-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
331 lines (260 loc) · 12.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# %%
# -*- coding: utf-8 -*-
"""
@author: Amin
"""
# %%
from jax import random
import jax.numpy as np
import visualizations
import models
import inference
import jax.numpy as jnp
import jax
from numpyro import optim
import evaluation
import numpyro
import loader
import utils
import argparse
import yaml
import os
# %%
def get_args():
'''Parsing the arguments when this file is called from console
'''
parser = argparse.ArgumentParser(description='Runner for CCM',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', '-c', metavar='Configuration',help='Configuration file address',default='/')
parser.add_argument('--output', '-o', metavar='Output',help='Folder to save the output and results',default='/')
return parser.parse_args()
# %%
if __name__ == '__main__':
args = get_args()
with open(args.config, 'r') as stream: pm = yaml.safe_load(stream)
dataset_params, model_params, variational_params, visualization_params, comparison_params = pm['dataset_params'], pm['model_params'], pm['variational_params'], pm['visualization_params'], pm['comparison_params']
seed = pm['model_params']['seed']
file = args.output
if not os.path.exists(file): os.makedirs(file)
# %%
dataloader = eval('loader.'+dataset_params['name'])(params=dataset_params)
x,y = dataloader.load_data()
mu_empirical = y.mean(0)
# %%
gp_kernel = utils.get_kernel(model_params['gp_kernel'],model_params['gp_kernel_diag'])
N = y.shape[2]
print('Trials, Conditions, Neurons: ', y.shape)
gp = models.GaussianProcess(kernel=gp_kernel,N=N)
prec = True if 'Precision' in model_params['likelihood'] else False
empirical = jnp.cov((y - y.mean(0)[None]).reshape(y.shape[0]*y.shape[1],y.shape[2]).T)
if prec: empirical = jnp.linalg.inv(empirical)
wp_kernel = utils.get_kernel(model_params['wp_kernel'],model_params['wp_kernel_diag'])
P = model_params['P'] if 'P' in model_params.keys() else model_params['P_scale']*N
optimize_L = True if 'optimize_L' in model_params.keys() and model_params['optimize_L'] else False
wp_sample_diag = model_params['wp_sample_diag'] if 'wp_sample_diag' in model_params else 1e0
# TODO: Wishart vs. WishartLRD should be a parameter
likelihood = eval('models.'+model_params['likelihood'])(N)
if model_params['likelihood'] == 'PoissonConditionalLikelihood':
# Fix this, for real data there's no dataloader.V
V = dataloader.V
if model_params['likelihood'] == 'NormalConditionalLikelihood':
V = empirical+wp_sample_diag*jnp.eye(N)
wp = eval('models.'+model_params['prior'])(
kernel=wp_kernel,P=P,
V=V, optimize_L=optimize_L,
diag_scale=wp_sample_diag
)
if model_params['likelihood'] == 'PoissonConditionalLikelihood':
likelihood.initialize_rate(y)
joint = models.JointGaussianWishartProcess(gp,wp,likelihood)
if 'init_gt' in model_params and model_params['init_gt']:
init = {
'G':dataloader.mu.T[:,None],
'F':dataloader.F
}
else:
if model_params['likelihood'] == 'PoissonConditionalLikelihood':
init_G = likelihood.gain_inverse_fn(y.mean(0).T[:,None])-likelihood.rate[:,None,None]
init = {
'G':init_G,
'g':init_G.transpose(1,2,0).repeat(y.shape[0],0),
}
if model_params['likelihood'] == 'NormalConditionalLikelihood':
init = {
'G':y.mean(0).T[:,None]
}
# %%
varfam = eval('inference.'+variational_params['guide'])(
joint.model,init=init
)
optimizer = eval('optim.'+variational_params['optimizer']['type'])(
variational_params['optimizer']['step_size']
)
key = jax.random.PRNGKey(seed)
if pm['load']:
varfam.load(file+'varfam.npy')
else:
varfam.infer(
optimizer,x.squeeze(),y,
n_iter=variational_params['n_iter'],key=key,
num_particles=variational_params['num_particles']
)
joint.update_params(varfam.posterior)
varfam.save(file+'varfam')
x_test, y_test = dataloader.load_test_data()
posterior = models.NormalGaussianWishartPosterior(joint,varfam,x)
if model_params['likelihood'] == 'PoissonConditionalLikelihood':
with numpyro.handlers.seed(rng_seed=seed):
mu_hat = posterior.mean_stat(lambda x: x, x)
sigma_hat = posterior.mean_stat(lambda x: jnp.einsum('cd,ck->cdk',x-mu_hat,x-mu_hat), x)
if len(x_test) > 0:
mu_test_hat = posterior.mean_stat(lambda x: x, x_test)
sigma_test_hat = posterior.mean_stat(lambda x: jnp.einsum('cd,ck->cdk',x-mu_test_hat,x-mu_test_hat), x_test)
if model_params['likelihood'] == 'NormalConditionalLikelihood':
with numpyro.handlers.seed(rng_seed=seed):
mu_hat, sigma_hat, F_hat = posterior.sample(x)
if len(x_test) > 0:
mu_test_hat, sigma_test_hat, F_test_hat = posterior.sample(x_test)
# %% Visualization
if 'visualize_pc' in visualization_params:
if hasattr(dataloader,'mu') and dataloader.mu is not None:
visualizations.visualize_pc(
dataloader.mu[:,None],dataloader.sigma,
pc=y.reshape(y.shape[0]*y.shape[1],-1),
save=True,file=file+'true'
)
if 'plot_tuning' in visualization_params:
if hasattr(dataloader,'mu') and dataloader.mu is not None:
visualizations.plot_tuning(
x, dataloader.mu, titlestr='Tuning',
save=True,file=file+'tuning'
)
if 'plot_loss' in visualization_params:
visualizations.plot_loss(
[varfam.losses],xlabel='Iteration',ylabel='ELBO',
titlestr='Training Loss',colors=['k'],
save=True,file=file+'losses'
)
if 'visualize_pc' in visualization_params:
visualizations.visualize_pc(
mu_hat[:,None],sigma_hat,
pc=y.reshape(y.shape[0]*y.shape[1],-1),
save=True,file=file+'inferred'
)
if 'plot_box' in visualization_params:
compared = evaluation.compare(y,prec=prec,params=comparison_params)
compared['grand-empirical'] = jnp.repeat(empirical[:,:,None],y.shape[1],2)
compared['wishart'] = sigma_hat.transpose(1,2,0)
if hasattr(dataloader,'sigma') and dataloader.sigma is not None:
performance = evaluation.evaluate(compared,dataloader.sigma.transpose(1,2,0))
visualizations.plot_box(
performance,titlestr='Difference Operator Norm',
save=True,file=file+'cov_comparison'
)
jnp.save(file+'performance',performance)
if prec:
performance_cov = evaluation.evaluate(compared,dataloader.sigma.transpose(1,2,0),prec=prec)
jnp.save(file+'performance_prec_cov',performance_cov)
performance_fro = evaluation.evaluate(compared,dataloader.sigma.transpose(1,2,0),ord='fro')
jnp.save(file+'performance_fro',performance_fro)
mse = lambda x,y: jnp.sqrt(((x-y)**2).sum(-1))
if hasattr(dataloader,'mu') and dataloader.mu is not None:
performance_mean = {}
performance_mean['empirical'] = mse(mu_empirical,dataloader.mu)
performance_mean['wishart'] = mse(mu_hat,dataloader.mu)
visualizations.plot_box(
performance_mean,titlestr='Mean MSE',
save=True,file=file+'mean_comparison'
)
jnp.save(file+'performance_mean',performance_mean)
sigma_test_empirical = evaluation.compare(y_test['x'],prec=prec)['empirical']
performance_test = evaluation.evaluate(compared,sigma_test_empirical)
visualizations.plot_box(
performance_test,titlestr='Difference Operator Norm (Test)',
save=True,file=file+'cov_comparison_test'
)
jnp.save(file+'performance_test',performance_test)
if 'plot_box' in visualization_params:
# posterior predictive likelihood
lpp = {}
if model_params['likelihood'] == 'PoissonConditionalLikelihood':
with numpyro.handlers.seed(rng_seed=seed):
mu_hat_g, sigma_hat_g, _ = posterior.mode(x)
with numpyro.handlers.seed(rng_seed=seed):
lpp['wishart'] = likelihood.log_prob(y_test['x'],mu_hat_g,sigma_hat_g).flatten()
lpp['train'] = dataloader.likelihood.log_prob(y,dataloader.mu_g,dataloader.sigma_g).flatten()
lpp['true'] = dataloader.likelihood.log_prob(y_test['x'],dataloader.mu_g,dataloader.sigma_g).flatten()
if len(x_test) > 0:
with numpyro.handlers.seed(rng_seed=seed):
mu_test_hat_g, sigma_test_hat_g, _ = posterior.mode(x_test)
lpp['wishart ho'] = likelihood.log_prob(y_test['x_test'], mu_test_hat_g, sigma_test_hat_g).flatten()
if model_params['likelihood'] == 'NormalConditionalLikelihood':
for key in compared.keys():
lpp[key] = likelihood.log_prob(y_test['x'],mu_empirical,compared[key].transpose(2,0,1)).flatten()
if len(x_test) > 0:
lpp['wishart ho'] = likelihood.log_prob(y_test['x_test'], mu_test_hat, sigma_test_hat).flatten()
if hasattr(dataloader,'mu') and dataloader.mu is not None:
try: lpp['train'] = dataloader.likelihood.log_prob(y,dataloader.mu,dataloader.sigma).flatten()
except: pass
try: lpp['true'] = dataloader.likelihood.log_prob(y_test['x'],dataloader.mu,dataloader.sigma).flatten()
except: pass
visualizations.plot_box(
lpp,titlestr='Log Posterior Predictive',
save=True,file=file+'lpp'
)
jnp.save(file+'lpp',lpp)
if 'visualize_qda' in visualization_params:
# QDA Analysis
if model_params['likelihood'] == 'NormalConditionalLikelihood':
lpp = {}
mu_empirical = y.mean(0)
correct = {}
for c in range(y_test['x'].shape[1]):
for key in compared.keys():
lpp[key] = likelihood.log_prob(
y_test['x'][:,c][:,None],
mu_empirical,compared[key].transpose(2,0,1)
)
lpp['true'] = likelihood.log_prob(y_test['x'][:,c][:,None],dataloader.mu,dataloader.sigma)
for key in lpp.keys():
if key not in correct.keys(): correct[key] = 0
correct[key] += (lpp[key].argmax(1) == c).sum()
jnp.save(file+'correct',correct)
if 'visualize_covariances' in visualization_params:
for k in compared.keys():
visualizations.visualize_covariances(
compared[k].transpose(2,0,1)[:,None],
titlestr=k,save=True,file=file+'covariance_image_'+k
)
if hasattr(dataloader,'sigma') and dataloader.sigma is not None:
visualizations.visualize_covariances(
dataloader.sigma[:,None],
titlestr='true',save=True,file=file+'covariance_image_true'
)
if 'visualize_pc' in visualization_params and 'x_test' in y_test.keys():
try:
with numpyro.handlers.seed(rng_seed=seed):
if len(x_test) > 0:
for i in range(2):
mu_test_hat, sigma_test_hat, F_test_hat = posterior.sample(x_test)
visualizations.visualize_pc(
mu_test_hat[:,None],sigma_test_hat,
pc=y_test['x_test'].reshape(y_test['x_test'].shape[0]*y_test['x_test'].shape[1],-1),
save=True,file=file+'test_inferred_'+str(i)
)
visualizations.visualize_pc(
mu_test_hat[:,None],sigma_test_hat,
pc=y.reshape(y.shape[0]*y.shape[1],-1),
save=True,file=file+'test_inferred_train_data_'+str(i)
)
except:
pass
if hasattr(dataloader,'mu_test') and dataloader.mu_test is not None:
try:
if len(x_test) > 0:
visualizations.visualize_pc(
dataloader.mu_test[:,None],dataloader.sigma_test,
pc=y_test['x_test'].reshape(y_test['x_test'].shape[0]*y_test['x_test'].shape[1],-1),
save=True,file=file+'test_true'
)
except:
pass