-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
210 lines (167 loc) · 7.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# %%
# -*- coding: utf-8 -*-
"""
@author: Amin
"""
import jax
from functools import reduce
import jax.numpy as jnp
import numpy as np
from scipy.linalg import block_diag
from scipy.stats import rankdata
from sklearn.metrics import pairwise_distances
# %%
def get_kernel(params,diag):
'''Returns the full kernel of multi-dimensional condition spaces
'''
if len(params) > 1:
return lambda x,y: diag*jnp.all(x==y)+reduce(
lambda a,b: a*b, [
_get_kernel(params[i]['type'],params[i])(x[i],y[i]) for i in range(len(params))
])
else:
return lambda x,y: diag*(x==y)+_get_kernel(params[0]['type'],params[0])(x,y)
def _get_kernel(kernel,params):
'''Private function, returns the kernel corresponding to a single dimension
'''
if kernel == 'periodic':
return lambda x,y: params['scale']*jnp.exp(-2*(jnp.sin(jnp.pi*jnp.abs(x-y)/params['normalizer'])**2)/(params['sigma']**2))
if kernel == 'RBF':
return lambda x,y: params['scale']*jnp.exp(-(jnp.linalg.norm((x-y)/params['normalizer'])**2)/(2*params['sigma']**2))
# %%
def split_data_cv(data,props,seeds):
# props: train, validation, test
# seeds: test, validation
# data: y (possibly mu, sigma, F, mu_g, sigma_g)
assert 'train' in props.keys() and 'test' in props.keys() and 'validation' in props.keys()
assert props['train'] + props['test'] + props['validation'] == 1
assert 'test' in seeds.keys() and 'validation' in seeds.keys()
assert 'y' in data.keys()
N,M,D = data['y'].shape
trial_indices = jax.random.permutation(
jax.random.PRNGKey(seeds['test']),
np.arange(N)
)
test_trials = trial_indices[-int(props['test']*N):]
train_trials = jax.random.choice(
jax.random.PRNGKey(seeds['validation']),
shape=(int(N*props['train']),),
a=trial_indices[:-int(props['test']*N)],
replace=False
).sort()
validation_trials = jnp.setdiff1d(trial_indices[:-int(props['test']*N)],train_trials).tolist()
out = {
'y_train': data['y'][train_trials,...],
'y_test': data['y'][test_trials,...],
'y_validation': data['y'][validation_trials,...]
}
return out
# %%
def split_data(
x,y,train_trial_prop,train_condition_prop,seed,
mu=None,sigma=None,F=None,mu_g=None,sigma_g=None
):
N,M,D = y.shape
train_conditions = jax.random.choice(
jax.random.PRNGKey(seed),
shape=(int(train_condition_prop*M),),
a=np.arange(M),
replace=False
).sort()
train_trials = jax.random.choice(
jax.random.PRNGKey(seed),
shape=(int(N*train_trial_prop),),
a=np.arange(N),
replace=False
).sort()
test_conditions = jnp.setdiff1d(np.arange(M),train_conditions).tolist()
test_trials = jnp.setdiff1d(np.arange(N),train_trials).tolist()
y_test = {
'x':y[test_trials,:,:][:,train_conditions],
'x_test':y[:,test_conditions]
}
x_train = x[train_conditions,:]
y_train = y[train_trials,:,:][:,train_conditions]
x_test = x[test_conditions,:]
if mu is not None: mu_test,mu_train = mu[test_conditions,:],mu[train_conditions,:]
else: mu_test,mu_train = None,None
if mu_g is not None: mu_g_test,mu_g_train = mu_g[test_conditions,:],mu_g[train_conditions,:]
else: mu_g_test,mu_g_train = None,None
if sigma is not None: sigma_test,sigma_train = sigma[test_conditions,:,:],sigma[train_conditions,:,:]
else: sigma_test,sigma_train = None,None
if sigma_g is not None: sigma_g_test,sigma_g_train = sigma_g[test_conditions,:,:],sigma_g[train_conditions,:,:]
else: sigma_g_test,sigma_g_train = None,None
if F is not None: F_test,F_train = F[:,:,test_conditions],F[:,:,train_conditions]
else: F_test,F_train = None,None
return x_train,y_train,mu_train,sigma_train,x_test,y_test,mu_test,sigma_test,F_train,F_test,mu_g_train,mu_g_test,sigma_g_train,sigma_g_test
# %%
def create_adjacency(x):
idx = rankdata(x, method='dense',axis=0)-1
dist = pairwise_distances(idx,metric='l1')
dist[dist != 1] = 0
return dist
# %%
class CovarianceModel:
@staticmethod
def low_rank(N,K,seed,g=1):
'''if N==K returns dense psd matrix
'''
key = jax.random.PRNGKey(seed)
U = np.sqrt(g)*jax.random.normal(key,shape=(N,K))/K
return [email protected]
# %%
@staticmethod
def clustered(
N,C,seed,C_std=.2,
clusters_mean=1.,clusters_stds=.1,clusters_prob=1,
external_mean=.1,external_stds=.1,external_prob=.5
):
key = jax.random.PRNGKey(seed)
bdiag = lambda c,v : block_diag(
*[jnp.ones((c[i],c[i]))*v[i] for i in range(len(c))
])
csz = jnp.round((C_std*N/C)*jax.random.normal(key,shape=(C,))+N/C).astype(int)
csz = csz.at[-1].set(N-csz[:-1].sum())
mask = 1-bdiag(csz,np.ones(C))
J_prob = bdiag(csz,clusters_prob+jnp.zeros((C))) + bdiag([csz.sum()],[external_prob])*mask
J_mean = bdiag(csz,clusters_mean*csz.mean()/csz) + bdiag([csz.sum()],[external_mean])*mask
J_stds = bdiag(csz,clusters_stds+jnp.zeros((C))) + bdiag([csz.sum()],[external_stds])*mask
J = jax.random.bernoulli(key,shape=J_prob.shape,p=J_prob)*(jax.random.normal(key,shape=(N,N))*J_stds+J_mean)
W = np.tril(J) + np.triu(J.T, 1)
return W
@staticmethod
def multi_region(
N,C,seed,C_std=.2,diag=1,g=1,
):
key = jax.random.PRNGKey(seed)
coarse = jax.random.normal(key,shape=(C,C)) + diag*jnp.eye(C)
csz = jnp.round((C_std*N/C)*jax.random.normal(key,shape=(C,))+N/C).astype(int)
csz = csz.at[-1].set(N-csz[:-1].sum())
J = np.hstack(
[np.vstack(
[coarse[i,j]+jax.random.normal(key,shape=(csz[i],csz[j])) for i in range(C)]
) for j in range(C)]
)
W = np.tril(J) + np.triu(J.T, 1)
return g*W
@staticmethod
def exp_decay_eig(N,seed):
key = jax.random.PRNGKey(seed)
U = jax.random.orthogonal(key,N)
Lambda = jnp.diag(jnp.logspace(0,-5,N))
return U@[email protected]
# %%
def get_scale_matrix(params):
if params['scale_type'] == 'low_rank':
return params['epsilon']*(CovarianceModel.low_rank(params['N'],params['rank'],seed=params['seed'],g=1e0)+\
1e-1*params['epsilon']*jnp.eye(params['N']))
if params['scale_type'] == 'multi_region':
return params['epsilon']*(CovarianceModel.multi_region(
params['N'],C=params['C'],seed=params['seed'],g=1e0
) + 1e0*jnp.eye(params['N']))
if params['scale_type'] == 'diag':
return params['epsilon']*jnp.eye(params['N'])
if params['scale_type'] == 'exp_decay_eig':
return params['epsilon']*CovarianceModel.exp_decay_eig(
params['N'],seed=params['seed']
)