWbLCiImpV48IDswCNcR9pwRporOtZVexwF+IrSve7+FdPBZNpLsydPk+dgNWjcTLIlTLqxgZbHY9RFlys6VpuzFw0XEwVj3RjJj860Ytk2Vx/OVxquEEIIsStSVy8DUP+V/Vv6MDgZY3Ayxnwsw+2Fch8ov3eajLNIc9aLZu9d0vNSdwd2DZZAaE6oD9osT9fj1/xMrcxgWofru544+LbyTnAO+ATAMIwrwDtPbZsEvmsYRskwDAtwAjngbaBd1/VPdV3/ga7r+i7HLcSemf7P/y8AvgqzFGbsBBPEOUaERsW3bttgwo+NwokDPEbyhRSFkfffBKDv8o1yfuVTnp4a8fQtfft7jOTurbuN5x8RdDSSsVIsFmeeHOO9Uy04VEVKIIQQQuwLtmWRvHIZ1ePB/3plvZr2QslWmMrV41VNsg3lEsO9Kn1YU/S4iR9pJhBdxp1K7+m5KxVqtLBthQa7g5JdYjI1s/lOQtSQTcsfgHog8dTPJV3XNcMwioZhmMDiarnDvwFuGYYxqOt6K/AnhmH8J13XzwF/Cbz7spOEQj407dU3ejkoIpH93yG4Fs396Mfrfi4sx4jduImntYWm/q6Kjn0jMwUF+Ib/KAGnG0/OCZR/h34Y86NiEVaXWU6tb+DjPASvi3hfB8v9XTQOT9A+OsHiqaO4PeXn52V//rXHPK3F0cFSao5Ze4i+un4ikQAR4J2TLVx9MMeKadHbFnxVf5SaJu8re0+ecyEOp+zQY4rLS9R/eA7Vtf/L8ubydRRtB72+ZWb9GVwllXDOs/mOu2ypt5PQzDxNY1PMvFY71yxDjTbjo2AutEGTwVhygr5g9+Y7ClEjtrKokASe/tajGobxZP6bruse4M+AFPC7q3dfB4oAhmF8put6u67rimEYL+w+F4sd/G73uyUSCRCNHp66+72USuXX/Zy8cRsAl35qw7btyNkmN6xJQnjpyDaQyuXJ5cqpb/NZF8mimw5PAsUyMQ9hU+B8zmTo3dd5e3yGjks3ifV1kllNpHrZKMh8bmP6oMcO4FH8jKYHOOM89+S18s7xMFcfzPGDiyP81988+mr+IDVM3lf23lafc1l4EOLgSV1ZLX344MMqR7I1E9nyYnx9aI4ph0VXqg71qQlWr1Lk/uCT7wKqaWIDRx4O1tSigr/OxutVmJ9yE2lvYj4TJWPK7z7i4NhK+cPnwC8B6Lr+PnBvbcNqhsL3gTuGYfxTwzDWvv3/S+Cfrz7mdWDiZQsKQuxHVi5HbmQYrb4ed0dnRce6bc9gYvGu0oWqrP8QHlht0NjtjVd0jlpXqPMz8eZpnLk8HVdu7/g4iqLQ6TpOwc4xZ44/uf9sfxi/R+PygzlK1iFcuRFCCFF18Qvnif3spySvXEL1esnPzRG/cJ74hfPVDu2F8lY5U6Fey5EKlJOXj2R8m+z1apRcTrLBAN5UGle6dn4pVxToaFPJ5SGsdgAwlqyt3hBCvMxWMhW+B3xb1/VLgAL8tq7rvw8MAQ7ga4Bb1/VfXH38HwL/CvhLXdd/mXLGwj/e7cCFeNWygwNQKtFw9jUUdWeNiIbiI9jYfO4bQ1GhNLXC59b9J9tLtsJgwo9HNWlx1VZ94Kswc+Y4LY9HidwfZKa/h5VI446O0+3WeZy/xUTBAD4GwKmpvHeqhU9vTvNwLMZrfU27GLkQQgixNYXpKexCAc+p0zv+frGXRrJOLFQ6PHGmfeXSh8a8u2rxrDSF8CVShEcnmTlTO9kKXZ0OHg+XKCy2oPpVWVQQB8qmiwqrDRh/55m7B576/xcVVP3yToMSotrsUpGMMYDichE4qZPO7fzK9pKaZ9mRpyXjxW2t7w8wmwtg2g56fTGUvcki3Ndsh4PhD9/mtR98Sv+l69z51V/Y0XEaHM0E1BAzhRFyxRwerfw29eGZVj69Oc1nd2dlUUEIIURV5EZHAPD09lU5kq0ZypR7PtQ3LDDqsOhM1aHsUenD86yEQ0RGJgiPTNTUokJbqwOHA6YnHbS93cLUyiwzK3O01cl4SVH79v/yqBBVkBsdxc7l8B47jurc2AxwOwad5bKGzpWNM6jHVmsUD3vpw9MSbS0sHeshEF2m1RjZ0TEURaHLrVOiyJ3ogyf39x2ppz3i5+ZglMTKzntkCCGEEDthFQrkpyZxBINooZ1l4+2llZLCdN5BkzNDPJAEoDXrrWpMayUQ9QtLNTUFwulUaGtViSdsIs52AG4s3KlyVELsDllUEOIZtm2THXgEioJXP1nRsUwsRpxJ/JZG5JkuydmSxnyhjkZnhnqtUNF5DprJj96m6NTovn4X1dzZLOcuV/nqxRfzt57cpygK33yznZJl8/M7Ms5JCCHE3spPjINl4entR6mBFMXhjBNQ6PDGmfNmcZZUmqow9eFZqdXyyPDoRJUj2Z6uznKSuLkUQVMcXJ+/jW1L2zlR+2RRQYhnFBejFGPLuDu7cPgrm8E8qiUxFYtjZnBDqmC5k7JCtzfx/J0PMbPOx8Rbr+HMFwiPTe/oGHWOBhodrTxafswnNwc5f3ua87enKVo2mkPhR19MSsNGIYQQeyo3MgyAp7e3ypFszeOMCxWbQDBKXivRkvXu2dSHl1lpasBSFMIjtbWo0NleLoOdmlJorzvCYnaJidRUlaMSonKyqCDEM7KDBgDe45XX6Q264mDDMbNh3f22DePZBlQsOjyyqPA8M6ePkQ4FCc4v4kmubGvfkdw9RnL38KsBwOZW+sKT+yaLD+hrC5LJFbk7tPRqghdCCCGeYS4vY87P4WxuxlG3/0fFzmdtFk0HHZ4iS/7y53BrlaY+PMtyOom3txJYjOFJ1M44ZJ9PIdykMjdvccRbngJxY15KIETtk0UFIZ5i5XPkxkZx1NfjbD1S0bHm7RRRR472kp86e31fhpjpIVVy0+ZJ4VLlannLwNC6W+T+IC2DIyx3lJsXRUYmyisx2xTSWgCF5dLcuvv1rvIiz89u7SwLQgghhNiu1LUrQO00aLwZLX/uHvUVmPNl0CyF8D4ofVhT8JYnUPRcu7XuO8R+19XhwLahGGvCq3m5sXAHy5bvgqK2yaKCEE/JDQ2BZeE9pldc63jdLo8KOv5MlgKUsxRAGjRuJhcMkAo34lnJULe0/efKqbioV0NkrBQ568t51qGAm+aQlwejy8wv186cayGEELUrdfUyqCru7p5qh7Ip27a5uQiaYhMIxMjto9KHNenVEohANFbtULalq3O1BGIa3oicIZ5PMJIYr3JUQlRGFhWEWGVbFtnHBjgcePqPVnQs0y5xy57GaznoKq6f+lCyFSZzQTyqSYurdroWV8tSdxs20DQ+vaNshUatnO2wXHx+tsKnkq0ghBDiFctPT5GfnMTV1o7q3j9X+19kYgWW8tDjMZn2LwP7p/RhjaVpZEJB3Jksrky22uFsanAyzuBknGgqidtjMzFZRE22AXBj/naVoxOiMrKoIMSqzMMHlFIpPD29qG53Rcd6aM+RxeSoGdywqj+bC2DaDrq8CWqg8XPVmV4PyZYwrmyOwML2eyA0OMKoqCyX5td1WO5qCVDvd3Hx7gzZfHE3QxZCCCHWSV65DICnr7/KkWzNzcUvSx/GPUs4LIVwlUdJPk8qEgKgLrpc5Ui2TlEgHLYolRSKiUbqnH5uLtylZJWqHZoQOyaLCkKsil/4FADv8RMVH+uLl5Q+jGWDgJQ+bMdyVxuWotA0MYOyzYkNDkUj6IiQt7NkrC+bOTlUhW+93UE2X+KijJcUQgjxitiWRerqZVSPB3d7R7XD2VTJtrm1BH4N/IEkK1qe5qwXxz4qfViTbmzAUlUCi7EdZTNWS7i5/F1mYi7NW81nWTHTDMaGqxyVEDsniwpCAMVEnPSd22ihRpzhcEXHWrTTjLJMH03U265127IljflCHSFnlnqtUNF5DpOi20XiSARnvkD93OK292/SWgA2NGz8xpvtuJwqP74+SbEkTZKEEELsvqwxQHF5mbp33kXRtGqHs6mhBKyY8HoTTHrLGYJH9lnpwxrb4SAdCuLK5nCl938JxJq6gI3bbTO5sMIb4dcBuL4gJRCidsmighBA8tIlsCw8x45VfKy1Bo3vKJ0btk1kg4AiWQo7EOs4gqWqNE7NbjtboV5tRMPJcnEB+6kOy3VeJx+fbWM5mef6wMJuhyyEEEKQuPQZAPUfnqtyJFuzVvrwZhjGvUtolkpkH019eNZKpBGAwGJtlUA0RSzMokV2OUCDO8id6H1MS8oxRW2SRQVx6Nm2TeKzn6NoGp6eysY8lWyLm/YUXpycUlqeOU956oOKRacnUdF5DqOSy0niSAStYG67dlJRVEJaM0UKpKz1XaK//W4nigKfXJtY13NBCCGEqJSVy7Jy4zrOSATvsePVDmdTRcvm3jI0uMBbt0JSy9Geb8Bh799fGdKhIJZDJRBdrq0SiEj5IscNI8rbza+TLeZ4uGRUOSohdmb/vkMIsUdyQ48x5+eoe/udihs0DrBAmgJvKu04Fce6bTHTQ6rkps2TwqVKqv1OxI80YwOh6fltf3FodJSnQCwV59fd39zg5W29mYn5FQbGa2sslRBCiP0tdf06dqFA/YfnKh5VvRcG4pArwRtN8IhyyWB3tqnKUb2c7VBZaWzAmS/gXqmdqVqBehufR+PW40XeiJwFZAqEqF2yqCAOvcTFnwMQPPfVio/1hfXi0ofxbLlpY7dXshR2quhxsxJpxJ3J4osnt7WvX63HpXiIl6IUbXPdtu++1wXAD69O7FqsQgghRHKt9OGDD6scydbcelL6oHDfnsNhK3TkQ1WOanMr4dUSiGjtXBxQFOhuCZDJF0kt+oh4m7i3+JBcMV/t0ITYNllUEIdaKZsldf0aznAEr17Z1IeYnWWIKF000KIE1m0rWgqTuSAe1aTZtVLReQ67WHu5rKRhen6TR66nKAqNjhYsSswWRtdt62ur50RXA/dHlxmZ2d5ihRBCCPE8ZjRKdtDAq5/AGY5UO5xN5Us2D2IQ9oDLt8ICK7TlGnDajs13rrJMqJ6Sw0HdYm2VQHS31gFwfWCBd1repGCZ3Iner3JUQmyfLCqIQy117Wo5LfHcxyhqZS+HG/YkNs/PUhhb8WLaDrq8CdT9n/24r+Xr/GSCAfzxJL6l7TW8bNTKJRDjhYEN237to14A/ubz0Q3bhBBCiO1KXv4cgPoPP6pyJFvzKAYFq1z68JDywn1Pbn+XPqyxVZWVpgacBZP6+e1PiaqWSIOXpno3NwajT6ZAXJu7WeWohNg+WVQQh1rys5+DolTUkXkoPsJgfJirpTGctoovmWcoPsJQfOTJYwbi5ZVomfqwO+Kr2Qrt9zcuDryMV/XjVeqYM8fJWZl12050hzje2cDd4SVGZyVbQQghxM7ZpRKJzy6iuN0Ez7SA0wAAIABJREFU3n6n2uFsanAyxsXJ8qjrxmKKG4UpVFuhI7f/Sx/WrE2BCI/UTimjoii8f7qVXKHEzDT01ndjxIaI56VUVtSWTYfl6rquAv8OeB3IA//EMIyhp7b/HvCbqz/+wDCMP9Z13Qv8JdAMpIB/ZBhGdLeDF6IS+ekpcqMj+F87i7OxsaJjTTvSZNQieqEB5zNrdWnTwWTaS8iZpV4rVHQeUZYOBSl4PUSGJxh77w1M79ZHXYW1I0yajxnPP+L87fVzt7tb6xicjPPnP3jE//zff2W3wxZCCHFIxG/fobi8RPCrX0P1eKsdzqbyFkzkNEJaCc2TJubM0JFrwGVv+qvCvpEJBihqGuHRSUbefxMqzEDdK++fbuW/XB7n8v053vvgLUaT43wxd4tvd3+92qEJsWVbebX9OuAxDOMD4A+AP13boOt6H/BbwIfAB8B3dF0/C/wz4J5hGB8DfwH8i90OXIhKrTVorN+FBo2DznIGwnGzYeO2pB8bRbIUdpOiED8SQbUsmh9vr1yhUWtFxcFI/v6GEZKtjT6aQ16momnG5iRbQQghxM7M/egnAAS/+o0qR7I1Y1knJRSO+kzGveWxzft96sMGqko6HMKVzRGcq41rmSO5e4zm79HUqHB3ZIlUJo+KwqeTn1U7NCG2ZSvLj+eATwAMw7ii6/rTOVyTwHcNwygB6LruBHKr+/zr1cf8EPijzU4SCvnQtP3fCGa/iEQCmz9IvJBlmoxcvYQzWE/Pt86hOp0AlALPHykZeMH9AKUcTGorhG0PHa71fy+2DYPJAA7Fpq9uBacq/8a3yrnJ+0HuSDPW+AxHjBEW332t3EZ5C9w46VVOMJx5QNoZ5Yina932988c4W8ujvDJtSn+6JBlK8j7yt6T51yIg6cYj7H8xXXcXd14enqqHc6WDGXL34P6vSafeZZQbIXOGip9WJMKhwjORQmPTJBoa6l2OFvW36uxtGwyM+Wgra6VqZVZplIzdATaqh2aEFuylUWFeuDpwp6SruuaYRhFwzBMYFHXdQX4N8AtwzAGdV1/ep8UENzsJLFYZrOHiFWRSIBoNFXtMGpW/MJ5cmOjFFMreE+dZvj7n7z08YGAm1TqxeN9HlhL2AocywXJmetHFc5nXSzlnPQH0iiWiWntyh/hwHNqDsxi6eUPUhSifZ20PB7DMzq9rS8PXY6TDPOA+/Eb1NU1r9sW9GlEGrxcezjH9XszdLcejl/65H1l7231OZeFhxfbSYnm3kcpDpvEZxfBsnAdaSN+4Xy1w9nUimkzndOIOIuonjRLrjRtuSBu21nt0LYtGwxQ8HrKJRAfvo1dIyUQfT0OvrhpMjxa4vWPuphameXq3A1ZVBA1YyuvtCTw9Dca1TCM4toPuq57gP+w+pjffc4+AUDyvsW+kht6DID36LGKjmPZNoPOOJqt0GfWb9huJMoNGk80yBjJV2FO7wegdWB4W/s1aW0E1EamC8Pkrey6bYqi8PrRcsrn9z+TSRBC7HM7KdEU4pWxLYvExQsomoa7t6/a4WzJvWWwUOj3mYx6lwDoy+7/EZjPpSgs9nbizBcIbnP0dDX5fCpHWlUWohZ1djNuh4trczcxreLmOwuxD2wlU+Fz4FeBv9J1/X3g3tqG1QyF7wM/Mwzjf3lmn18CrgG/CFzctYiFqFBpZYXC7AzOSDNacGMPhO0YZYmUanLUDOJifbp+0VJ4nPDj04p0+rNEZWlt16VawqQb6mkam0LL5ihusWGjoij0uU9zJ3uR8cIjjnveWrf9SJOPo+1Bbg8tMj6XOjTZCkLUoJ2UaL6QlGJKZkylYjdvUVxaInDqBMHGumqHsyX3jDxgE/ZOc9U7h2or1OdM4sw9ecxmJYmv2nbOnzjZR9vDx7SOT5I91rX5DlU2Hk0D0BCGmVmF2/cLNLW3MZMbYyw/zIdduz89RF7nu0eey7KtLCp8D/i2ruuXAAX4bV3Xfx8YAhzA1wC3ruu/uPr4PwT+PfB/6br+GVAA/uGuRy7EDuWGy5mxngqzFAC+sCcBOG5urPAZW/GStxy8GUqgbq3cX2yXojB34ij9V27S8niM6bMntrxrt/sk97KXGMnd55j7TZSnejIoikLPkQBD0wn+7AeP+MZb7ev2/fob7c8eTghRHdsu0XzZwQ57KaaUQVVu+nt/C0Dw1KmXlk7uF8mCjbFs0+IqkneusOI0ac14wbQx2aQMcY9sqSTyKUsNDeTqfDQMT2C+/xaWVhsTLIJBUFUnM9Nwpq2FGcb44cAFjnn1XT2PvM53z2F7Ll+2gLLpq8wwDAv4nWfufno4/IsuDf6DTSMTYo/ZlkV2+HE5LbG7p6Jjpe0CD+15giUXzaWN46IG4uUrFHpQSh9epejRbnq+uEPrwDDTr+lbb9ioeml39TNZGCRanKbZ2bFu+5EmH5EGD5MLKywnczTWb31spRBiz2ylRPPPKPd3+l2EeIUK83Ok797B038Ud3OEQg0sKtxZAhs46jOZ8ZevmLel/dUNqlKKQrS/m847j2icmGGxb/9nKwA4NAg3WyzMOcgn6zja0osRG2Ihs0izL1zt8IR4qdroXiLELsk8eoiVTuPu6X0y8WGnbtvTlLDQzQYU1v8imzYdTKa9NHvyNLrNFxxB7Iaix81SbyfeZIr6bY6QOup+HYDHuVsbtimKwtn+8of43eGlygMVQrwKa+WWvKRE845hGP90rQxCiFcl/tO/AyD0C9+pciRbd2vJRgH6vAVmfBk0SyGS3XihpNZEj/YAEBkaq2oc29XSWu7ovTCn8lFbeQLVpZlr1QxJiC2pjXwgIXZJ4uIFALxHj1d0HNu2+cKexIFKf3Fjg8bBpB8bRRo0vmItA+VSloLHBUDPF3eYP94LwPyJo5vu36QdIeRoYcYcYaUUp86xvsdGW9hHOOhhYl6yFYTYp7ZdomkYxuXqhCoOslImQ+Lzz9BCIerefAvr7hfVDmlTy3mbsRQcq4e0N0lOK9G+4sdB7ddsZkJBVpoaCE3OouXyFD0vHg2+n9QHbdwem8WoysmGk/g0L1dmr/Mrfd9BU+XXNrF/yb9OcWgUU0lWbt3E0dCAFq4sjWyCGFFWOKscwWOvfxnZdrn0QVVsjtanKzqP2JpsMIDpdlG3GGOhvwvb8fKGTiO5JxczaXA0ESvNcyP9Uzpdx+nzvPZkW3kSRJif3pji7vASX39TeikIsZ9UUKIpxK5Kfn4RO5+j4Zd/BaVGavhvL5b/+0ZY4bG3/ENbxlfFiHZXtL+H3qXbhEcmmDtVeR+tvaAo0NxiMTnu4O7jOF9pfZtPpz7jdvQ+77S8Ue3whHghKX8Qh0bq8iUolfAePb6uKd9OrDVofEfpXHf/fCzDQNQiVnDR5k6SSK4wH8swf8ibf71yikKyJYxqWQQWY9vatcHRjFNxsVicpWRvHN30bLaCEEII8TTbsoj/7O9QnE6CX/16tcPZsttLNqoCpxpLjHoXcRcdhHMHZx0u2t+FDUSGx6sdyra0tJYrtT6/N8tXOz5AQeFnkxexbbvKkQnxYrKoIA4F27ZJXPw5iqbh6atsbnTGLnDPnqUJH700bdg+ni2n0Hd7Exu2iVcn2dyEDdTPL25rP1VRiWgdWJRYLM5u2L6WrQDSW0EIIcRG6bt3MKNRAu9/gKOuNsZIRrM2U2k4HoQJR5SCWqI97d/QI6qWFfw+Em3NBOcXcadqpxzV44X6oMXARBylUMeZ8EnGk5OMJmtrcUQcLrKoIA6F3PAQhdkZ6t56G9Vd2Sr8LXuaIhbvKV2oz2Q8lGyFyWwQj2rS7KqdD7CDoOhxkw0G8CZXcGa3l1EQ0dpRUFkoTmLb1obtT2crxFKSrSCEEKIsfuE80b/+KwC0YIj4hfPEL5yvblBbcHt1jfzNsMJNewqAjlqf+rCqZWDoyS3vK5dz9F65+aQPUy1Ya9h4+f4c3+z8GICfTVysZkhCvJQsKohDIXHx5wAEP/5aRcexbZtr9gQaKm8qHRu2z+brMG0HXd4E6sFZ7K8ZyZZyRsF2sxU0xUmT1krBzjFtDm/Y/nS2wp0hyVYQQghRVozFMOdmcba0ooVC1Q5ny24t2mgKdIdyPCZKuFBHXbGyqVj70Uq4AUtRqF9YLje9qhHhiIXb6eCze7P0B3vpqGvjdvQ+S9nlaocmxHPJooI48ErZLKkvruIMR/DqJyo61ijLLJLmjNKKX3Ft2P6k9MEjpQ/VsNLUQMnhILCwBNbGjIOXadHKc6wfZq89t27x6WyFqahkoQghhIDMwCMAfCdPVTmSzQ1OxhicjHFlJMFcFjrdJp8lh7GB/kyk2uG9EpamkW5swJXN4U7XTn8rhwbv6BEWEzmGphJ8s/NjbGzOT31e7dCEeC5ZVBAHXuraVexCgfpzH6Oolf2Tv2qX69neU7o3bEubDubydYScWeqd+YrOI3bGdjhYiYRwFkwaZua3ta9H9dHoaCFRWmTWHN2wXVEUzvaXe2j84IrUNQohxGFXWlkhNzqMWleHq31j9uJ+NZQpZyT0+QoM+aKotkJvtrKpWPtZqrkRgMBCbV3l93vLf09/fWGY9FwEj+Ln55NX+NHN2injEIeHLCqIAy9x8QIoCvUffVzRcVJ2nof2PC0E6KJhw3Yj4QcUur3xis4jKpNYLYFoGdy4MLCZVmcPAA+zV5+brdAe8RMKuLn6cJ4FmeghhBCHWuLiBSiV8OknK75osVdsu7yooCk2dfUxEs4snblG3HZtjMHciXQoSElzEFhc3nYWYzW1NHrxezTG51KUSgq69y2KmDzO3a52aEJsUBvvgELsUH5ygvzYKP7XzuKssNbxhj2Jhc1XlK4NIyltGx7FA6hYdErpQ1Xl6/zkvR6axqfQctvLGPGqfjpcx4iVFpgzN2YjKIrCmb5GbBt+eHVit0IWQghRY+xSifinPy1PlTp6tNrhbFnUdJAsOejxmIz4yxl9xzLNVY7qFVNVVsIhtIJJcHah2tFsmaIo9LcHKZZsJuZT9Llfw614eZy/TcaUCxtif5FFBXGg7UaDxkfRIQbjw1wqjaDZCoFkgaH4yJMbwEzGTcJ00uFJ4lJrZxX8QFIUki1h1JJFZGT7v/if9LwLvDhbobs1QEvIy+f3ZomlpMxFCCEOo5VbNyguL+PpP4rqclc7nC1bK31o9E4z6l3EW3TgTK8QLU5XObJXKxkply82D41VN5BtGMndwxkuj7q+PznDRH6AsNZO0S7w6eRnVY5OiPUObq6TOPSsQoHklUs4gkH8r52t6FgT2gpptciJQgMuHBu2P4oHAOjxSenDfpBqbiI8Pk3z4Aizp45ta98GLUKbs58Zc5j54gStzvX9M1RF4Zfe7+bPfzjAj65N8Jvf2t7xhRBC1JbnjYiMffIDALz6yT2OZudsG4azTpxKiVIoSkm16UzWoXDwx1Xl6usw3S6axqYY/qiIpdXGr0BeL9QHLRJxlVwOIu525s1xfjJxAa/mweVY3zT8XPv7VYpUHHaSqSAOrJVbN7AyGeo/PIdS4YfHI2e5uc9Jc2MJRa6kMpzyEXSZhJ2SjrYflFxOYh1HCCzG8C1vf6HnlPc9AO5nLj03W+GDM62EAm7O354mlSlUHK8QQojaYS4tYkYXcLW1owWD1Q5ny+YKDtIllXZPkqlACsWGjpW6aoe1NxSFVKQRzSzSNDZV7Wi2pbmlnAEbnVdxKA5anF2YlokRk4aNYv+QRQVxYD0pfThXWYPGRbLMaVnain4arI0pjo8Tfkq2yqmGFMrBX+yvGfPHe4GdNWwMac10uo4TKy0wWRjcsF1zqHz3vS4KpsX5Wwc7ZVQIIcR62dUxkt4TtZOlAPB4tfQhFJwn6TJpznrxWBuzLw+qZAWNnKspHLFQFJvovIptQ0Rrx+NwM7D8mGwxV+3whABkUUEcUIW5WbIDj/Ae13G1tFZ0rHuOJQBOFTZmKdg2PIwHULHRg+mKziN213JXG6bHTWRoDGUH3Z7PeD9EQeV+9jKWXdqw/dzZI3jdGj+9OY1Z3LhdCCHEwWNls+TGRnHU1+Nqa692OFtWsm1Gsk68qsVKaBGAzsOSpbDK9HpItIRpmJnHnVqpdjhbpjmhsckmk1FJryg4FI0z4ZMU7RL3Fx9VOzwhgC0sKui6ruq6/n/oun5Z1/Xzuq5vaHGr63pE1/XHuq57Vn9WdF2fXn38eV3X/+RVBC/Ei8TPfwpAwze+VdFxMnaBx0qcgOWko+TfsD2ac7GUd9EdyODT5BfL/cR2OFg42o0rl6dxfPvZBHWOIP3us6StBMP5exu2e90aX3+jjWS6wJWH87sRshBCiH0uO2iAZeE9cXLDJKj9bCgBOUulx59l1p/GU3QQyXmqHdaem9f7gNrLVmhuLX/HXJgv/+rWH+wh4KxjODFGspCqZmhCAFvLVPh1wGMYxgfAHwB/+vRGXdf/K+DHQMtTd/cDNw3D+Prq7Q93K2AhNmPl8yQufIrq9VJMpYhfOL/uth3X7UlKis3JQui5jYzux8oNGk811M6K92Eyp/cD0DowvKP9T3nfRVNcPMxew7Q3Tnr41tsdOFSFH38x+dzeC0IIIQ4Ou1Qi+9hAcTrx9NXOGEmAm4vlzyhPZIaSatO1cjgaND5rsbeLolOjeXAUdpDFWC2hRhtNWy2BsEBVVF6PnMbG5k70QbXDE2JLiwrngE8ADMO4ArzzzHYL+AVg+an73gbadV3/VNf1H+i6ru9GsEJsReraFWzTxHP0OIpj57WCJdviij2OZqscMzc2YsoWVR4n6wi6TLr82UpCFq9INhQk0RImND2HJ7n9lXy36uOE520KdpaB7PUN2xvrPbx7opnpaJoHY8vPOYIQQoiDIj85gZXNlsdIOp3VDmfLipbNvWXwO0rMBWdQ7MNX+rDGcmos9nXhSWdomKmdLENVhXCzhWkqxOPlxaCOujbCnkamVmZYyESrHKE47LbSEr8eSDz1c0nXdc0wjCKAYRg/AXhm3WAW+BPDMP6TruvngL8E3n3ZSUIhH5p2eJrFVCoSCVQ7hH3Jtm2mL54HRSHy5hm0up3Pjr5emCSRyXHGaqTeszFF8M5cHSVb4c1IGq+3/OXCKf+Gd02lz6XbU/47WTqrE/zJIu1DY0x9+Nam+00zsO5nv8ePK+/ByN3kTOPb1GsN615//813TnDl4Tyf3prhG+/1VBRztcn7yt6T51yI2pE1yp8P3uMnqhzJ9gzEIVeCY82LTDmzHEn7cB+iBo3Pmtf7aDVGaDFGiHccqXY4W9bcYjE342BhToXXQVEU3mo+y48nznN9/g7f7flmtUMUh9hWFhWSwNPfetS1BYWXuA6sLTp8put6u67rimEYL8wPjsVkFN9WRSIBolGpn3qe7Mgw6ZFR3J1dZG0npDamrG+Fbdv8xBpEAV63IuRy5rrtJRtuR/04VYuj/gS5XPmftjTs2x1OzVHxc5lf/TubbW+j0+2i6eEQI6+fwt5B9kq71s9o4QGXon/HR4FfWff6C3oc6J0N3BqMcuvhLB2R2rz6I+8re2+rz7ksPAhRfcVYDHNhHmfrkZoaIwlflj6UwpMAdB3SLIU1qUgT6YZ6msancWZzmN7a6C0RqLfxeGyWFlVM08bpVGjyNtIf7GE4McZQfJSvdnxY7TDFIbWV8ofPgV8C0HX9fWBjx7KN/iXwz1f3eR2YeNmCghC7JfHpzwDw6pVdRRhhiVmSnFZaqce1Yftoyke6qHEiuILLIf+09zNbc7BwrBdXLk/TDho2AoQczdSpQWbMYebNcc7fnl53a4uUm3j+xScG52/LiEkhhDhosoPlLAVfhd8v9lq+ZPMwBk11eeb9SwRNL435nWdxHgiKwtyJo6iWRYsxUu1otkxRINJiYVkK45NfXng5Gz6NU3Vyd/EhqYL0+BLVsZVFhe8BOV3XLwH/Fvg9Xdd/X9f1X3vJPv8K+Jqu6xeA/xX4xxVHKsQmiqkkqS+u4mxpxdlaWTrbRavcFfic0vfc7feW6wF4LZSs6Dxib8ydWGvYOLSj/RVFodN1HFC4lf75hhGTHRE/AZ+TkZkk2fxmiVxCCCFqiVUokBsZRvX5cXV0VjucbXkYg4IFkfYpLMVGT7ccygaNz1o43kNJ08rfC2qoYWNzS/n7x9DIl981PJqbs+FTmJbJ94d/WK3QxCG3afmDYRgW8DvP3D3wnMf1PPX/MeCXKw1OiO1InP8Uu1ik4RvfqmjM05yd5DFRemikU2lgivXpydGci9mshy5/hga3/AJZC7IN9SRaIzTMLOBJJMkF67d9DJ8aoM99hpH8PYbydznuefPJNkVRONUT4urDBYyJOL/4le7dDF8IIUQV5UaHsYtFfGdeQ1G3cj1u/yiXPtgs10+hWSr92QgJaqdB4atScrlYONrNkYFhGidnWe5ur3ZIW+L1QaDeYnYOMhkLn6/87/FoQy/DiTEuz37BR21foTfYVeVIxWFTW++MQryAZRaI/+ynqF4vwXMfb3v/ofjIk9sP83cB6M94GYpvTIu7tbSapdAo9ee1ZPbkMQDaHu4sWwHgjPcDnIqbB9kr5Kz1fWD624O4nCrGRJy8Kb01hBDiILBtu9ygUVXxHj1e7XC2bCg+wv2lMR7FbBrCs6SULEcyXhKmLCisWftecOTh4ypHsj3NLRa2DcNjX37XUBWVt5tfB+CvBr+HZddO9oU4GGRRQRwIqatXKaWSBL/2DdTnTGrYqrRiMqIlCZZcdJY2NjKK5Z0MJf2E3XkZI1ljlno7yPu8NA+O4CiYm+/wHG7VyxnvBxTtAvezl9Zt0xwqemcDebPE5ftzuxGyEEKIKssaA5QSCdxd3aheb7XD2ZaRlA8LBVfrBABdKWn6+rRMU8OXY6cTtVPOGm62UFUYHlmfLdvsC/Nuy5tMpKa5PPNFlaITh5UsKoiaZ9s2sZ/8CBwOGr75CxUd655rGUuB1wqNz605vLEUBBTeCSeooMJCVIGtqsyeOoZmFmkZ3FljppHcPRQbvIqf0fwD7qU/ZyR3j5FcuX/tie4QqqLwoy8msWxp4CmEELUu/ulPgcobQFfDYKIOxZUh5Y0TKXkImhsbTx82LQND626ZhnL26ZFHO89i3GtOJ3S0OViO2SzH1mck/PrRX8LtcPH9kR+SNmWyntg7sqggalb8wnniF84T/b//I4XpKdyd3aTv3SV+4fyOjpdRigw649RZTvqLG8dFJQoajxN+Gt0FegPyRr3fPfvFoWVgiJJDxVIVOm4/3HFjJkVRV5s2wqQ5iP3U4oHXrdHbFmB++f9n776D5Mruw95/7+3bOc305IiJaOS4IDZg85LLZRZpUaJsPYkuSqZklVxP9Vwll99z6T3LlmVbwZatSEkUJWoZRC53yV1uwmKxWGCR8wDoweScp3O8fc/7Y5DjYLpnuhtzPlVdmOlw+tcXd+49/bu/c06csz2zefkckiRJUmFk5ueJnjqJVl6Ouaq60OE8kHBaYyxuo6yhHxRYly4vdEhFKVpRhm42UxPoX3IVYyG0ty0sj93bf3O1QpnVy6daP04sE+fHfW8VIjRplZJJBankxS+eB8CxYUNO7Zy3zJFVBJvTPtQ7VSnMeBEodNqmmArGmZy//SYVN8OsEamqwJJM4RseW3I7blM55aZqYkaYuezNQx02tPgAePvYUE6xSpIkSYUV+uB9MAzsa9flNAF0IXSHnKAY6L5xrEKlRZdDH+5IVQnWV6NlMtRe6i10NIvW1GjCYobe/iyGcXNl5DONT1DjqObD0cMMRUYKFKG02sikglTS9Pl50mNjmKtrMFdULrmdpKITMM/jMDQ6M7dXKYTTGt0hF25TigZb6Yy7k24XrK8BoP58d07tNJjbUVAZSfeSFdevFJS7rWxsKefSUJDBCTmZpyRJUikSuk7og/2odju21jsvL12shBAEQi7MFWPoJp3OTBma7PLfVai2iqymUd8VQCmR5SU1k0LLGhPxuGBi8uaYNVXjy2s/j0DwvcCP5KSN0oqQRxippMXOnQHAsXFTTu10mefRr1QpmO7wZ3FspgwDhXWuaTmXQolLO+3Ey9yUjU/hnJ1fcjtW1U6teQ06acYzAzc9VlvhBODv3w7w/unRm26SJElS8YueOkk2FMTzxB4Us7nQ4TyQwSiEMhr2ugEQsC5dVuiQipph1pj0t2GNJajsLZ0qw442Dbh9CATAOl8n26u30B8e4sj4iZUOTVqFZFJBKll6KEhqcADNV4GloXHJ7SREhouWeeyGibWZ20+84zEzgZCLSmuKJlml8FCYv1Kt0HD2Uk7t1GrNWBQbU/owkez1BEV9pQOvy0L/eJh4snTGaEqSJEkLrk7QWPbMcwWO5MEdnxYozhAZe5Qm3YVbyAka72d001qEotBw7hKUwETL3cNBQqkIVqugb0Dn4kCQ7uHgTc/5UsdnsKhmftT7BvGMXLFMWl4yqSCVrNi5swA4t2zNaazjAdFHRjHYmPbdVh4oBOwbWUg07Kmdk1UKD4l4uZdYuZeqviGskeiS21EVE43mDgSCM/EPrt2vKAob1pQjBFwaCt6jBUmSJKnYpIaHSXQHcGzchKW2rtDhPJCMITgxZWCt7Qegbs4h531ahLLRCaIVZbjmgrQePnnTJM/FSlGgusYgm1WYm7n9K125rYyXWl4gmonxk/63CxChtJrIpIJUktITE6QG+tHKy7E0Ni25nbBIckj04zA01mdunxk5EHIyEbfQ7o5R70jlErJUTBSFka3rUYSgMcdqhTJTFW61nPHMAOPp/mv3t9Z7sFlMdA8HyehyPKMkSVKpuFal8OzzBY7kwZ2bg5SWQSmfwpU2U5GyFjqkkjHfUAtA+cjEfZ5ZPKpqsgBMTd75K92zzU9S7ajkg5FDjESWPkG1JN2PTCpIJWnujR+DEDg251alsE/0kMFgW7rytiqFdFbh8HQ5JkXweM1criFLRWa6rZmk20lNdx/m+NIz7oqOAAAgAElEQVTLAhVFocnSiYLC6fgHGGLhBK+ZVNY2lZHOGPSOhfIVtiRJkrSMsrEY4cOH0CorcW7ZWuhwHthHkwKtahhUwZqoC+UOq1lJd5ZyO4mVeXCEIthCpTHRssMJLrfB/JxCOg0fjh6+6XZk/DgbfP6FSRu7f3TTMtiSlE8yqSCVnPTUFOHDH2HylmFtXrPkdmZEjONimEqcd1zx4fhMGXFdY1dNBLc5m0vIUjFSVUY2r0PNGjmvBGFXXbRbtxA1glxOnr52v7+5DFVVuDgwL0/kkiRJJSB88ENEOk3ZM8+hqKXVTZ5KCHojBpaaITRDoSHmLHRIJWeuuR6AiqHSuapfXWMACjNTd95f65w1bK3aRG9ogGOTp1Y2OGnVKK2jpSQBMz/8PhhGznMpvCu6MRB8XF2Leksmfzxu5fScB485w66apY+5l4rXwjhJgW5eWEaq7vylnMZPbrQ/ikWxcSFxhIQRA8Bu1Wir9xCJZxiekvuRJElSMROGQXDfXhSzGe+epwodzgM7MiUwlU8gzGkaoy40Ibv5DyrpcV2vVgiXRrVCZbUBiLsOgQD4UsdnMasar/b+lJSeXrngpFVDHm2kkpLo7SF6/Bi2tjasa1qW3M6oCHFOjFOPh43U3vRYOquwd6wSgOfrZzCr8grzw0qoKsGGGkxZA+/YVE5tWVQbm+2Po5PhXPzgtfs3rFmYq+PiwNKXr5QkSZKWX7zrPJnpKdy7H8XkchU6nAeiG4JjU2CpHQIBa6KlFX8xmWtemJzTNzRe4EgWx2KBcp8gGlEJhu48h1OFvZxnm54kmArxevfeFY5QWg1kUkEqGUIIpr/7MgBVP/uVJVcpCCF43bgAwIvqutvaOTTlI5wxs70iTJ2cnPGhF6qtJquZKB+bRNVvX+v5QbRaN1JmqmIwfZFZfaEzUua2Ul/pZHI+wUwomY+QJUmSpGUQfO9doDQnaDw/DzFrCFxBGlJlOHVzoUMqWUmPm7jXjTMYxhYujSrDhSEQ0Nt3937MJ9Y8i8vs5EcX3yKcLo0qDKl0yKSCVDKix4+R7OvFtfMR7J2dS27njBhjkHnWU0OHUnnTYwMROxeCbiqsaT5WKa8srwaGZmK+oRaTnqUsx2oFRVHZ7ngagFOx96/No7Ch5Wq1gpzwU5IkqRilJyeJnT+Hrb0DWw6VkIXy0aRAqxkEYH2stJbBLEazV+dWGBhZWF+8yPkqDUwmQW9/9o5zOH04epgTk6dZV95BUk/x1+f+4dpkjpKUD9r9nuD3+1XgT4GtQAr4WiAQ6LnlOVXAIWBzIBBI+v1+O/APQDUQAX4pEAhM5zt4afUwMhlmfvB9MJmo/OLPLrmdlNB5U1xCQ+VT6vqbHotkTLw3XomK4Pn6aUwy5bZqBOurKRudpGx0kmB9dU5tVZobaLb4GUoHGEhfoNW6kboKB2UuCwMTEebCSXweW54ilyRJkvIh9P57IARlz71Q6FAe2HhccDmWwt45TiVO6lNeZogVOqySlvS6iZV7cc6HKBuZINhU3IkakwkqqgymJhQmpwxqa0x3fF57WSs94X56Q/2sLW/Ha/WscKTSw2oxX5u+ANgCgcBjwG8Df3Djg36//0XgbaDmhrt/DTgXCASeBL4F/N/5CVdarebf+imZmWnKnn0eS03N/V9wF/tEDxFSPKW041Mc1+7XDYU3R6pJZk3sqZ2j0pbJR9hSiRAmE/ONtZiyWcpGJ3Nub4tjDybMnIsfJG2kUBSFDS0+hIB3jg/nIWJJkiQpX4xUitDBA6g2G9lYjOD+92+6FaPu4flrtx9fTqHVDIEqaAtWyWUk82SmpQEBtBw7UxLVCleHQPTcYwiEqqjsbtyGAE5Pn1+hyKTV4L6VCsAe4E2AQCBw2O/3P3LL4wbwAnDiltf81ys//xT4f3KMU1rF0hPjzP3kNUxeLxWf+/yS25kWUQ6JfsqxUzdaTjcLwxuEgLdmvUwnrbTY56kUk0zeMPLBrJnI6HJJyYddqK6K8tEJyscm0ZIpdJv1gV7flzx30+815ibGMn18FH2dJksnrfUbOX15hn2nRnnp0TV4HJZ8hi9Jq9JSqilXPkqp2IWPfIQRj+PYshXFdOcrvMUqnlXoTipYawaxZjU6E7lV20nXpZ0OIlUVeKZnqeodZLqjpdAh3ZO3TOBwKAwMZtn9iMBsvnNyqdnbQLWjirHYBBOx3IZ9StJVi0kqeIDQDb9n/X6/FggEdIBAIPAOgN/vv9trIoD3fm9SXu5A00rrQF5IVVXuQoewIoRhcP6P/h6h63T+2q9Sseb6Sg1Z9+K/9Akh+GbsAllD8CXHFkw3fGE8E9QYTFrwmRPs8k1jUm7fD81y31xxK77NNROhNQ1U9AyypivAyBM7c2qu2drGbGicaX2EemczZR4HO9dXc+D0GAe7Jvk/PrUhT4Hnz2o5rhQTuc1zdq2a0u/3P8pCNeW17POVasr/ws3VlJJ0jRCC4N53wWTC3um//wuKTFfUglo9AprO+nATmpD9lXyaXVOPa3aeNSfOMdPahCjipJOigL9D49TZDJd7dTasu/NknYqisL1qE28N7uPU9Dm+2PkZVEWO+ZVys5ikQhi4sdejXk0oLPI1biB4vzeZn48vIhQJFjqh09OrY9bW4P73CXddwLV9J0bHxps+dySy+JUZjhpDXBYzrKOalqSPy8mFXXIoqfH+jBmrqrO7bBgjq3PrYjyyUmHlFWqbz1dV4Bkao+bsJUb87aRczpzaa9Q66E2foy9ykQ51J01VTrxOC68d6OPJTbW47MUzO/dqOq4Ui8Vuc5l4uKelVFNK0jXxrvOkR0dw7/oYJofj/i8oIrqArriG1j6AZqisi8ncWb7pNivj6zto6Oqmvusyo1vWFTqke1rn1zjbleH8RZ11azVU9c7VCj5bOS2eZgbCQxydOMmjdbceOiXpwSwmqXAQ+CzwvStXAc7d5/lXX/Mp4CjwEnBgyRFKq5YenGfmn76LardT/c//xZLbCYoEb4pL2ND4vLrp2hKSs2mVd2YdqMBjZcM4TLktJyiVPmFSmV3TQO3lAZpPnOPy04/m1J7XVIlH9RE25hjL9NFgaeel3c18570e3jk2zM881ZanyCVp1VpKNeVdyarJ1ZfEmnj3TQDafuFniV7uuc+zH4z7ASoqH5TNZuZ8yESmfAKLJcWGRCNe6/WkiDn5cO3HhawYnXx0GzU9AzSd7iK4qQPdYS9YLPdTXWVnvd/g/IUUUzMmOtvvPNTS7bbxuHU7w+dGeWPgHV7c8AQWTQ7LXIrVdsy8m8UkFV4BPu73+w8BCvBVv9//W0BPIBB47S6v+TPg7/x+/4dAGviFvEQrrRrCMJj4629gJBJU/+IvoZWVL+p1PcG+m9tB8I59hJSm80VlMx5lYdb9WFbhjVknGaHwcV8MjyWR988glaZIdQXumXmqLw8wumkd8YqyJbelKApNlk4uJI9yOr6fGnMzT29v4o3Dg7x7YphPfKwJp614qhUkqQQtpZryrlZ71eRqq1hK9PUSPt+FY+MmEu4qIpGuvLXtdlsfqKLyQcUSGY7MmdE29qEIhbWhapLG9UmmH6YKy0JXjMYVlcEdm2j/6CS1h07Ru2dXwWK5n0gkib9D4fwFOHYiTk1V9trFtKvcbhuRSBIwsba8nYtz3fzgzNu80Px0YYIuYavtmHmvBMp9kwqBQMAAvn7L3Zfu8LyWG36OA0tf909a9ebffIP4xS6cW7bifeqZJbfTq4UZ1WLU6052WBoBSGYFP51xEsuq7PYkaHfoTMsiBekqRWHgY1vZ+NYHtBw7w4VP5naStalOarRmJvRBLiSO8IK5hRd3N/P9fb28c2yYLzwpqxUkKQdLqaaUJADmf/oGAL6XPl3gSB5cIGYm7pvAYovTGavBaSxfVYQEE+s7qLvYQ22gj4n1HcQqFnexqxC8XpXmRhNDI1mmpg1qqu9e5bHBt5aB8DBvD+zjifqPYdeKtwpDKm5yVg6p6CR6e5j50Q/Rysup/erXbsuwLlZUyXDENokmVJ5I1qIoCllD8HcBwUzGxHpnmm3udJ6jlx4G8411BOur8Y2M4x3LfYnJOnMLTtVDd/IUo9Fxnt3egNth5q2jw4Siy3clS5JWgVeA5JVqyj8C/k+/3/9bfr//cwWOSypy6fExoqdPYmttw+4v7nHyt9INwYmoGXN9L6qh0Bg0Ma2P3nST8kuoKn2PbkcRgtbDp4p+iclNGxauG589f+8l0i0mC59ofoaYHufdwf0rEZr0kJJJBamoZGMxxv/yz0AIar/2rzC5lzZOyUDwgW2MtGKwO1mNS5gRQvD9PkEgBM22DE+WJVhivkJ62CkK/R/bBrDQeTBunb7zwaiKie2OZxAYfCfwChazyheebCOVyfLKgb77NyBJ0h0FAgEjEAh8PRAIPB4IBB4LBAKXAoHAH946PDMQCLTI5SQlWJgAOrj/fSa++TcgBJbmNYQ+2E9w//uFDm3RPpqEVOUIijVJS9SFLbuY0cxSroKNdcw211M2PkVV72Chw7mnmmqVmmqV4VGD8Yl7Dx15pukJvBY37w0fIJRaPaX8Un7JpIJUNIRhMPGNv0CfnaXis5/HkcOVg/OWOSa1BGsybjr1hRVN3xoRHJ2GJid83BfnLhPiShIAsUofk50tuOaC1AZy/+JfZ2ml0dxBX2iAj8aP8dTWOuornRw4O87wVDQPEUuSJEmLoYdCJPt6MXnLsDY2FTqcB5LOCt4Zz6DV9WE2TLSFPYUOaVXpe2wHWZOJ1sOnMKWKt9pVURQ+tnNhzqYjx9MYxt0rKywmCy+1vkDayPDmwN6VClF6yMjUplQ0Zn7wPWLnzuLYtBnfZz635KsGM2qCk5ZpHIbG48laFBQuzLt4fwIqrPC19QrjE/mNXXo4DezaSsXACGuOn2WmtQndltuY1W3Op5mJDPNKz+ts8Pn58rMd/PH3z/C99y7zWz+3bclDfSRJkqTFi51ZKF93bduOopbW9bX945Cs6sNszrAp3ITFkOeN5VZz6eZVQeYba6kcHKXl+Fl6nyjepRirKk20t5ro7c/S05dlbcedv/Z9OHoYIQQus5MDox/htbhxWRaW1N7TkNsqWNLqUVpHUumhc7UMcfxvvsH8W29i8nhxbNxM6MAHS2ovg8F++xhCgSeTddgwMRi1s3+iAqcGv7pewW2WJ2BpcTIOO8PbN2FOpWk+eT7n9uyqiy92foaEnuTbl/6JTa3lbGz10TUwz7m+uTxELEmSJN1LZnaW1OAAWkUFlqbmQofzQGaTgndmIphr+3HoFtbH6god0qo031BDymGj9mIPrqnZQodzTzu3mzGZ4MTpDJnM3asVVEVlS+VGBIKzMxdWMELpYSGTClLBZaamiBw+hGKx4H32eVTL0tbJFULwkW2CsJphU9pHfdbJZMLCWyNVmBTBi43jhFL99AT75IRG0j3VXOq5dtM1lbTdRt2FyzSdOJtz24/XfYwNFX4uznXz0fgxfu7ZDhQFXn63m3Tm4VkCTJIkqRjFTp8EwLVtZ0lVhwkh+EG/gbrmAqiC3eFWzOLus/pLy0hVmWpfgwJ0HjiKki3ec7fLqbJ5g0YiITh55t6TNja7Gyi3ehmMDDOfDK5QhNLDQiYVpILSQ0GC+/aCEHifegbNs/SxgafEKL3mMFVZGztSVfROZ/jJUDW6UNjlHUFJzjM5H2dyla9DLj0gVWW6rQkFqO4dWvKMz33Jc/Qlz3Fw7Aid3jbMqpnvdb/K+fgRXtjZxOR8glc/7M9v7JIkSdI18e4A6bFRzDW1mOtK6yr/uTm4bBrH5JnDTxVNyeJd0nA1SHrdTPjbcM6HaDpd3Ff2N28043ErdF3UGRm9ewJEURS2Vm0C4OxM10qFJz0kZFJBKpjM3BzBd99BpFO4H3scS139ktuaEhFeE11YhMrTiXrSuomD882kDI1tngnqbXIiPGnp4uVeIhXl2MNRai/15tRW93CQkYkUDVoHutDZN3CECq8Fl93Mm0eH6BsL5ylqSZIk6SqRzTL98rcBcG3fUVJVCkld8MpwCnPzJUxC5TPqRhRKJ/6HVf/u7SSdDhpPX8A5M1/ocO7KbFZ45kkrqgofHEoRi999RataRzXVjirGYpNMxWdWMEqp1MmkglQQ2WiU0T/+7xjxGM7tO7G3dy65rbTI8h3jFBmyPJGsxZa18sZINdGsFb9zhnZH8R7opdIx3d5M1mSi5ehpLLHcq118plrKTFVEjSDdmWM8vqkWIeBv37hIRs9tCUtJkiTpZsF9e0kND2Fra8dcVV3ocB7IP/UbJBq6UMxpXlA78SmOQockAVmLmZ4nd6EKQecHR4p6GERlhcquHWaSSXjr3SjiLlWXiqKwtXIjAGemz9/1eZJ0K5lUkFackUww+j//iPTYGPZ163Fs3LTktoQQvCrOM0mU3UozzRkP745WMZmw0WwLstE1lcfIpdUsazEz09qIltFpP3h8ycMgrlIUhTWWdVgUGxeTR8EzzbPbGxidifHjQ3IYhCRJUr7owXlmf/RDVIcT185dhQ7ngRyfFpxRRjD5JmnBxx6lrdAhSTcINtYx4W/DNRek6VTxDhnoHg6iOWOU+wyGR3Teej9KYChI9/DtcydU2n00uuqZSc5xTk7aKC2STCpIK8pIpRj9H39Esq8X96OP4XrkYzmVIB4VQ5wWozTi5SXWcWDCR3/UQaMjwU7vGCVU3SiVgHBNJcG6aiqGxqjsH865PU0x02bZhIqJI9G3+PhjlVR4rLz+0SBdA3I1CEmSpHyY/u7LGMkklV/6WVSbrdDhLNp0QvCD0Qjm5ktYhcbPqltRZcem6PTv3kbS5aTp9AU848V7MUtRYO16HYdTMDZiYnT47l8Dt1RuQAFe63sTQ8jqSen+ZFJBWjFGOs3on/wxicvduB7ZRe1Xv5ZTQmFIzPO6uIADC19Rd/DBuImuoIcKa5oXG6dQ5XlXyjdFoWfPLrImE+2HTmCOJ3Ju0mnysNXxJGmR4NuXv8vXPrcOVVH4i1e7mAsn8xC0JEnS6hU9c5rIsaPY2trwPvlUocNZtHRW8K3eDLSfRjFl+aJpM2WKvdBhSTe4ukpUZd8Q021NAKx/5wBaMlXgyO7ObIbtj4DFKhjo05gYv/NXQa/VQ6t3DeOxSY5NnFrhKKVSpBU6AOnhF9z/PkLXCe3fR3psFEtjE3b/ekIfHnjgtnqCfQAkFZ1XHQMYiuDJRA0H58LsHbPi0nQ+3TSJ1STHgEnLI+l1M7BrK+2HT7J2/xG6Pvk0uZbEKEKh3FRDX2iA18Q/suuRrRw+muH3v3eY3/3lpzBrMv8rSZL0oDJzc0z87TdQNI2aX/wqilq8x9Lu4evzPwkB787ZmG7swuSIsltZwyaltFarWG2SHheza+qpHByj48AxLr3wRM59g6W403CGW9nssGlLhrOnzPQETNRX6nS03f6VcFPFeoYio/yk/2121GzFrMqvjdLdFe/RVXpoCF0nuG/vQkKhoRHvU8/kdGI3ELxvGyOu6mxPV5INV7BvrBKLavCZ5klc5uKdKEd6OIxv7GSusY7y0Qnqu7pzbk9RFFos66iw+RgID6P7emhvNTE9Y/CdvZfzELEkSdLqIrJZJv7qzzGiUap+7itYm5oKHdKinYxYGawYxFQ+RRsVrAvb6An23XSb1keZ1kcLHap0g/nGOuJeN5WDI3npGywnhxM2btExafDBwTSXe/XbnuM0O3iq4THmkvN8OHq4AFFKpUQmFaRlZSSTBN97l8zEOJbGJrxPP4tiMuXU5inLDONanCbdRX24ljdHqkGBlxon8VkzeYpcku6s5lIPNYFegvXV6GaNliOnaTpxlppLPTm1qyomnmp4FJfZSdfcJRo2jFNeprDv1ChvHhnKU/SSJEmrw+yPX10YbrnzEbzPPFfocO7rapLgdDTMScsM5vo+7BmNRyM+VLl8ZGlQFCbWtpK222g9chrv2GShI7ont0eweauO1QIHDqW51H17YuHFluewmWy8ObCXpC6HZEp3J5MK0rLJxmOM/PEfkJmcwNq8ZqFCIceEwqAW4ax1Frdhpnm0gh8P1pAxVB7xjKKl55mcj1+7SdJyylrMTHa2oApB7aU+FD33ChmbZuPpxsexqGaOT59i82NzlLutfG9fD4e7JvIQtSRJ0sMvcvQIc6//GK2igppf+mpO8zetpLmMjeOKhrn1PFpWZdd0FVZy6zdJKytrtXDp+ScQwLr3DmGNxgod0j253IJPftyGzQqHjqS5ELj54pzL7OSF5qeJZmLsHX7wYcvS6iGTCtKy0INBhn//90j2XMba0ornyadzTijMiBgHbOOYhMIT0SaOzLaSNMxsdk/QZA/nKXJJWry4r4z5+mqsiSS1l/tzXmayezjIxGSWVvNmFBSOzx5l3aY0Zk3lr1+/KFeEkCRJuo9Y13nG//ovUTQN96OPEzl2jOD+96/dilVMN3NId6G1n8UkFD42XYVLNxc6LGkJwrVV9D22A3Myxfp3PkTN3F4BUExmY2HWb8lgNgsOH82w71D4prkZnm3ag9vsYu/QfsLpSAEjlYrZfZMKfr9f9fv9f+73+z/y+/3v+/3+jlse/xW/33/c7/cf9vv9n7lyn8/v989cef77fr//3yzXB5CKT3pykuH/8p9Ij47gffY5PE88mfPkSHGR5lvGMTKKwe5EHYcGm4noNtods3Q65BctqXBmWhqJe924ZoM0ns7Pes4uUxkd1q2Awtns22zdYaAoCv/rh+e4PHL/SZgkSZJWo2R/H2N/+icoioL3mecw+yoKHdKiJHTBh7obpeMMKvDIdBVlaSvATRWYshqzNNRc6kEoEKqpxDU7z9bX3qHmQnfOwySXk9Mp2Lwtg8Ui6O/Vblpu0qZZ+VTrC6SyaX7U80YBo5SK2WK+6X0BsAUCgceA3wb+4OoDfr+/FvhN4AngReD3/H6/FdgBvBwIBJ65cvsf+Q9dKkbJoUGGf/8/kZmZpuJzX6D6F34x54SCLrJ82zjBLHE2pnwE+juZTNhosoXY6p4sxOS6knSdqjKxro2M1cKaE+coHxrLS7NuUzkd1i0AXOQdXvqEBV03+MPvnZGJBUmSpFvEL11k5A//GyKdpvZXfw1LbWmslqAbgj8fnkFvP4eiGOyYraAyZSt0WFKuFIWp9mZi5R6c8yGqewZzrmZcbg4nNyUWApd1Phw9fG2SxnKrlyMTJ/jh5Z8UOFKpGCniPju43+//Q+BoIBD4zpXfRwOBQMOVnz8HfCoQCHz9yu+vAP8ZeA74HKADU8BvBgKB8Xu9j65nhabJcWOlauKtt0mMjjHx07cw0mkqn3wC7+ZNObcrhOBb8eOcyIywVatnuquD3pCDNk+CR9xDqDKhIBUJSyRG7emLCFXl4hc/QaLKl5d23VoZe6d/SFbodCh7OH/Uicmk8tk9bdRVOgH45GMteXkvqWjJI90KmZ6OFHevf5lVVbmZni698ubwkcNM/u03EEJQ+y+/hmf3YwUf6uB2W4lEUvd8jhCCb4xO0199EkUR7JyppCZpX6EIS4dZM5HJw7xFhaBkszSeC2CLxplrrOXCi7kvQ50rq81MKnn3ic3jMTh72oyeUXhmj4W21oWlJGcSc7wz9D5ei4f/+Pi/w6TK722lesxcqqoq91133sUsOOoBQjf8nvX7/VogENDv8FgE8AKXgBOBQOBdv9//z4E/Af7Zvd5kXpZyLVox7sAzFy4T+uB9ADx7nkJtabvvyfR+hBB8J3SG8+4xqlIuZro66Y3ZqbLE2GIfIpsVrMQpppRPZqWqFLd5xm6j++nd+N87xNrX9nL2s8+T9LhzbrfBVsvT7i/yYeQ1LosDtOzYQv/JOl470MuzOxqoq3Dm5XhQjMeVh91it3lVVe77kSQ9jIRhMPvjV5n78auodjsN//o3caxbX+iwFu0fZ8fprzmDgsL26SpqZIXCQ0eYTIxt6KTx7CV8IxOsOX6OwUc2FzyxcC8OJ2zaotN11sz+g2k0DZqbNCrtPjq8rfSE+nlv+AAfX/NMoUOVishi6tLDwI09GvVKQuFOj7mBIPAesO/Kfa8A23OMUypSQgjm332H0P59oKh4n30eW2tbXtreKy5z3j2GW7fhHNhKT8xOuTnBY2XDmJRVfTFJKlIzbc30PbYDSyLJxjf3Y47nZ/kln1bLc54v41K9jJvOUr+zGwOdvcdHGRiXk5RKkrT6ZOZmGfnvv8/cj19Fq6ig6bf/fUklFH4QHqKr7DSKUPl58Qh1MqHw0MpazIxu9pO2WWk6c4GWY2eKfiiEyy1YvymDogj27k9x9GyI7uEgznQjVpOV1/vfZjxW3EtmSitrMUmFg8CnAPx+/6PAuRseOwo86ff7bX6/3wusB84D3wC+dOU5zwMn8haxVDRENsvUP/4909/5NqrVSvknXsRa35CXtvcal9knenDrVmr7t3Mx5ManZdlTPohZNfLyHpK0HMY3rmVo+0bs4Sgb33ofLZlbxc5VLlMZz3m+TIVWx5zaT/mO45jscT44M87eEyN5eQ9JkqRiJ4QgdPBDBn/nP5DoDuDa+Qhr/sP/h7WhsdChLYoQgu8nApx0ngfdzM9ld7PZUlnosKRlplstjGz2E/e6aTx7ibZDJ8Ao7v6sxytYv2nhOvKFcxrhkIKmmNlVs42MofPNrpfRjeJe2UJaOYsZ/vAK8HG/33+IhXGdX/X7/b8F9AQCgdf8fv//BA6wkKD494FAIOn3+38b+Bu/3//rQAz42jLFLxVINhZj/C//jHjXeSwNjbh3P4rJ6cq5XSEE74ke3hOXKcdOzeAWTs178ZiyfLoqRlwU9wFYkgCGdmzCnExRd7GHza+/x/mXniHjyH2crFV18Iz7S5yJH6AndQbbpo8w9W3h2+/AdDDBl5/tQJUTjUiS9JC5Oj+CHgwSOfIRmalJMC0sGWnr6CRy/K/SiHYAACAASURBVFhhA1wkXWR5OXOOS5YxRNLOz2QfYUsehslJpSFrtXDu08+x6afvU3+xB1s0zqXnHsMwF+/SoeU+gX+DzqUuja5zGlu26axtauDxul0cGj/GT/re5gsdnyp0mFIRuG9SIRAIGMDXb7n70g2P/xXwV7e8ph94Nh8BSsUnNTLM2P/+EzLTUzi3bKXuV79O+MiRnNvVhcGr4jwnxQhl2PFP7WbfrA2nyeAzVTGcJkFcJkSlUqAo9D6+E6Gq1Hd1s+Unezn/0rOk3M6cm1YVE9udz1CuVXMi9h5K23G8vnbePp5lbDbG1z+3CYdtMfliSZKk0iB0ndjZM8QvnAchsDQ24d61G5Mr94sZKyUiUnwjcZQZawQj6mXdeD1p6yAHZwsdmbSSMg47Zz/7POv2HsI3PMaWn7zHhY/vIe3KvX+wXCqrBGvXZem+pHH+jEZbg8GXOj9Hd7CPd4f2s87XyTpfZ6HDlAost7X+pFUncvQIQ//5P5KZnsL36c9S/xv/BtWW+xXYhMjwd8YxTooRKrI2agbXsW/AhkNN82R5LylGmNZH8/AJJGmFKAp9j25naNsG7OEom3+yF+fs/AM305c8d8ebIbI87/k53KqPdFkv3u3H6Bof5He/dZzRmdgyfCBJkqSVJYQgevoUs6+9QrzrHKrDgfeZ5yl79vmSSigMijn+l/EhM9YI+mwta4ba6LDK4/RqlbVYuPDiU4yva8c1O8/2V96ifDg/y1Evl+pag/ZOnUxG4c13UkRjBr+84Suoiso3zv8DE7GpQocoFdh9l5RcKat9GacHUYhZ2o1UiunvvUxo//uoNhs1//JXcO/Yee3xXJZuGhFBvmecZpY4G6hB71vDmRkfHnOGx8sGcJruvuzNSijFlQhK3cO2zctHxqkcGCWrmeh+ajezbc15abfNthldZJh2nOTD0cMomEgPt6FOt/PzL/h5ems9yiJnmJarP6y8B1j9QY5pWSGrvS9STMeB5NAg09/7DolLF0FRcGzYiHPzVpQiLhW/kdttJRxOclgM8oa4iCEgM7yW2mA5H/OOFfPk/0XnYeoTTK7ruP6LENRe6qXto5OohsHw1vUM7dyMUJf3mu/9lpS8l5EhlYE+jaoyG//257fTm7jAty5+lwqbj3/7yG/gtpROsi8fiumYuRJyXVJSWuVSI8OM/+WfkR4bw9LQSP3Xfx1LXX3O7WaFwX7Ryz7Rg4HgSdqY6+/kzIyC15Lh880TxKKFTShIUj7MN9Yx3dFK5/7DrH/vEMOzQQZ3boI8dBw0xcxX/F9ko8/Py4EfEm66DJWT/P0HYbr62/mlT67DZS+NTrgkSatbcP/7ZOMxYqdPkeztAcBS34Br5y60srICR/dg0kLn++IMZ8QYWtZConsr1Skvj5RflgkFaYGiMLG+g0iVj3V7D9J05iJloxN0P/0oiXJvoaO7o8Zmg3KXmVNnk/zet0/yf/38Nj7V8gJvDLzLX5z9Jv9629ewa3Ilk9XI9Du/8zuFjgGAeDz9O4WOoVQ4nVbi8fSyv48QgtC+vYz/2f8mGwpR9twL1P3ar6N5bz+xJwcHHqjtURHiZeMUpxnDg40vs4Oz3Y2cnVOotqX4fPMETrNBbImZ1HwyqSqGsaovXq24h3GbT3e0MLemgbLRCSqGRikfGSdcU4luX/rJd16fYl6fIqbMkMqmafE0kdSTBI0ptKoRxmajvH8wjtdhpanadc+qhZU6rkjXLXabO53W/3cFwpGQfZFCHgeMZJLZ139M+MB+9NlZTGXleJ94CufWbai20vqSMiki/HX6CD1iBk+6jLnzu6gUHj7li5JBLgP8oB6mPkGs0nfbfRmHnam1rVjiCXwjE9R292GoKtHqCpYjA6VpJrL60ic+37TWSWfFGk4Epjl2aYrPbX0EXYvSNXuJi7MBtlRtxGqy5jHi4rXa+k736o/I4Q8laLlKbW4cwmAkk4Q/Okh6ZBjFasXz2B6sTU05v0dYJHlHdHNKjCCALUodT6Y38nK3xmgM1pfBnppBzOrC7jA5H8/5PXP1MJXdlYqHcZtfLXk0pdK0f3SC6p5BDJPK4M7NjG3y57XcMZSdZSh9ibRIIRIuUn2bWOtr4SsvdNJcc+eZxldbCV8xkMMfis9q74sU4jggDIPwhweYefWHZEMhVLsd59bt2No7UJa5DDzfDCH4SAzwtgigY9AYb+Zy1zrKLSq/sVFheioo54dagoexT3A3ztl5qnsG0TI6KYedS889TqS2Kq/vkcvwB4C1TWXsaXiU90+N8vdvBTBrKv/ixU6GzB9xcOwoVfYKfmPb16i0V+Qx6uK02vpO9+qPyKRCCVrupEJqbJTIoYMYiTjm2jo8TzyJyeHIqe2ISHFQ9HNEDJImSw1uPq2uJxuq4JuBLElDZb0zzZ6yBHPZ4jrhrqaTWbF4GLf5TeMoAd/ACB0fHsOSTBH3uhl8ZAuzLY15uyqRFToRI0hv6iwI0KcbyYys5ZGORj6/p5WGyptnml5tJ8ZiIJMKxWe190VW8jgghCB29gwzP/wn0qMjKBYL9nXrcWzYhFoC8yb0BPtu+j2mZDhgG2dci2PLajRObeDccD0O1eAL1VE82sKuJZMKD+5h7BPci5rRqRwYwTs5A8Dk2lb6d23NqbLxRvlIKlw1NKyz/2CaTAb8a004W3u4OB/Artn5iv+L7KzZmo+Qi9Zq6zvJpMJDZrl24Ll33iJ6/DjJ3sugKDi3bcexcfOiJ3q7kxkR46Do56QYQcfAhZXnlU48oQxnZss4Or1wYNrmGafNEczXR8mr1XYyKwarZZurmQwVg2N4J2dQhCBS5WNk6wZmm+vzMt8CQCQ7z4ToIZyOQFYjPdJBdqqZHZ01PLujgfVrylEVZdWdGIuBTCoUn9XeF1mp40D80kVmXvnBwrwJioLn8T1UfOGLxM6eWfb3zpcbkwr9WphDtgnSikFjxkmmZy0DkRpsaoYnfYN4tNVTHr0cVkuf4Fa2cJTykQlcc0EyVgsDu7Yw6W/P+eJDPpMKAKGwwXv7U8wHBR63whN74ND8u6SNDLtrd/LPOj+Lw5zbxclitdr6TjKp8JBZjh04evYME9/4C4x4HK3ch/vxPZh9t4/7WgxDCAJMcdgYpIeFLGs5dp5S2tmuNDCfVPnbQILJhA2nprPLM0yFJZHPj5NXq/VkVkirbZubE0mccyGq+ocBSLocjK/vZLqjhbQz9yVbhTCY1kcZy/STRYekk9TAeoxwJTXldvZsqeOTT7RhMpY+xlJ6cDKpUHxWe19kuTvIib5eZl/5AfGLFwBwbd9JxRd+BmtDI5DbSlIrrSfYR1zJcNg6yaA5iiYUdiRqGRjoYDDqpMyc5LGyIRwmvdChlrzV1ie4iRB4x6eoGBzFlDVIOe3MrGkkXu5hcn3nkprMd1IBIJMRnDid4WJARwjY4DcTrznOZHIcp+bg022fQAFU5c4XTPY0PLrkeApJJhWuk0mFEpTPHTgbizH93X8kfOggqCrOzVtxbNq8qHGMt5b+zalJesxh+rQwCXXhJFqj21mXKadFdyOEwtk5D0eny8gKlQ5PlCdr5ghHonn5LMtlVZ/MCmQ1bvPJdR045kPUdV2muqcfk55FAOHaKmbamplrqiPlzm2ppoxIM5bpY0ZfWA/bmmgg2tuBHl9IXLTWudmxtopNrRU01bhQ5RTly0omFYrPau+LLFcHOTU8zMyrPyR2+hQAlrp6nNt2YK6szPt7rQRDCN6In+S4dZqMYlCj22mbW8ORkUZiuka1JcqTleNgFH6y6YfBauwT3MqUSlM5MIp7ehYFiHtcXH7mUSLVD/43lGtS4V4qXR66Tlu5PBICxaDOP0nMe5GMSOO2uNjg89PiabotuSCTCqVBJhUeMvnYgYUQRE8cZ+rlb5MNBbE2r8G5ZSta+eKrE3qCfcSUDH3mML1amHlTCgCLUGnLePBnyvAZNoSAnoiDI1PlhDNmbKYsT9fO0u5ZmISxGCZjvBd5Mlt5q32bq7qOe2oO98wctnCUq0fwhNtJqL6GYH0NofoaMkscXxk3Igylu4kZIRQUKpRmjIkOxobMXD0leBxmNrb62NRawcZWHx6nJT8fTrpGJhWKz2rvi+S7g5yeGGf2tVeJHDsCQmDvXEvFz3yJ9Ph43t5jpU2KCD8yzjPEPBahsjley/RIC4GQBxXBzsogjaZxrObVfR7Lp9XeJ7iRJRancmAU53wIgJk1jQw+svmBlqBczqTC2qYynqjfTVf/HG8dHaJrYB60FNbmHtSKEVAEZqzUmpup1OpZ17wwmaNMKpQGmVR4yOS6A6fGRpl++dvEL15A0TR8n/08vhdfInTww0W9flbEuCSmOJkZZMIUBwVUAY26iw7dS6PuxIRKVkBv2MmZOQ/TSSsqgk3lEXZWBrFr18usZVJBupXc5teZUmmEplE2Nol3fAotfb0jECv3EqqrJlRbRbi2ioxj8UMlhBDMZ6eYEYNEMlFMisoaVwvuZBtqqJGu/jlCsevjgNfUuNnU5mNzWwVt9R40U2nNyl6MZFKh+Kz2vki+OsjJoUEm/+5vSV1Zblrz+XBu24GlviGneZoKKSEy7Be9HBL9ZBE0pjyYRtfSPVuBIRQqrGmer5+h0pZmcj4uz2N5JLfl7WyhCN7JGTxTswhgtqWRkS3rF5ahvI/lTircmCAYnopy8Nw4B86OkxQRtNoBTFXDKCYD1TDTWdbBhqo2Xljz9LLEs9xkUuE6mVQoQUvdgTNzs8y98TqhA/shm8W5eQtVP/8LWGpqgbuPZYyKFAPM0Sfm6BMzTBO79li1bqdd99Ca8WDFBEAordEdctIVdBPXNUDQ4Ymzu2oer+X2sYUyqSDdSm7zuxACazSGIxjBEQpjC0dRb1i7O22zkvS4SHhcJDxuRrZvvO+ETkIYzGYnmNAHSBlJQKHZspa11h2IhIexmRhjM3Gm5uNcfSuzprKlreJaksHnKa015IuFTCoUn9XeF8m1gxzvDjD3xk+Inz8HgOarwLF5C9am5pJNJlwcnuWyY4rT7mFSJh1rxopleB1TM7WAgsecYWdliLXeKKYrH1EmFfJLbsu7EALnXBDf8Di26EJfOuFxMbxtIzNtTRiadseXLWdS4W6EgFBQYX5WZS6kk/EModUMomg6GArVajtPNTzGnvYNmDXTisaWC5lUuE4mFUrQg+7Amelp5t766bVkgsntwfXILqyNTTc9LyEyTBJhSkSZIsqUiDBJlCipa88xY6KdCtYp1VgjSRxCWzhQpDXOTWuMJL3MZxaulmpKlhZ7kHbHHO1Vd18eSiYVpFvJbb44imFgjcawh6PYQ1Fs4Sim7PXtlrFZCddULlQy1FQRqyxH3GW+FLPVxERshInMEEmxkDgsN1XTZt1Ek3UtZM1MzMUZm4kxOh0jmrjeIamvdLKpdSHBsLbJW1IdgkKSSYXis9r7IkvpIAtdJ3ryBPPvvUuy5zIA9rV+LE3NWOrqSzaZoIssJ8QIb2UCpDQdsib0sTYyEy0gTPjMcbZVxum8IZlwlUwq5JfclvchBPZQhPLRCZzzYQB0s5nZ1kZmWpoINtQgTNfPy4VIKtwqmYCZOYOIMkXMOohiX+h3iLiHOrGe3fXb2NZeT3VZ7pNVLyeZVLhOJhVK0GJ2YCOdJnrqJOEPP7g2y7K5qhpb51pESxPTaozJK8mDwcwU82r62uSKNyrDTjUu1ijltCoVNOBFU1TCacGhiUnG4jaGonbCmatJA0G1JUaTLUSDLYJZLf3Z5OXJbOXJbb5EQmCJJxaSDOEolngCa+z6yipZzUSkuoJwTRWh2ioi1RUYV9aDv9rJEELgMLnpTZ1jPDMACFRM1JibabC0UWduw6rYicQzjM7EGJuJMTEbJ3uljMGkKlSX29mzuY4NLT454eM9yKRC8VntfZEH6SCnRkeIHDlM8L13MZJJACwNjTg3bcFcXb2cYS6r8UyCfekhAuZhdFMakVXRp5rRx1vxIKizRmi2h+67TKQ8j+WP3JaLpyVTmPQsNd39WOML53/drBGurV4YLllXhV5XRVIvnv65rgv0hI2+zDkS1lFQBMJQMYJVOJPNbKr2s7Gpho4Gb9FVRsqkwnUyqVCC7rQDG+k06dER4t0B4he6SHQHEJmFLKTe0sDU5iYuNpsZmh8kTPK2Np2GRplhpcywUp61XPnZwjpvBzEdJuIwEoPhqGA4BjM3NGFRDRqdCcqUEHXWCDbTw3XglyezlSe3ef5oyRT28EIVgz0cwRq//scrFIVoRTnh2koSjbWEnE6SXjetjq0AJIwoA6kLDKe7CWVnr73OrfqoMtdTodVTbqrCgZfpYPrKUIkYwej1zrbbYWb9mnI6G8torfPQXOOS8zFcIZMKxWe190XutU8KwyDZ30e86zyRE8dJj44AoFgs2No7sHf60byLnyyuGGQNwXQS+mIZzmYnGbONo7tmURSB0DXETBNls5XUm1LUWqMPtDykPI/lj9yWD2ZyXQcIgXtqloqBYSoGx7CHr/9dC0Uh7nUT95URqygj5isjXuYl5XLcd8jkcmmzbQYWJpIORM8xnO4mpS5MRimEghH1YoR9OIwq2suaWVtXQ3uDl/oKJw7bnYd5rASZVLhOJhVKhJHJkA2H0INBnCLFbP8ImdlZ9NlZUuOjZCYn4Yb/y5DPTm+diXOtFoKe639sjqvJg6wFV9aGM2PDlrGTzliI66YrN4141kQkYyKYNpPK3lzKbFay+MxxqixxKixxfOYE6kPc5ZUns5Unt/nyUTM69kgUQ9PwTMzgmplDNa5fsTAUhWxZJXp51cLNV43uKSfsNDGsTTKuDzKrT5DleumkgorbVI5bLUMXGUxZG+mYk8S8nfCMk3Tq+jFEVRQaqpw0VDqpr3RSVWbH57Hic9soc1swLWI524eFTCoUn9XeF7m6TxrJBJnZWdKTk6SGBkgODJLs68WIL5QoK5qGY/MWPLt2o0ciKHcZu10s0lnBXGrhgshEAsYSOqMiTNAyh+KZQXUFUdSF/3pL0kNLspmPafV0uE0cHexa0nvK81j+yG2ZOy2Vxh6KYAtHscUTmGNxTNmbqxUMk0rC7SLpdZPwuEl43QvzNHndpB32ZU04XE0qXCWEIJSdYTTdy0iyn7CYBuX64VnoGiLlwEg6sBgevFoZXouHcoeHSoeXarcXn9uOx2nB47TgsGnLUjUpkwrX3Tep4Pf7VeBPga1ACvhaIBDoueHxXwH+FaADvxsIBH7i9/srgX8E7MAY8NVAIHDPgfOr9URuZNJkgyH0UBA9GLz2bzYUJNnfTzYRx0gkEKnUXdtImRVmyjRmyjQmKjSGay3E7BqmlANTwgUJFyLuQY+50TM2MoaC4P5/WCoCj0WnzJKh3JrBrEcoNydwmjKFSmQWhDyZrTy5zVeOkl2Yl8EZi2OKxrEkkljiyZvmZrjKUBR0qwWjqpGE00bILgjZdOasKWYscSJ2g7hNJXvLAGMNC0rWhpZxk0mYSScs6EkLImOBrBmR1SCrgVCxWTQcFjM2q4ZV07CaVaxmE2Emaay1Y7GA1aIs/GsFi6bxVOPjt615XQpkUiF3S+mj3Ku9Uu2LCCEQqSTZWJxsLIoRjxM+dhSRSmGk04h0GqFnEHoWkdUxl5djpDOIdAqRyVx7DnqGbDKJkUjc9h6qy4Wlrh5LfQOW2jpUS3EsM5s1BJEMhNLXb8G0wVxGZzabYl6kSKopFGscxR5DtUdR7FGUq19QBFiTdqoTDloSFtzZu88B9SDkeSx/5LbML7NmIpPR0VJprLE41liCrFnDHopiD0XQMrfPt2CoKhm7lbTNRsZmRbdamGlrJu10kHLaF5a4XsYvB7rIEDPCxLJhDC1BKBkjJWII5c7DOIQAdAtCX+hfCEPDJMyowoKmmDErFsyKlXqfB7fVjsfmxGt3UO5w4HO58NgcWE1WrCbLPfsXMqlw3WKSCl8EPhcIBH7Z7/c/Cvy7QCDw+SuP1QLvAI8ANuDDKz//N+BkIBD4pt/v/20gFQgE/uhe75PvE3k2FkPoOiD4/9u72xBJjjqO49+q6u6Z3b29SzRnLuCRiEolgtEXQWIefZEgMTGaV4II5owkooIafKFi3kl8ExVBg74w+ISIGgIxahQCPiQaEn0hEUlBXuiLiLnkgpfbh5meripf9Oze7t1mczfXu3O3+/tA0w81M/y3Yab++++qbjIsjZZoYgM5tZ1vSkAmpQQ5k9ccz2SIsd1OiRwjKTak2DAc1tSjEalpyLEhxoa02h5hvJ1TJMdIbhrMoMYMhphhjRvW2HrUfpGXhlT15kPphqVhccauLgszjqUZy7FZy7E5xytzjsU8Sx7sJS3vIS/Nt+vBHOT2S1CYRGkzpU0UNkNqKEw6vtjEjG3o24YD+xyzLjJbRGaKuG4Ewtl+Q8Wtos5s++mcb7915zxn3GhEtTSgWh5QDIaUw5pyMKQY1hSjzX+3msIyKh11aalLGJYwKGBUQHSGZA3RQrSG6MZr27ZFa0ir2+tfk01b2Mim/XlLph3GmQzkbMEUYBzGFBhbUpiK0lRUrqKyfXquomf72Ll5ekWfnutR2oLSFVSuoHQllSupCkdhHc5ZnLVYDNYYnHXMFXOreZMxBmNoS7TGYIBe5eiVp3ajShUVztwkOUoI4VWr9F3nIjln0sICOcU210i5zXZTm3OQxznISi4SI3k0Itd1+4/+qCYNa9JgmbS4SFxcXC0arG4vLhKXlmCDQuCpMGWJKStsr6Lo90iupDjvPMrXX0B5wX56Bw8yfP55bP/U5zIP8oiGRJ0yg5RJOZOBlCGR2/MC42OZRCYCo5wY5ESdE3WO7TollnNimGLblhJDIkMahjnSmAZcu5iVdVFj3Mb/bNhkOW80x4WjPeyv93BRvY9j9eGJzt1m1I91R+eyW5uez5xxo4ZyMKBcHlItj9fj/bUjG9daueiwbqkqYlWSnCVZR3aWZC3ZufaYs2TryMaQrSEbA6vb9oT9cfuatmSgYcTQ1AzygEEaMUiRESOwhiFDIjVN0VD3zuCnPTkK2iJEZXr0XI++69OzffbO7sHGgtmyT9/NUNmKwhRY43DGYnBYHNZYnHFY0+YHZnxx12CwxtJ3M+P9tjZjjMHaNsewps1BVo+b4/lH+xqD5fj2yntmegVl0e0Fl83ykVMZr3YN8ChACOFJ7/0Va9reBTwx7qCH3vvngMvH77l3/JrfjLc3LSp06ejjf+SF7z+wJZ9taTOTM5EM1KXh2Ixl8fySxRm3rnCwOGNZ6JUslRWNLTHRYZuCqpmlbCpmU5+yLtl3tOKil/vMYFnOL40LBMuUc4sUe44XDU6rcDiCNIIF2kVEdiFjiFXFclWxfN7ek5pffPMl9BYWqZaWV0c2lMsDqqXldjpFE3ExMrccmV+I6x57eTZ47o09fnXdZHO/639dRjx88au2V4Xl3juvPOtuJrWDTZKjPL1dwR156EFe/vWmgyMm5xxudg6MoTj/ddheD1NV2KqH6Y3XVbV63BQFxhXjtWunLDi37ukM8/M9jh1bX3MZHTlyWgWFkA/zo/RXVr/1WzyIaLWEl9uCgUuWclTSHzhmk6WfLP2mYCY69oxK+tGtJvQw5BjdFxREzlnGEKuSWJUM9s6vb8sZV48ohzXFsGawby/V0hK9hSWqxeX24sN4msXZVAnPwD9vuJoXLz5AzA2jGKmbhmETGcVI00RGqSGmSJMjkUimIZlINg3YSO0aRm6RJXcUQ4aVmszJt6mbSP3vS4kvXNLNh43tnau475NXbdt9rE6lqLAXOLpmP3rvixBCs0HbMWDfCcdXjm2qyysx+2+7mbfcdnNXHyciIjvI1cBHpx3E2P7986/9ItnMJDnKq+p6VMj+uw7BXYe6/Mgtd+AM3/9W4Bbu6CIUEZFOXDPtAHaBUyldvAKszXrsuLPeqG0e+N8Jx1eOiYiIiHRpkhxFREREOnQqRYUngPcBjOcrPrOm7SngWu9933u/D7gM+Mfa9wA3AX/qLGIRERGR1iQ5ioiIiHTodJ7+cDnt/SMO0Xbgz4UQHh7fWflO2gLFvSGEB733FwI/oL0q8BLw4RDC4tb9GSIiIrLbTJKjTC1YERGRHeo1iwoiIiIiIiIiIhs59x7sLSIiIiIiIiJnBRUVRERERERERGQiKiqIiIiIiIiIyESKaQcgp2d8B+sf0z5/uwLuDiH8ZbpR7UxrbgD2DmAIfDyE8Nx0o9rZvPcl8ABwCdADvhJCeHiqQe0C3vs3AH8DbgwhPDvteHYD7/0XgVtpf8fvDyF8b8ohiSjH6IByh+4oJ+ie+vtuqA8/mUYqnHvuBh4LIVwP3A58e7rh7GgfBPohhHcDXwC+NuV4doOPAEdCCNfSPo72W1OOZ8cbJ23fBZanHctu4b1/D3AVcDVwPXBwqgGJHKcc48wpd+iOcoIOqb/vhvrwjamocO75Bu0PArQjTQZTjGWnuwZ4FCCE8CRwxXTD2RV+DtyzZr+ZViC7yH3Ad4D/TDuQXeS9wDPAQ8AvgUemG47IKuUYZ065Q3eUE3RL/X031IdvQNMfzmLe+zuAz51w+FAI4Wnv/QHaIYqf3f7Ido29wNE1+9F7X4QQ1KltkRDCAoD3fh74BfDl6Ua0s3nvbwdeDCH8djyUT7bHBcDFwC3Am4CHvfeXhhD0jGfZNsoxtoxyh44oJ+iO+vtOqQ/fgIoKZ7Hx/JyT5uh4798O/BT4fAjhD9se2O7xCjC/Zt8qKdh63vuDtNXf+0MIP5l2PDvcx4Dsvb8BeCfwQ+/9rSGE/045rp3uCPBsCKEGgvd+AOwHDk83LNlNlGNsGeUOHVJO0Bn1991RH74BFRXOMd77t9EOB/tQCOHv045nh3sCeD/wM+/9lbRDnWQLee8vBH4HfDqE8Ni049npQgjXrWx7738PfEIJxrZ4HPiM9/7rwEXAHG2SIjJVvCajtQAAAMxJREFUyjE6odyhI8oJuqP+vlPqwzegosK556tAH/im9x7gaAjhA9MNacd6CLjRe/9nwACHphzPbvAl4HzgHu/9yjzKm0IIuqmQ7BghhEe899cBT9He2+hTIYQ45bBEQDlGF5Q7dEc5gZx11IdvzOS8q6d/iIiIiIiIiMiE9PQHEREREREREZmIigoiIiIiIiIiMhEVFURERERERERkIioqiIiIiIiIiMhEVFQQERERERERkYmoqCAiIiIiIiIiE1FRQUREREREREQm8n/Q3lTgRSNqqAAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -529,20 +501,26 @@ } ], "source": [ - "nms = ['Main effect','Contrast effect']\n", - "plt.figure(figsize=(18,4))\n", - "for idx,tv in enumerate([tvals_main,tvals_diff]):\n", - " plt.subplot(1,2,idx+1)\n", - " for idy,method in enumerate(labels):\n", - " sns.distplot(tv[:,idy],label=method)\n", + "from pathlib import Path\n", + "\n", + "nms = [\"Main effect\", \"Contrast effect\"]\n", + "plt.figure(figsize=(18, 4))\n", + "for idx, tv in enumerate([tvals_main, tvals_diff]):\n", + " plt.subplot(1, 2, idx + 1)\n", + " for idy, method in enumerate(labels):\n", + " sns.distplot(tv[:, idy], label=method)\n", " plt.title(nms[idx])\n", "plt.legend()\n", - "plt.savefig(\"output/distributions.pdf\")" + "\n", + "output_dir = Path(\"output\")\n", + "output_dir.mkdir(parents=True, exist_ok=True)\n", + "\n", + "plt.savefig(output_dir / \"distributions.pdf\")" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -569,7 +547,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -589,39 +567,41 @@ ], "source": [ "# We're assuming a single threshold on a single test, a representative simplification.\n", - "threshold = t.ppf(0.95,des.shape[1]-2)\n", - "nms = ['main effect','contrast effect']\n", - "out = {label:[] for label in labels}\n", + "threshold = t.ppf(0.95, des.shape[1] - 2)\n", + "nms = [\"main effect\", \"contrast effect\"]\n", + "out = {label: [] for label in labels}\n", "for idx in range(2):\n", - " for idy,method in enumerate(labels):\n", + " for idy, method in enumerate(labels):\n", " if idy < 2:\n", - " print(\"The power for the %s with %s: %f\"%(nms[idx],method,pows[idy,idx]))\n", - " med = np.percentile(pows[2:,idx],50)\n", - " ll = np.percentile(pows[2:,idx],5)\n", - " ul = np.percentile(pows[2:,idx],95) \n", - " print(\"The median for the %s with a randomly drawn design: %f\"%(nms[idx],med))\n", - " print(\"The 90 percent PI for the %s with a randomly drawn design: %f-%f\"%(nms[idx],\n", - " ll,ul))" + " print(\"The power for the %s with %s: %f\" % (nms[idx], method, pows[idy, idx]))\n", + " med = np.percentile(pows[2:, idx], 50)\n", + " ll = np.percentile(pows[2:, idx], 5)\n", + " ul = np.percentile(pows[2:, idx], 95)\n", + " print(\"The median for the %s with a randomly drawn design: %f\" % (nms[idx], med))\n", + " print(\n", + " \"The 90 percent PI for the %s with a randomly drawn design: %f-%f\"\n", + " % (nms[idx], ll, ul)\n", + " )" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 2", + "display_name": "base", "language": "python", - "name": "python2" + "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.14" + "pygments_lexer": "ipython3", + "version": "3.11.3" } }, "nbformat": 4, diff --git a/examples/comparison_neurodesign.py b/examples/comparison_neurodesign.py deleted file mode 100644 index d7a0c79..0000000 --- a/examples/comparison_neurodesign.py +++ /dev/null @@ -1,243 +0,0 @@ -# # Neurodesign comparison of design generators -# -# In this notebook, we will compare 3 methods to generate an experimental design: -# - a design optimised using the genetic algorithm -# - a design optimised using simulations -# - a randomly drawn design -# -# We will do so using simulations: what is the resulting observed power when we simulate experiments according to the three designs. - -# In[1]: - -import os.path as op - -import matplotlib.pyplot as plt -import numpy as np -import seaborn as sns -from scipy.stats import t - -from neurodesign import experiment, optimisation - -cycles = 1000 -sims = 10000 - - -# ## Optimise designs - -# First we define the experiment. We will optimise an experiment with a TR of 2 seconds and 250 trials of 0.5 seconds each. There are 4 stimulus types, and we are interested in the shared effect of the first and second stimulus versus baseline, as well as the difference between the first and the fourth stimulus. We assume an autoregressive temporal autocorrelation of 0.3. -# -# We sample ITI's from a truncated exponential distribution with minimum 0.3 seconds and maximum 4 seconds, and the mean is 1 second. - -# In[2]: - -# define the experiment -EXP = experiment( - TR=2, - n_trials=450, - P=[0.25, 0.25, 0.25], - C=[[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, -1]], - n_stimuli=3, - rho=0.3, - resolution=0.1, - stim_duration=1, - ITImodel="exponential", - ITImin=0.3, - ITImean=1, - ITImax=4, -) - - -# In[3]: - -POP_Max = optimisation( - experiment=EXP, weights=[0, 0.5, 0.25, 0.25], preruncycles=cycles, cycles=2, optimisation="GA" -) - -POP_Max.optimise() - - -# In[4]: - -EXP.FeMax = POP_Max.exp.FeMax -EXP.FdMax = POP_Max.exp.FdMax - - -# Below we define two populations of designs. We will optimise one using the genetic algorithm, and the other using randomly drawn designs. -# -# We optimise for statistical power (weights = [0,1,0,0]). We run 100 cycles. - -# In[5]: - -POP_GA = optimisation( - experiment=EXP, - weights=[0, 0.5, 0.25, 0.25], - preruncycles=2, - cycles=cycles, - seed=1, - outdes=5, - I=10, - folder="/tmp/", - optimisation="GA", -) - -POP_RN = optimisation( - experiment=EXP, - weights=[0, 0.5, 0.25, 0.25], - preruncycles=2, - cycles=cycles, - seed=100, - outdes=5, - I=50, - G=10, - folder="/tmp/", - optimisation="simulation", -) - - -# In[6]: - -POP_GA.optimise() - - -# In[7]: - -POP_RN.optimise() - - -# Below, we show how the efficiency scores improve over cycles for both algorithms, although the Genetic Algorithm clearly improves faster and reaches a higher plateau. - -# In[8]: - -plt.plot(POP_GA.optima, label="Genetic Algorithm") -plt.plot(POP_RN.optima, label="Simulation") -plt.legend() -plt.savefig(op.join(op.dirname(__file__), "output", "test_scores.pdf")) - - -# Below, we repeat the random design generator, but we search only 100 designs and one generation. As such, this is a random design. - -# In[9]: - -# 1 gen -POP_JO = optimisation( - experiment=EXP, - weights=[0, 0.5, 0.25, 0.25], - preruncycles=1, - cycles=1, - seed=1, - outdes=5, - G=100, - folder="/tmp/", - optimisation="simulation", -) -POP_JO.optimise() - - -# In[10]: - -# collect scores and take average -scores = [x.F for x in POP_JO.designs] - -median_idx = np.where(scores == np.median(scores))[0][0] -rnd_median = POP_JO.designs[median_idx] - -# get PI -BTI_l = np.percentile(scores, 5) -BTI_u = np.percentile(scores, 95) - - -# In[11]: - -print( - "Optimisation score - random: %s \nOptimisation score - genetic algorithm: %s \nOptimisation score - simulation (90 percent PI): %s-%s" - % (POP_RN.optima[::-1][0], POP_GA.optima[::-1][0], BTI_l, BTI_u) -) - - -# Let's look at the resulting experimental designs. - -# In[12]: - -des = np.array([POP_GA.bestdesign.Xconv, POP_RN.bestdesign.Xconv, rnd_median.Xconv]) -labels = ["Genetic Algorithm", "Simulation", "Median random design"] -plt.figure(figsize=(10, 7)) -for ind, label in enumerate(labels): - plt.subplot(3, 1, ind + 1) - plt.plot(des[ind, :, :]) - plt.title(label) - plt.tick_params(axis="x", which="both", bottom="off", labelbottom="off") - -plt.savefig("output/designs.pdf") - - -# In[13]: - -des = np.array( - [POP_GA.bestdesign.Xconv, POP_RN.bestdesign.Xconv] + [x.Xconv for x in POP_JO.designs] -) - - -# ## Simulate data -# -# We continue with the best designs from the two algorithms and the random design. Below, we simulate data in one voxel that is significantly related to the task. We assume beta values of (0.5, 0, -0.5). - -# In[ ]: - -# create datatables -tp = des.shape[1] -Y = np.zeros([tp, sims, des.shape[0]]) - -for i in range(sims): - rnd = np.random.normal(0, 1, tp) - for lb in range(Y.shape[2]): - Y[:, i, lb] = np.dot(des[lb, :, :], np.array([0.5, 0, -0.5])) + rnd - - -# We analyse the data using `R` below. - -# In[ ]: - -get_ipython().run_cell_magic( - "R", - "-i des,Y,sims -o tvals_main,tvals_diff", - "tvals_main <- array(NA,dim=c(sims,dim(Y)[3]))\ntvals_diff <- array(NA,dim=c(sims,dim(Y)[3]))\nfor (method in 1:dim(Y)[3]){\n for (sim in 1:sims){\n dif <- des[method,,1]-des[method,,2]\n fit <- lm(Y[,sim,method]~des[method,,])\n tvals_main[sim,method] <- summary(fit)$coef[2,3]\n fit <- lm(Y[,sim,method]~dif)\n tvals_diff[sim,method] <- summary(fit)$coef[2,3]\n }\n}", -) - - -# This is what the distributions for the two contrasts look like. - -# In[ ]: - -nms = ["Main effect", "Contrast effect"] -plt.figure(figsize=(18, 4)) -dists = [0, 1, median_idx] -for idx, tv in enumerate([tvals_main, tvals_diff]): - plt.subplot(1, 2, idx + 1) - for idy, method in enumerate(labels): - sns.distplot(tv[:, dists[idy]], label=method) - plt.title(nms[idx]) -plt.legend() -plt.savefig("output/distributions.pdf") - - -# ## Observed power - -# In[ ]: - -# We're assuming a single threshold on a single test, a representative simplification. -threshold = t.ppf(0.95, des.shape[1] - 2) -nms = ["main effect", "contrast effect"] -out = {label: [] for label in labels} -for idx, tv in enumerate([tvals_main, tvals_diff]): - for idy, method in enumerate(labels): - if idy < 2: - power = np.mean(tv[:, idy] > threshold) - out[method].append(power) - print(f"The power for the {nms[idx]} with {method}: {power:f}") - else: - powers = [np.mean(tv[:, k] > threshold) for k in range(2, tv.shape[1])] - out[method].append(powers) - print( - "The 90 percent PI for the %s with a randomly drawn design: %f-%f" - % (nms[idx], np.percentile(powers, 5), np.percentile(powers, 95)) - ) diff --git a/examples/optimisation.py b/examples/optimisation.py index 116e9c1..8d9b6f3 100644 --- a/examples/optimisation.py +++ b/examples/optimisation.py @@ -1,8 +1,11 @@ -import os +from pathlib import Path from neurodesign import experiment, optimisation, report -EXP = experiment( +output_dir = Path(__file__).parent / "output" +output_dir.mkdir(parents=True, exist_ok=True) + +exp = experiment( TR=2, n_trials=100, P=[0.33, 0.33, 0.33], @@ -22,13 +25,13 @@ ) POP = optimisation( - experiment=EXP, + experiment=exp, weights=[0, 0.5, 0.25, 0.25], preruncycles=10, cycles=10, seed=1, outdes=5, - folder=os.getcwd(), + folder=output_dir, ) ######################### @@ -50,4 +53,4 @@ ################# # export report # ################# -report.make_report(POP, os.path.join(os.path.dirname(__file__), "test.pdf")) +report.make_report(POP, output_dir / "test.pdf") diff --git a/neurodesign/classes.py b/neurodesign/classes.py index c0e561a..beafa7c 100644 --- a/neurodesign/classes.py +++ b/neurodesign/classes.py @@ -1,3 +1,5 @@ +from __future__ import annotations + import copy import math import os @@ -6,6 +8,7 @@ import zipfile from collections import Counter from io import BytesIO +from pathlib import Path import numpy as np import progressbar @@ -15,7 +18,7 @@ from numpy import transpose as t from scipy.special import gamma -from . import generate, report +from neurodesign import generate, report class design: @@ -98,8 +101,12 @@ def crossover(self, other, seed=1234): offspringorder1 = list(self.order)[:changepoint] + list(other.order)[changepoint:] offspringorder2 = list(other.order)[:changepoint] + list(self.order)[changepoint:] - offspring1 = design(order=offspringorder1, ITI=self.ITI, experiment=self.experiment) - offspring2 = design(order=offspringorder2, ITI=other.ITI, experiment=self.experiment) + offspring1 = design( + order=offspringorder1, ITI=self.ITI, experiment=self.experiment + ) + offspring2 = design( + order=offspringorder2, ITI=other.ITI, experiment=self.experiment + ) return [offspring1, offspring2] @@ -113,7 +120,9 @@ def mutation(self, q, seed=1234): :returns mutated: Mutated design """ np.random.seed(seed) - mut_ind = np.random.choice(len(self.order), int(len(self.order) * q), replace=False) + mut_ind = np.random.choice( + len(self.order), int(len(self.order) * q), replace=False + ) mutated = copy.copy(self.order) for mut in mut_ind: np.random.seed(seed) @@ -130,7 +139,9 @@ def designmatrix(self): if self.experiment.restnum > 0: orderli = list(self.order) ITIli = list(self.ITI) - for x in np.arange(0, self.experiment.n_trials, self.experiment.restnum)[1:][::-1]: + for x in np.arange(0, self.experiment.n_trials, self.experiment.restnum)[1:][ + ::-1 + ]: orderli.insert(x, "R") ITIli.insert(x, self.experiment.restdur) ITIli = [ @@ -164,7 +175,10 @@ def designmatrix(self): # deconvolved matrix in resolution units deconvM = np.zeros( - [self.experiment.n_tp, int(self.experiment.laghrf * self.experiment.n_stimuli)] + [ + self.experiment.n_tp, + int(self.experiment.laghrf * self.experiment.n_stimuli), + ] ) for stim in range(self.experiment.n_stimuli): for j in range(int(self.experiment.laghrf)): @@ -262,12 +276,16 @@ def FcCalc(self, confoundorder=3): :param confoundorder: To what order should confounding be protected :type confoundorder: integer """ - Q = np.zeros([self.experiment.n_stimuli, self.experiment.n_stimuli, confoundorder]) + Q = np.zeros( + [self.experiment.n_stimuli, self.experiment.n_stimuli, confoundorder] + ) for n in range(len(self.order)): for r in np.arange(1, confoundorder + 1): if n > (r - 1): Q[self.order[n], self.order[n - r], r - 1] += 1 - Qexp = np.zeros([self.experiment.n_stimuli, self.experiment.n_stimuli, confoundorder]) + Qexp = np.zeros( + [self.experiment.n_stimuli, self.experiment.n_stimuli, confoundorder] + ) for si in range(self.experiment.n_stimuli): for sj in range(self.experiment.n_stimuli): for r in np.arange(1, confoundorder + 1): @@ -286,7 +304,10 @@ def FfCalc(self): trialcount = Counter(self.order) Pobs = [trialcount[x] for x in range(self.experiment.n_stimuli)] self.Ff = np.sum( - abs(np.array(Pobs) - np.array(self.experiment.n_trials * np.array(self.experiment.P))) + abs( + np.array(Pobs) + - np.array(self.experiment.n_trials * np.array(self.experiment.P)) + ) ) self.Ff = 1 - self.Ff / self.experiment.FfMax return self @@ -295,7 +316,8 @@ def FCalc(self, weights, Aoptimality=True, confoundorder=3): """ Compute weighted average of efficiencies. - :param weights: Weights given to each of the efficiency metrics in this order: Estimation, Detection, Frequencies, Confounders. + :param weights: Weights given to each of the efficiency metrics in this order: + Estimation, Detection, Frequencies, Confounders. :type weights: list of floats """ if weights[0] > 0: @@ -314,56 +336,79 @@ class experiment: This class represents an fMRI experiment. :param TR: The repetition time. - :type TR: float + :type TR: float + :param P: The probabilities of each trialtype. - :type P: ndarray + :type P: ndarray + :param C: The contrast matrix. Example: np.array([[1,-1,0],[0,1,-1]]) - :type C: ndarray + :type C: ndarray + :param rho: AR(1) correlation coefficient - :type rho: float + :type rho: float + :param n_stimuli: The number of stimuli (or conditions) in the experiment. - :type n_stimuli: integer - :param n_trials: The number of trials in the experiment. Either specify n_trials **or** duration. - :type n_trials: integer - :param duration: The total duration (seconds) of the experiment. Either specify n_trials **or** duration. - :type duration: float + :type n_stimuli: integer + + :param n_trials: The number of trials in the experiment. + Either specify n_trials **or** duration. + :type n_trials: integer + + :param duration: The total duration (seconds) of the experiment. + Either specify n_trials **or** duration. + :type duration: float + :param resolution: the maximum resolution of design matrix - :type resolution: float + :type resolution: float + :param stim_duration: duration (seconds) of stimulus - :type stim_duration: float - :param t_pre: duration (seconds) of trial part before stimulus presentation (eg. fixation cross) - :type t_pre: float + :type stim_duration: float + + :param t_pre: duration (seconds) of trial part before stimulus presentation + (eg. fixation cross) + :type t_pre: float + :param t_post: duration (seconds) of trial part after stimulus presentation - :type t_post: float + :type t_post: float + :param maxrep: maximum number of repetitions - :type maxrep: integer or None + :type maxrep: integer or None + :param hardprob: can the probabilities differ from the nominal value? - :type hardprob: boolean + :type hardprob: boolean + :param confoundorder: The order to which confounding is controlled. - :type confoundorder: integer + :type confoundorder: integer + :param restnum: Number of trials between restblocks - :type restnum: integer + :type restnum: integer + :param restdur: duration (seconds) of the rest blocks - :type restdur: float - :param ITImodel: Which model to sample from. Possibilities: "fixed","uniform","exponential" - :type ITImodel: string + :type restdur: float + + :param ITImodel: Which model to sample from. + Possibilities: "fixed","uniform","exponential" + :type ITImodel: string + :param ITImin: The minimum ITI (required with "uniform" or "exponential") - :type ITImin: float + :type ITImin: float + :param ITImean: The mean ITI (required with "fixed" or "exponential") - :type ITImean: float + :type ITImean: float + :param ITImax: The max ITI (required with "uniform" or "exponential") - :type ITImax: float + :type ITImax: float """ def __init__( self, - TR, + TR: float, P, C, - rho, + rho: float, stim_duration, - n_stimuli, + n_stimuli: int, ITImodel=None, ITImin=None, ITImax=None, @@ -372,7 +417,7 @@ def __init__( restdur=0, t_pre=0, t_post=0, - n_trials=None, + n_trials: int | None = None, duration=None, resolution=0.1, FeMax=1, @@ -470,7 +515,9 @@ def countstim(self): TRIALdur = self.n_trials * self.trial_duration duration = ITIdur + TRIALdur if self.restnum > 0: - duration = duration + (np.floor(self.n_trials / self.restnum) * self.restdur) + duration = duration + ( + np.floor(self.n_trials / self.restnum) * self.restdur + ) self.duration = duration def CreateTsComp(self): @@ -515,7 +562,11 @@ def CreateLmComp(self): self.white = ( self.V2 - - self.V2 * t(self.S) * np.linalg.pinv(self.S * self.V2 * t(self.S)) * self.S * self.V2 + - self.V2 + * t(self.S) + * np.linalg.pinv(self.S * self.V2 * t(self.S)) + * self.S + * self.V2 ) return self @@ -552,7 +603,9 @@ def drift(s, deg=3): tmpt = np.array(2.0 * s / float(len(s) - 1) - 1) S[1] = tmpt for k in np.arange(2, deg): - S[k] = ((2.0 * k - 1.0) / k) * tmpt * S[k - 1] - ((k - 1) / float(k)) * S[k - 2] + S[k] = ((2.0 * k - 1.0) / k) * tmpt * S[k - 1] - ((k - 1) / float(k)) * S[ + k - 2 + ] return S @staticmethod @@ -567,51 +620,64 @@ class optimisation: """Represent the population of experimental designs for fMRI. :param experiment: The experimental setup of the fMRI experiment. - :type experiment: experiment + :type experiment: experiment + :param G: The size of the generation - :type G: integer + :type G: integer + :param R: with which rate are the orders generated from ['blocked','random','mseq'] - :type R: list + :type R: list + :param q: percentage of mutations - :type q: float + :type q: float + :param weights: weights attached to Fe, Fd, Ff, Fc - :type weights: list + :type weights: list + :param I: number of immigrants - :type I: integer + :type I: integer + :param preruncycles: number of prerun cycles (to find maximum Fe and Fd) - :type preruncycles: integer + :type preruncycles: integer + :param cycles: number of cycles - :type cycles: integer + :type cycles: integer + :param seed: seed - :type seed: integer + :type seed: integer + :param Aoptimality: optimises A-optimality if true, else D-optimality - :type Aoptimality: boolean + :type Aoptimality: boolean + :param convergence: after how many stable iterations is there convergence - :type convergence: integer + :type convergence: integer + :param folder: folder to save output - :type folder: string + :type folder: string + :param outdes: number of designs to be saved - :type outdes: integer - :param optimisation: The type of optimisation - 'GA' or 'random' - :type optimisation: string + :type outdes: integer + + :param optimisation: The type of optimisation - 'GA' or 'simulation' + :type optimisation: string """ def __init__( self, - experiment, - weights, - preruncycles, - cycles, - seed=None, - I=4, - G=20, - R=[0.4, 0.4, 0.2], - q=0.01, - Aoptimality=True, - folder=None, - outdes=3, - convergence=1000, - optimisation="GA", + experiment: experiment, + weights: list[float], + preruncycles: int, + cycles: int, + seed: int | None = None, + I: int = 4, + G: int = 20, + R: list[float] = [0.4, 0.4, 0.2], + q: float = 0.01, + Aoptimality: bool = True, + folder: str | Path | None = None, + outdes: int = 3, + convergence: int = 1000, + optimisation: str = "GA", ): self.exp = experiment @@ -676,7 +742,9 @@ def check_develop(self, design, weights=None): out = design.designmatrix() if out == False: return False - design.FCalc(weights, confoundorder=self.exp.confoundorder, Aoptimality=self.Aoptimality) + design.FCalc( + weights, confoundorder=self.exp.confoundorder, Aoptimality=self.Aoptimality + ) if np.isnan(design.F): return False @@ -818,12 +886,16 @@ def _crossover(self, weights, seed): np.random.seed(seed) CouplingRnd = np.random.choice(nparents, size=(npairs * 2), replace=False) CouplingRnd = [crossind[x] for x in CouplingRnd] - CouplingRnd = [[CouplingRnd[i], CouplingRnd[i + 1]] for i in np.arange(0, npairs * 2, 2)] + CouplingRnd = [ + [CouplingRnd[i], CouplingRnd[i + 1]] for i in np.arange(0, npairs * 2, 2) + ] count = 0 for couple in CouplingRnd: - baby1, baby2 = self.designs[couple[0]].crossover(self.designs[couple[1]], seed=seed) + baby1, baby2 = self.designs[couple[0]].crossover( + self.designs[couple[1]], seed=seed + ) for baby in [baby1, baby2]: baby = self.check_develop(baby, weights) if baby == False: @@ -845,8 +917,10 @@ def to_next_generation(self, weights=None, seed=1234, optimisation=None): :param weights: weights for efficiency calculation. :type weights: list of floats, summing to 1 + :param seed: The seed for random processes. :type seed: integer or None + :param optimisation: The type of optimisation - 'GA' or 'simulation' :type optimisation: string """ @@ -1018,7 +1092,8 @@ def download(self): ) onsubsets = [ - str(x) for x in np.array(design.onsets)[np.array(design.order) == stim] + str(x) + for x in np.array(design.onsets)[np.array(design.order) == stim] ] f = open(os.path.join(self.folder, onsetsfile), "w+") for line in onsubsets: @@ -1046,7 +1121,9 @@ def download(self): zf = zipfile.ZipFile(self.file, "w") for fpath in files: - zf.write(os.path.join(self.folder, fpath), os.path.join(zip_subdir, fpath)) + zf.write( + os.path.join(self.folder, fpath), os.path.join(zip_subdir, fpath) + ) zf.close() return self @@ -1057,7 +1134,9 @@ def pearsonr(signals, nstim): varcov = np.zeros([len(signals), len(signals)]) for sig1 in range(len(signals)): for sig2 in range(sig1, len(signals)): - cors = np.diag(np.corrcoef(t(signals[sig1]), t(signals[sig2]))[nstim:, :nstim]) + cors = np.diag( + np.corrcoef(t(signals[sig1]), t(signals[sig2]))[nstim:, :nstim] + ) varcov[sig1, sig2] = np.mean(cors) varcov[sig2, sig1] = np.mean(cors) return varcov diff --git a/neurodesign/generate.py b/neurodesign/generate.py index 5c587be..9826706 100644 --- a/neurodesign/generate.py +++ b/neurodesign/generate.py @@ -1,23 +1,37 @@ +from __future__ import annotations + import numpy as np import scipy import scipy.stats as stats -from . import msequence +from neurodesign import msequence -def order(nstim, ntrials, probabilities, ordertype, seed=1234): +def order( + nstim: int, + ntrials: int, + probabilities: list[float], + ordertype: str, + seed: int | None = 1234, +): """Generate an order of stimuli. :param nstim: The number of different stimuli (or conditions) - :type nstim: integer + :type nstim: integer + :param ntrials: The total number of trials - :type ntrials: integer + :type ntrials: integer + :param probabilities: The probabilities of each stimulus - :type probabilities: list - :param ordertype: Which model to sample from. Possibilities: "blocked", "random" or "msequence" - :type ordertype: string + :type probabilities: list + + :param ordertype: Which model to sample from. + Possibilities: "blocked", "random" or "msequence" + :type ordertype: string + :param seed: The seed with which the change point will be sampled. - :type seed: integer or None + :type seed: integer or None + :returns order: A list with the created order of stimuli """ if ordertype not in ["random", "blocked", "msequence"]: @@ -47,23 +61,42 @@ def order(nstim, ntrials, probabilities, ordertype, seed=1234): return order -def iti(ntrials, model, min=None, mean=None, max=None, lam=None, resolution=0.1, seed=1234): +def iti( + ntrials: int, + model: str, + min: float = None, + mean: float = None, + max: float = None, + lam=None, + resolution: float = 0.1, + seed: int | None = 1234, +): """Generate an order of stimuli. :param ntrials: The total number of trials - :type ntrials: integer - :param model: Which model to sample from. Possibilities: "fixed","uniform","exponential" - :type model: string + :type ntrials: integer + + :param model: Which model to sample from. + Possibilities: "fixed","uniform","exponential" + :type model: string + :param min: The minimum ITI (required with "uniform" or "exponential") - :type min: float + :type min: float + :param mean: The mean ITI (required with "fixed" or "exponential") - :type mean: float + :type mean: float + :param max: The max ITI (required with "uniform" or "exponential") - :type max: float + :type max: float + + :param lam: lambda + :param resolution: The resolution of the design: for rounding the ITI's - :type resolution: float + :type resolution: float + :param seed: The seed with which the change point will be sampled. - :type seed: integer or None + :type seed: integer or None + :returns iti: A list with the created ITI's """ if model == "fixed": @@ -123,7 +156,6 @@ def _compute_lambda(lower, upper, mean): raise ValueError( "Error when figuring out lambda for exponential distribution: can't compute lambda." ) - return o else: return opt.x[0] diff --git a/neurodesign/info.py b/neurodesign/info.py deleted file mode 100644 index 77ae82d..0000000 --- a/neurodesign/info.py +++ /dev/null @@ -1,9 +0,0 @@ -"""Base module variables.""" - -__version__ = "0.2.01" -__author__ = "Joke Durnez" -__license__ = "MIT" -__email__ = "joke.durnez@gmail.com" -__status__ = "Prototype" -__url__ = "https://www.neuropowertools.org" -__packagename__ = "neurodesign" diff --git a/neurodesign/msequence.py b/neurodesign/msequence.py index 9e99804..f1688fb 100644 --- a/neurodesign/msequence.py +++ b/neurodesign/msequence.py @@ -117,7 +117,9 @@ def Mseq(self, baseVal, powerVal, shift=None, whichSeq=None, userTaps=None): tmp = 0 for ind in range(len(weights)): tmp = self.qadd( - tmp, self.qmult(int(weights[ind]), int(register[ind]), baseVal), baseVal + tmp, + self.qmult(int(weights[ind]), int(register[ind]), baseVal), + baseVal, ) ms[i] = tmp else: diff --git a/neurodesign/report.py b/neurodesign/report.py index f65aa6c..a8b7179 100644 --- a/neurodesign/report.py +++ b/neurodesign/report.py @@ -31,7 +31,12 @@ def make_report(POP, outfile="NeuroDesign.pdf"): styles = getSampleStyleSheet() doc = SimpleDocTemplate( - outfile, pagesize=letter, rightMargin=40, leftMargin=40, topMargin=40, bottomMargin=18 + str(outfile), + pagesize=letter, + rightMargin=40, + leftMargin=40, + topMargin=40, + bottomMargin=18, ) Story = [] diff --git a/pyproject.toml b/pyproject.toml index 09a1578..91d4e1e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -53,11 +53,12 @@ doc = [ test = [ "coverage", "pytest>=6.0.0", - "pytest-cov" + "pytest-cov", + "nbmake" ] [tool.black] -line-length = 100 +line-length = 90 [tool.codespell] ignore-words = ".github/codespell_ignore_words.txt" @@ -74,6 +75,13 @@ source = "vcs" [tool.isort] combine_as_imports = true -line_length = 100 +line_length = 90 profile = "black" skip_gitignore = true + +[tool.pytest.ini_options] +addopts = "-ra --strict-config --strict-markers --doctest-modules --showlocals -s -vv --durations=0" +doctest_optionflags = "NORMALIZE_WHITESPACE ELLIPSIS" +junit_family = "xunit2" +minversion = "6.0" +xfail_strict = true diff --git a/tests/__init__.py b/tests/__init__.py new file mode 100644 index 0000000..ecda1bb --- /dev/null +++ b/tests/__init__.py @@ -0,0 +1 @@ +"""Required for pytest coverage.""" diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 0000000..f7d5ff8 --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,23 @@ +import pytest + +from neurodesign import experiment + + +@pytest.fixture +def exp(): + + return experiment( + TR=2, + n_trials=20, + P=[0.3, 0.3, 0.4], + C=[[1, -1, 0], [0, 1, -1]], + n_stimuli=3, + rho=0.3, + stim_duration=1, + t_pre=0.5, + t_post=2, + ITImodel="exponential", + ITImin=2, + ITImax=4, + ITImean=2.1, + ) diff --git a/tests/test_classes.py b/tests/test_classes.py new file mode 100644 index 0000000..b116437 --- /dev/null +++ b/tests/test_classes.py @@ -0,0 +1,54 @@ +import pytest + +from neurodesign import design, optimisation + + +def test_design_smoke(exp): + + des = design( + order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], + ITI=[2] * 20, + experiment=exp, + ) + des.designmatrix() + des.FCalc(weights=[0, 0.5, 0.25, 0.25]) + des.FdCalc() + des.FcCalc() + des.FfCalc() + des.FeCalc() + + des.mutation(0.3, seed=2000) + + +def test_design_cross_over_smoke(exp): + + des = design( + order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], + ITI=[2] * 20, + experiment=exp, + ) + + des2 = design( + order=[0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 1], + ITI=[2] * 20, + experiment=exp, + ) + + des.crossover(des2, seed=2000) + + +@pytest.mark.parametrize("optimisation_type", ["GA", "simulation"]) +def test_optimisation(exp, optimisation_type): + + pop = optimisation( + experiment=exp, + weights=[0, 0.5, 0.25, 0.25], + preruncycles=2, + cycles=2, + folder="./", + seed=100, + optimisation=optimisation_type, + ) + pop.optimise() + pop.download() + pop.evaluate() diff --git a/tests/test_generate.py b/tests/test_generate.py new file mode 100644 index 0000000..fcc7347 --- /dev/null +++ b/tests/test_generate.py @@ -0,0 +1,23 @@ +import pytest + +from neurodesign import generate + + +@pytest.mark.parametrize("model", ["uniform", "exponential"]) +def test_iti(model): + + generate.iti(ntrials=20, model=model, min=1, mean=2, max=4, seed=1234) + + generate.iti(ntrials=40, model=model, min=2, mean=3, max=8, resolution=0.1, seed=2134) + + +@pytest.mark.parametrize("ordertype", ["random", "blocked", "msequence"]) +def test_order(ordertype): + + generate.order( + nstim=4, + ntrials=100, + probabilities=[0.25, 0.25, 0.25, 0.25], + ordertype=ordertype, + seed=1234, + ) diff --git a/tests/test_report.py b/tests/test_report.py new file mode 100644 index 0000000..2cb95f7 --- /dev/null +++ b/tests/test_report.py @@ -0,0 +1,17 @@ +from neurodesign import optimisation, report + + +def test_report_smoke(exp, tmp_path): + + pop = optimisation( + experiment=exp, + weights=[0, 0.5, 0.25, 0.25], + preruncycles=2, + cycles=2, + folder="./", + seed=100, + ) + pop.optimise() + pop.download() + + report.make_report(pop, tmp_path / "test.pdf") diff --git a/tox.ini b/tox.ini index b1b190e..7b8185e 100644 --- a/tox.ini +++ b/tox.ini @@ -30,3 +30,18 @@ deps = {[style]deps} commands = pre-commit run --all-files --show-diff-on-failure flake8 + +; COMMANDS +; -------- +[testenv:test_notebook] +description = run jupyter notebook +extras = test +commands = + pytest --nbmake examples/comparison_neurodesign.ipynb {posargs:} + + +[testenv:tests] +description = run tests on latest version of all dependencies +extras = test +commands = + pytest --cov=neurodesign --cov-report=xml tests {posargs:}