-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdashboardPT.Rmd
236 lines (148 loc) · 5 KB
/
dashboardPT.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
title: "Candidate Analysis"
output:
flexdashboard::flex_dashboard:
orientation: rows
vertical_layout: fill
theme: spacelab
---
```{r setup, include=TRUE}
library(data.table)
library(dplyr)
library(DT)
library(flexdashboard)
library(formattable)
library(pdftools)
library(plotly)
library(qdap)
library(qdapDictionaries)
library(qdapRegex)
library(qdapTools)
library(quanteda)
library(treemap)
x<-data.table(load("candidates.RData"))
if (!require("pacman")) install.packages("pacman")
pacman::p_load(syllable, readability)
```
Summary {data-navmenu="Readability"}
=====================================
Row {}
-----------------------------------------------------------------------
### Applicants
```{r echo=FALSE, include=TRUE, Applicants}
tbl_candidate<-datatable((candidate), options = list(
searching = FALSE,
paging = FALSE,
lengthMenu = c(5, 10, 15, 20)
))
tbl_candidate
```
Score {data-navmenu="Readability"}
=====================================
Row {}
-----------------------------------------------------------------------
### Applicant Readability & Grade Level
```{r width=700, echo=FALSE, Applicant-Readability-Grade-Level}
plot(candidate)
```
Formality {data-navmenu="Readability"}
=====================================
Column {}
-------------------------------------
### Formality
```{r echo=FALSE, formality}
plot(formality)
```
ARI {data-navmenu="Readability"}
=====================================
Row {data-height=25}
-------------------------------------
### About Automated Readability Index
The Automated Readability Index (ARI) is a readability test designed to assess the understandability of a text. Like other popular readability formulas, the ARI formula outputs a number which approximates the grade level needed to comprehend the text. For example, if the ARI outputs the number 10, this equates to a high school student, ages 15-16 years old; a number 3 means students in 3rd grade (ages 8-9 yrs. old) should be able to comprehend the text.
Column {}
-------------------------------------
### Automated Readability Index
```{r echo=FALSE, Automated-Readability-Index}
plot(ari)
```
Coleman Liau {data-navmenu="Readability"}
=====================================
Row {data-height=25}
-------------------------------------
### About Coleman Liau
The majority of classic readability measures such as Flesch-Kincaid and Gunning Fog involve counting the number of syllables per word and per sentence. Yet, a distinctive feature of the Coleman-Liau Index is that the formula does not involve any counting of syllables.
By basing calculations on the number of letters in a word and number of words in a sentence, readability scores measured by Coleman-Liau Index may be seen as more accurate than those measured by formula that relies on syllable counting.
Row
-----------------------------------------------------------------------
### Coleman Liau
```{r echo=FALSE, coleman-liau}
cl <- readRDS("cl.rds")
plot(cl)
```
Linsear Write {data-navmenu="Readability"}
=====================================
Row {data-height=25}
-------------------------------------
### About Linsear Write
It is one of many such readability metrics, but is specifically designed to calculate the United States grade level of a text sample based on sentence length and the number of words used that have three or more syllables.
Row {}
-----------------------------------------------------------------------
### Linsear Write
```{r echo=FALSE, Linsear-Write}
plot(scores(lw))
```
Charts {data-navmenu="College Detail"} {.hidden}
=================================================
Column {data-width=350}
-----------------------------------------------------------------------
### Cost of Attendance-Graduate Resident
```{r echo=FALSE, COA-Grad-Resident2}
```
### Cost of Attendance-Graduate Non Resident
```{r}
```
Tables {data-navmenu="College Detail"} {.hidden}
=================================================
Row {data-width=450}
-------------------------------------
### Top 5 Candidates
```{r echo=FALSE, Top-10-Candidates}
```
### Bottom 5 Candidates
```{r echo=FALSE, Bottom-10-Institutions}
```
Row
-------------------------------------
### Institutional Ranking
```{r}
```
Page 1 {data-navmenu="Fin Aid Awd"} {.hidden}
=====================================
Row
-------------------------------------
### Financial Aid Award-Undergraduate Resident
```{r echo=FALSE, Fin-Aid-Awd-Undergrad-Resident}
```
### Financial Aid Award Non Resident
```{r echo=FALSE, Fin-Aid-Awd-NonResident}
```
Column
-------------------------------------
### Financial Aid Award
```{r}
```
Page 2 {data-navmenu="Fin Aid Awd"} {.hidden}
=====================================
Column
-------------------------------------
### Chart 1
```{r}
```
Column {.tabset}
-------------------------------------
### Chart 2
```{r echo=FALSE, Fin-Aid-Awd2-Undergrad-Resident}
```
### Chart 3
```{r echo=FALSE, Fin-Aid-Awd2-NonResident}
```