-
-
Notifications
You must be signed in to change notification settings - Fork 437
/
Copy pathtests_ecg.py
368 lines (300 loc) · 11.7 KB
/
tests_ecg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# -*- coding: utf-8 -*-
import biosppy
import matplotlib.pyplot as plt
import numpy as np
import pytest
import neurokit2 as nk
def test_ecg_simulate():
ecg1 = nk.ecg_simulate(
duration=20, length=5000, method="simple", noise=0, random_state=0
)
assert len(ecg1) == 5000
ecg2 = nk.ecg_simulate(duration=20, length=5000, heart_rate=500, random_state=1)
# pd.DataFrame({"ECG1":ecg1, "ECG2": ecg2}).plot()
# pd.DataFrame({"ECG1":ecg1, "ECG2": ecg2}).hist()
assert len(nk.signal_findpeaks(ecg1, height_min=0.6)["Peaks"]) < len(
nk.signal_findpeaks(ecg2, height_min=0.6)["Peaks"]
)
ecg3 = nk.ecg_simulate(duration=10, length=5000, random_state=2)
# pd.DataFrame({"ECG1":ecg1, "ECG3": ecg3}).plot()
assert len(nk.signal_findpeaks(ecg2, height_min=0.6)["Peaks"]) > len(
nk.signal_findpeaks(ecg3, height_min=0.6)["Peaks"]
)
def test_ecg_clean():
sampling_rate = 1000
noise = 0.05
ecg = nk.ecg_simulate(sampling_rate=sampling_rate, noise=noise, random_state=3)
ecg_cleaned_nk = nk.ecg_clean(ecg, sampling_rate=sampling_rate, method="neurokit")
assert ecg.size == ecg_cleaned_nk.size
# Assert that highpass filter with .5 Hz lowcut was applied.
fft_raw = np.abs(np.fft.rfft(ecg))
fft_nk = np.abs(np.fft.rfft(ecg_cleaned_nk))
freqs = np.fft.rfftfreq(ecg.size, 1 / sampling_rate)
assert np.sum(fft_raw[freqs < 0.5]) > np.sum(fft_nk[freqs < 0.5])
# Comparison to biosppy
ecg_biosppy = nk.ecg_clean(ecg, sampling_rate=sampling_rate, method="biosppy")
assert np.allclose(ecg_biosppy.mean(), 0, atol=1e-6)
def test_ecg_peaks():
sampling_rate = 200
noise = 1
ecg = nk.ecg_simulate(
duration=120, sampling_rate=sampling_rate, noise=noise, random_state=42
)
ecg[3000:3600] = 0
# Test without request to correct artifacts.
signals, _ = nk.ecg_peaks(
ecg, sampling_rate=sampling_rate, method="neurokit", correct_artifacts=False
)
assert signals.shape == (24000, 1)
assert np.allclose(signals["ECG_R_Peaks"].values.sum(dtype=np.int64), 137, atol=1)
# Test with request to correct artifacts.
signals, info = nk.ecg_peaks(
ecg,
sampling_rate=sampling_rate,
correct_artifacts=True,
method="neurokit",
)
assert signals.shape == (24000, 1)
assert np.allclose(signals["ECG_R_Peaks"].values.sum(dtype=np.int64), 136, atol=1)
assert 17 in info["ECG_fixpeaks_longshort"]
def test_ecg_process():
sampling_rate = 1000
noise = 0.05
ecg = nk.ecg_simulate(sampling_rate=sampling_rate, noise=noise, random_state=4)
_ = nk.ecg_process(ecg, sampling_rate=sampling_rate, method="neurokit")
def test_ecg_plot():
ecg = nk.ecg_simulate(duration=60, heart_rate=70, noise=0.05, random_state=5)
ecg_summary, info = nk.ecg_process(ecg, sampling_rate=1000, method="neurokit")
# Plot data over seconds.
nk.ecg_plot(ecg_summary, info)
fig = plt.gcf()
assert len(fig.axes) == 3
assert fig.get_axes()[1].get_xlabel() == "Time (seconds)"
np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks())
plt.close(fig)
# Make sure it works with cropped data
nk.ecg_plot(ecg_summary[0:5000], info)
fig = plt.gcf()
assert fig.get_axes()[2].get_xlabel() == "Time (seconds)"
def test_ecg_findpeaks():
sampling_rate = 1000
ecg = nk.ecg_simulate(
duration=60,
sampling_rate=sampling_rate,
noise=0,
method="simple",
random_state=42,
)
ecg_cleaned = nk.ecg_clean(ecg, sampling_rate=sampling_rate, method="neurokit")
# Test neurokit methodwith show=True
info_nk = nk.ecg_findpeaks(ecg_cleaned, show=True)
assert info_nk["ECG_R_Peaks"].size == 69
# This will identify the latest figure.
fig = plt.gcf()
assert len(fig.axes) == 2
# Test pantompkins1985 method
info_pantom = nk.ecg_findpeaks(
nk.ecg_clean(ecg, method="pantompkins1985"), method="pantompkins1985"
)
assert info_pantom["ECG_R_Peaks"].size == 70
# Test hamilton2002 method
info_hamilton = nk.ecg_findpeaks(
nk.ecg_clean(ecg, method="hamilton2002"), method="hamilton2002"
)
assert info_hamilton["ECG_R_Peaks"].size == 69
# Test christov2004 method
info_christov = nk.ecg_findpeaks(ecg_cleaned, method="christov2004")
assert info_christov["ECG_R_Peaks"].size == 273
# Test gamboa2008 method
info_gamboa = nk.ecg_findpeaks(ecg_cleaned, method="gamboa2008")
assert info_gamboa["ECG_R_Peaks"].size == 69
# Test elgendi2010 method
info_elgendi = nk.ecg_findpeaks(
nk.ecg_clean(ecg, method="elgendi2010"), method="elgendi2010"
)
assert info_elgendi["ECG_R_Peaks"].size == 70
# Test engzeemod2012 method
info_engzeemod = nk.ecg_findpeaks(
nk.ecg_clean(ecg, method="engzeemod2012"), method="engzeemod2012"
)
assert info_engzeemod["ECG_R_Peaks"].size == 69
# Test kalidas2017 method
info_kalidas = nk.ecg_findpeaks(
nk.ecg_clean(ecg, method="kalidas2017"), method="kalidas2017"
)
assert np.allclose(info_kalidas["ECG_R_Peaks"].size, 68, atol=1)
# Test martinez2004 method
ecg = nk.ecg_simulate(
duration=60, sampling_rate=sampling_rate, noise=0, random_state=42
)
ecg_cleaned = nk.ecg_clean(ecg, sampling_rate=sampling_rate, method="neurokit")
info_martinez = nk.ecg_findpeaks(ecg_cleaned, method="martinez2004")
assert np.allclose(info_martinez["ECG_R_Peaks"].size, 69, atol=1)
def test_ecg_eventrelated():
ecg, _ = nk.ecg_process(nk.ecg_simulate(duration=20, random_state=6))
epochs = nk.epochs_create(
ecg, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9
)
ecg_eventrelated = nk.ecg_eventrelated(epochs)
# Test rate features
assert np.alltrue(
np.array(ecg_eventrelated["ECG_Rate_Min"])
< np.array(ecg_eventrelated["ECG_Rate_Mean"])
)
assert np.alltrue(
np.array(ecg_eventrelated["ECG_Rate_Mean"])
< np.array(ecg_eventrelated["ECG_Rate_Max"])
)
assert len(ecg_eventrelated["Label"]) == 3
# Test warning on missing columns
with pytest.warns(
nk.misc.NeuroKitWarning, match=r".*does not have an `ECG_Phase_Artrial`.*"
):
first_epoch_key = list(epochs.keys())[0]
first_epoch_copy = epochs[first_epoch_key].copy()
del first_epoch_copy["ECG_Phase_Atrial"]
nk.ecg_eventrelated({**epochs, first_epoch_key: first_epoch_copy})
with pytest.warns(
nk.misc.NeuroKitWarning, match=r".*does not have an.*`ECG_Phase_Ventricular`"
):
first_epoch_key = list(epochs.keys())[0]
first_epoch_copy = epochs[first_epoch_key].copy()
del first_epoch_copy["ECG_Phase_Ventricular"]
nk.ecg_eventrelated({**epochs, first_epoch_key: first_epoch_copy})
with pytest.warns(
nk.misc.NeuroKitWarning, match=r".*does not have an `ECG_Quality`.*"
):
first_epoch_key = list(epochs.keys())[0]
first_epoch_copy = epochs[first_epoch_key].copy()
del first_epoch_copy["ECG_Quality"]
nk.ecg_eventrelated({**epochs, first_epoch_key: first_epoch_copy})
with pytest.warns(
nk.misc.NeuroKitWarning, match=r".*does not have an `ECG_Rate`.*"
):
first_epoch_key = list(epochs.keys())[0]
first_epoch_copy = epochs[first_epoch_key].copy()
del first_epoch_copy["ECG_Rate"]
nk.ecg_eventrelated({**epochs, first_epoch_key: first_epoch_copy})
# Test warning on long epochs (eventrelated_utils)
with pytest.warns(
nk.misc.NeuroKitWarning, match=r".*duration of your epochs seems.*"
):
first_epoch_key = list(epochs.keys())[0]
first_epoch_copy = epochs[first_epoch_key].copy()
first_epoch_copy.index = range(len(first_epoch_copy))
nk.ecg_eventrelated({**epochs, first_epoch_key: first_epoch_copy})
def test_ecg_delineate():
sampling_rate = 1000
# test with simulated signals
ecg = nk.ecg_simulate(duration=20, sampling_rate=sampling_rate, random_state=42)
_, rpeaks = nk.ecg_peaks(ecg, sampling_rate=sampling_rate)
number_rpeaks = len(rpeaks["ECG_R_Peaks"])
# Method 1: derivative
_, waves_derivative = nk.ecg_delineate(
ecg, rpeaks, sampling_rate=sampling_rate, method="peaks"
)
assert len(waves_derivative["ECG_P_Peaks"]) == number_rpeaks
assert len(waves_derivative["ECG_Q_Peaks"]) == number_rpeaks
assert len(waves_derivative["ECG_S_Peaks"]) == number_rpeaks
assert len(waves_derivative["ECG_T_Peaks"]) == number_rpeaks
assert len(waves_derivative["ECG_P_Onsets"]) == number_rpeaks
assert len(waves_derivative["ECG_T_Offsets"]) == number_rpeaks
# Method 2: CWT
_, waves_cwt = nk.ecg_delineate(
ecg, rpeaks, sampling_rate=sampling_rate, method="cwt"
)
assert np.allclose(len(waves_cwt["ECG_P_Peaks"]), 22, atol=1)
assert np.allclose(len(waves_cwt["ECG_T_Peaks"]), 22, atol=1)
assert np.allclose(len(waves_cwt["ECG_R_Onsets"]), 23, atol=1)
assert np.allclose(len(waves_cwt["ECG_R_Offsets"]), 23, atol=1)
assert np.allclose(len(waves_cwt["ECG_P_Onsets"]), 22, atol=1)
assert np.allclose(len(waves_cwt["ECG_P_Offsets"]), 22, atol=1)
assert np.allclose(len(waves_cwt["ECG_T_Onsets"]), 22, atol=1)
assert np.allclose(len(waves_cwt["ECG_T_Offsets"]), 22, atol=1)
def test_ecg_invert():
sampling_rate = 500
noise = 0.05
ecg = nk.ecg_simulate(sampling_rate=sampling_rate, noise=noise, random_state=3)
ecg_inverted = ecg * -1 + 2 * np.nanmean(ecg)
ecg_fixed, _ = nk.ecg_invert(ecg_inverted)
assert np.allclose((ecg - ecg_fixed).mean(), 0, atol=1e-6)
def test_ecg_intervalrelated():
data = nk.data("bio_resting_5min_100hz")
df, _ = nk.ecg_process(data["ECG"], sampling_rate=100)
columns = [
"ECG_Rate_Mean",
"HRV_RMSSD",
"HRV_MeanNN",
"HRV_SDNN",
"HRV_SDSD",
"HRV_CVNN",
"HRV_CVSD",
"HRV_MedianNN",
"HRV_MadNN",
"HRV_MCVNN",
"HRV_IQRNN",
"HRV_pNN50",
"HRV_pNN20",
"HRV_TINN",
"HRV_HTI",
"HRV_ULF",
"HRV_VLF",
"HRV_LF",
"HRV_HF",
"HRV_VHF",
"HRV_LFHF",
"HRV_LFn",
"HRV_HFn",
"HRV_LnHF",
"HRV_SD1",
"HRV_SD2",
"HRV_SD1SD2",
"HRV_S",
"HRV_CSI",
"HRV_CVI",
"HRV_CSI_Modified",
"HRV_PIP",
"HRV_IALS",
"HRV_PSS",
"HRV_PAS",
"HRV_GI",
"HRV_SI",
"HRV_AI",
"HRV_PI",
"HRV_C1d",
"HRV_C1a",
"HRV_SD1d",
"HRV_SD1a",
"HRV_C2d",
"HRV_C2a",
"HRV_SD2d",
"HRV_SD2a",
"HRV_Cd",
"HRV_Ca",
"HRV_SDNNd",
"HRV_SDNNa",
"HRV_DFA_alpha1",
"HRV_DFA_alpha2",
"HRV_ApEn",
"HRV_SampEn",
"HRV_MSE",
"HRV_CMSE",
"HRV_RCMSE",
"HRV_CD",
]
# Test with signal dataframe
features_df = nk.ecg_intervalrelated(df, sampling_rate=100)
# https://github.com/neuropsychology/NeuroKit/issues/304
assert all(
features_df == nk.ecg_analyze(df, sampling_rate=100, method="interval-related")
)
assert (elem in columns for elem in np.array(features_df.columns.values, dtype=str))
assert features_df.shape[0] == 1 # Number of rows
# Test with dict
columns.append("Label")
epochs = nk.epochs_create(df, events=[0, 15000], sampling_rate=100, epochs_end=150)
features_dict = nk.ecg_intervalrelated(epochs, sampling_rate=100)
assert (
elem in columns for elem in np.array(features_dict.columns.values, dtype=str)
)
assert features_dict.shape[0] == 2 # Number of rows