-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathML_research.py
303 lines (275 loc) · 10.8 KB
/
ML_research.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import numpy as np
import pandas as pd
from pandas.plotting import autocorrelation_plot
from statsmodels.tsa.arima_model import ARIMA
from keras.models import Sequential
from keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler, normalize
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import mean_squared_error
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import (AdaBoostRegressor, BaggingRegressor,
ExtraTreesRegressor, GradientBoostingRegressor,
RandomForestRegressor)
import tensorflow as tf
from tensorflow.contrib import rnn
import matplotlib.pyplot as plt
file = 'history/AUD_JPY_D.csv'
folder = 'history/'
def walk_folder(folder):
all_files = list()
for files in os.walk(folder):
for f in files[2]:
f = os.path.join(folder, f)
all_files.append(f)
return all_files
# TODO: test this some more, it works with Keras and sklearn; but had trouble with TF.
def split_data(X, y, n, split, o):
m = int(n * split)
X_train, X_test = X[0:m], X[m:n-o]
y_train, y_test = y[o:m+o], y[m+o:n]
return X_train, X_test, y_train, y_test
def tf_nn_research(file, epochs=10, split=0.6, o=1):
# import data and clean it for processing
df = pd.read_csv(file)
df = df[['Close', 'Open','High', 'Low']]
n = df.shape[0]
p = df.shape[1]
data = df.values
# Training and test data; split_data doesn't work too well with TF atm
train_start = 0
train_end = int(0.6*n)
test_start = train_end + 1
test_end = n
data_train = data[np.arange(train_start, train_end), :]
data_test = data[np.arange(test_start, test_end), :]
# Scale data
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit(data_train)
data_train = scaler.transform(data_train)
data_test = scaler.transform(data_test)
# Build X and y
X_train = data_train[:, 1:]
y_train = data_train[:, 0]
X_test = data_test[:, 1:]
y_test = data_test[:, 0]
# length of training data
m = X_train.shape[1]
# neurons in each layer
neurons_1 = 1024
neurons_2 = 512
neurons_3 = 256
neurons_4 = 128
# session
sess = tf.InteractiveSession()
# Placeholders
X = tf.placeholder(dtype=tf.float32, shape=[None, m])
Y = tf.placeholder(dtype=tf.float32, shape=[None])
# initializers
sigma = 1
W = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=sigma)
b = tf.zeros_initializer()
# hidden weights
W_hidden_1 = tf.Variable(W([m, neurons_1]))
b_hidden_1 = tf.Variable(b([neurons_1]))
W_hidden_2 = tf.Variable(W([neurons_1, neurons_2]))
b_hidden_2 = tf.Variable(b([neurons_2]))
W_hidden_3 = tf.Variable(W([neurons_2, neurons_3]))
b_hidden_3 = tf.Variable(b([neurons_3]))
W_hidden_4 = tf.Variable(W([neurons_3, neurons_4]))
b_hidden_4 = tf.Variable(b([neurons_4]))
# output weights
W_out = tf.Variable(W([neurons_4, 1]))
b_out = tf.Variable(b([1]))
# hidden layers
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), b_hidden_1))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), b_hidden_2))
hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), b_hidden_3))
hidden_4 = tf.nn.relu(tf.add(tf.matmul(hidden_3, W_hidden_4), b_hidden_4))
# transpose the output layer
out = tf.transpose(tf.add(tf.matmul(hidden_4, W_out), b_out))
# cost function
mse = tf.reduce_mean(tf.squared_difference(out, Y))
# optimizer
opt = tf.train.AdamOptimizer().minimize(mse)
# init
sess.run(tf.global_variables_initializer())
# start plot
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111)
line1, = ax1.plot(y_test)
line2, = ax1.plot(y_test * 0.5)
plt.show()
# fit neural net
batch_size = 1
mse_train = []
mse_test = []
# run the network
for e in range(epochs):
# shuffle training data
shuffle_indices = np.random.permutation(np.arange(len(y_train)))
X_train = X_train[shuffle_indices]
y_train = y_train[shuffle_indices]
# Minibatch training
for i in range(0, len(y_train) // batch_size):
start = i * batch_size
batch_x = X_train[start:start + batch_size]
batch_y = y_train[start:start + batch_size]
# run optimizer with batch
sess.run(opt, feed_dict={X: batch_x, Y: batch_y})
# show progress
if np.mod(i, 50) == 0:
# MSE train and test
mse_train.append(sess.run(mse, feed_dict={X: X_train, Y: y_train}))
mse_test.append(sess.run(mse, feed_dict={X: X_test, Y: y_test}))
print('MSE Train: ', mse_train[-1])
print('MSE Test: ', mse_test[-1])
# prediction
pred = sess.run(out, feed_dict={X: X_test})
line2.set_ydata(pred)
plt.title('Epoch ' + str(e) + ', Batch ' + str(i))
plt.pause(0.10)
plt.savefig('graphs/%s_%s.png' %(str(e), str(i)))
# Xcols=20 returns better results than Xcols=1, with o=5
# Xcols=20 and o=1 returns 90-95% accuracy for every model
def ensemble_research(file, split=0.6, o=5, Xcols=1):
"""Xcols == 1 or 20; 1 for 'Open' or 20 for all input values"""
# import, split, and prepare data
df = pd.read_csv(file)
n = len(df)
if Xcols == 1:
y = df['Close'].values.reshape(n, 1)
X = df['Open'].values.reshape(n, 1)
X_train, X_test, y_train, y_test = split_data(X, y, n, split, o)
elif Xcols == 20:
y = df['Close'].values
a = df['Close'].mean()
df.fillna(a, inplace=True)
for col in df.columns:
if 'Unnamed' in col:
df.drop(col, axis=1, inplace=True)
df.drop('Close', axis=1, inplace=True)
X = df[df.columns.tolist()].values
X_train, X_test, y_train, y_test = split_data(X, y, n, split, o)
# instantiate the models to be explored
models = [AdaBoostRegressor(),
BaggingRegressor(),
DecisionTreeRegressor(),
ExtraTreesRegressor(),
GradientBoostingRegressor(),
RandomForestRegressor()]
# set and run models
scores = list()
for model in models:
model.fit(X_train, y_train)
yhat = model.predict(X_test)
score = model.score(X_test, y_test)
scores.append(score)
plt.plot(yhat, label='predictions')
plt.plot(y_test, label='real data')
plt.title(str(score))
plt.legend()
plt.show()
# multivariate LSTM in Keras (OHL, plus technical indicators; 20 columns in total)
def LSTMulti_research(file, o=5, split=0.6, show_loss=False):
# import and clean the dataframe as needed, filling in any missing data
df = pd.read_csv(file)
n = len(df)
y = df['Close'].values
a = df['Close'].mean()
df.fillna(a, inplace=True)
for col in df.columns:
if "Unnamed" in col:
df.drop(col, axis=1, inplace=True)
df.drop('Close', axis=1, inplace=True)
X = df[df.columns.tolist()].values
# split data and reshape input values
X_train, X_test, y_train, y_test = split_data(X,y,n,split,o)
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
model = Sequential()
model.add(LSTM(20, input_shape=(1,20,), activation='linear'))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
history = model.fit(X_train, y_train, epochs=50, batch_size=1,
validation_data=(X_test, y_test), verbose=2, shuffle=False)
score = model.evaluate(X_test, y_test)#history['']
if show_loss == True:
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.title('LSTMulti Score' + str(score))
plt.legend()
plt.show()
else:
plt.plot(y_test, label='prices')
plt.plot(model.predict(X_test), label='predictions')
plt.title('LSTMulti Score ' + str(score))
plt.legend()
plt.show()
def plot_Ridge(file, o=5, split=0.6):
df = pd.read_csv(file)
n = len(df)
X = df['Open'].values.reshape(n,1)
y = df['Close'].values.reshape(n,1)
X_train, X_test, y_train, y_test = split_data(X, y, n, split, o)
model = Ridge()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
score = model.score(X_test, y_test)
print("Model score: %.2f" % score)
plt.plot([x for x in range(len(X_test))], predictions, label='predictions')
plt.plot([x for x in range(len(X_test))], y_test, label='actual data')
plt.legend()
plt.show()
def plot_LinearRegression(file, o=5, split=0.6):
# o == offset, how far away is the prediction we want to make?
# changing o from 5 to 1 improves prediction accuract from 81% to 94%
df = pd.read_csv(file)
n = len(df)
# convert pd.Series to np.ndarrays now for manipulation
X = df['Open'].values.reshape(n,1)
y = df['Close'].values.reshape(n,1)
# slight offset, X[t] is used to 'predict' y[t+o]
X_train, X_test, y_train, y_test = split_data(X,y,n,split,o)
# check to make sure the two sets of arrays match in length
print("Training sizes: X: %.2f, y: %.2f" % (X_train.shape[0], y_train.shape[0]))
print("Test sizes: X: %.2f, y: %.2f" % (X_test.shape[0], y_test.shape[0]))
model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
score = model.score(X_test, y_test)
print("Model score: ", score)
plt.plot([x for x in range(len(X_test))], predictions, label='predictions')
plt.plot([y for y in range(len(y_test))], y_test, label='real data')
plt.legend()
plt.show()
#arima_research(file, 'Close', 5, 1, 1) # best fit
def arima_research(file, series, p, d, q):
# prepare data
df = pd.read_csv(file)
X = df[series].values
size = int(len(X) * 0.6)
train, test = X[:size], X[size:]
history = [x for x in train]
predictions = list()
# fit the model and make predictions
for t in range(len(test)):
model = ARIMA(history, order=(p,d,q))
model_fit = model.fit(disp=0)
#print(model_fit.summary())
output = model_fit.forecast()
yhat = output[0]
predictions.append(yhat)
obs = test[t]
history.append(obs)
err = abs(yhat - obs)
print("Predicted: %.3f, Expected: %.3f, Error: %.3f" % (yhat, obs, err))
# print summary and graph results
error = mean_squared_error(test, predictions)
print("Test MSE: %.3f" % (error))
plt.plot(test, label='actual prices')
plt.plot(predictions, label='predicted prices')
plt.legend()
plt.show()