diff --git a/src/content/docs/contributing/nf_core_basic_training.md b/src/content/docs/contributing/nf_core_basic_training.md index a6145a9a09..e44db2a7a8 100644 --- a/src/content/docs/contributing/nf_core_basic_training.md +++ b/src/content/docs/contributing/nf_core_basic_training.md @@ -1014,6 +1014,262 @@ In the directory `exercise_6` you will find the custom script `print_hello.py`, ::: +To generate a module for a custom script you need to follow the same steps when adding a remote module. +Then, you can supply the command for your script in the `script` block but your script needs to be present +and *executable* in the `bin` +folder of the pipeline. +In the nf-core pipelines, +this folder is in the main directory and you can see in [`rnaseq`](https://github.com/nf-core/rnaseq). +Let's look at an publicly available example in this pipeline, +for instance [`tximport.r`](https://github.com/nf-core/rnaseq/blob/master/bin/tximport.r). +This is an Rscript present in the [`bin`](https://github.com/nf-core/rnaseq/tree/master/bin) of the pipeline. +We can find the module that runs this script in +[`modules/local/tximport`](https://github.com/nf-core/rnaseq/blob/master/modules/local/tximport/main.nf). +As we can see the script is being called in the `script` block, note that `tximport.r` is +being executed as if it was called from the command line and therefore needs to be *executable*. + +
+ +

TL;TR

+ +1. Write your script on any language (python, bash, R, + ruby). E.g. `maf2bed.py` +2. If not there yet, move your script to `bin` folder of + the pipeline and make it + executable (`chmod +x `) +3. Create a module with a single process to call your script from within the workflow. E.g. `./modules/local/convert_maf2bed/main.nf` +4. Include your new module in your workflow with the command `include {CONVERT_MAF2BED} from './modules/local/convert_maf2bed/main'` that is written before the workflow call. +
+ +_Tip: Try to follow best practices when writing a script for + reproducibility and maintenance purposes: add the + shebang (e.g. `#!/usr/bin/env python`), and a header + with description and type of license._ + +### 1. Write your script +Let's create a simple custom script that converts a MAF file to a BED file called `maf2bed.py` and place it in the bin directory of our nf-core-testpipeline:: + +``` +#!/usr/bin/env python +"""bash title="maf2bed.py" +Author: Raquel Manzano - @RaqManzano +Script: Convert MAF to BED format keeping ref and alt info +License: MIT +""" +import argparse +import pandas as pd + + +def argparser(): + parser = argparse.ArgumentParser(description="") + parser.add_argument("-maf", "--mafin", help="MAF input file", required=True) + parser.add_argument("-bed", "--bedout", help="BED input file", required=True) + parser.add_argument( + "--extra", help="Extra columns to keep (space separated list)", nargs="+", required=False, default=[] + ) + return parser.parse_args() + +def maf2bed(maf_file, bed_file, extra): + maf = pd.read_csv(maf_file, sep="\t", comment="#") + bed = maf[["Chromosome", "Start_Position", "End_Position"] + extra] + bed.to_csv(bed_file, sep="\t", index=False, header=False) + + +def main(): + args = argparser() + maf2bed(maf_file=args.mafin, bed_file=args.bedout, extra=args.extra) + + +if __name__ == "__main__": + main() + +``` + +### 2. Make sure your script is in the right folder +Now, let's move it to the correct directory: + +``` +mv maf2bed.py /path/where/pipeline/is/bin/. +chmod +x /path/where/pipeline/is/bin/maf2bed.py +``` + +### 3. Create your custom module +Then, let's write our module. We will call the process +"CONVERT_MAF2BED" and add any tags or/and labels that +are appropriate (this is optional) and directives (via +conda and/or container) for +the definition of dependencies. + + +
+More info on labels +A `label` will +annotate the processes with a reusable identifier of your +choice that can be used for configuring. E.g. we use the +`label` 'process_single', this looks as follows: + +``` +withLabel:process_single { + cpus = { check_max( 1 * task.attempt, 'cpus' ) } + memory = { check_max( 1.GB * task.attempt, 'memory') } + time = { check_max( 1.h * task.attempt, 'time' ) } + } +``` +
+ +
+More info on tags + +A `tag` is simple a user provided identifier associated to +the task. In our process example, the input is a tuple +comprising a hash of metadata for the maf file called +`meta` and the path to the `maf` file. It may look +similar to: `[[id:'123', data_type:'maf'], +/path/to/file/example.maf]`. Hence, when nextflow makes +the call and `$meta.id` is `123` name of the job +will be "CONVERT_MAF2BED(123)". If `meta` does not have +`id` in its hash, then this will be literally `null`. + +
+ +
+More info on conda/container directives + +The `conda` directive allows for the definition of the +process dependencies using the [Conda package manager](https://docs.conda.io/en/latest/). Nextflow automatically sets up an environment for the given package names listed by in the conda directive. For example: + +``` +process foo { + conda 'bwa=0.7.15' + + ''' + your_command --here + ''' +} +``` +Multiple packages can be specified separating them with a blank space e.g. `bwa=0.7.15 samtools=1.15.1`. The name of the channel from where a specific package needs to be downloaded can be specified using the usual Conda notation i.e. prefixing the package with the channel name as shown here `bioconda::bwa=0.7.15` + +``` +process foo { + conda 'bioconda::bwa=0.7.15 bioconda::samtools=1.15.1' + + ''' + your_bwa_cmd --here + your_samtools_cmd --here + ''' +} +``` +Similarly, we can apply the `container` directive to execute the process script in a [Docker](http://docker.io/) or [Singularity](https://docs.sylabs.io/guides/3.5/user-guide/introduction.html) container. When running Docker, it requires the Docker daemon to be running in machine where the pipeline is executed, i.e. the local machine when using the local executor or the cluster nodes when the pipeline is deployed through a grid executor. + +``` +process foo { + conda 'bioconda::bwa=0.7.15 bioconda::samtools=1.15.1' + container 'dockerbox:tag' + + + ''' + your_bwa_cmd --here + your_samtools_cmd --here + ''' +} +``` + +Additionally, the `container` directive allows for a more sophisticated choice of container and if it Docker or Singularity depending on the users choice of container engine. This practice is quite common on official nf-core modules. + +``` +process foo { + conda "bioconda::fastqc=0.11.9" + container "${ workflow.containerEngine == 'singularity' && !task.ext.singularity_pull_docker_container ? + 'https://depot.galaxyproject.org/singularity/fastqc:0.11.9--0' : + 'biocontainers/fastqc:0.11.9--0' }" + + ''' + your_fastqc_command --here + ''' +} +``` +
+ +Since `maf2bed.py` is in the `bin` directory we can directory call it in the script block of our new module `CONVERT_MAF2BED`. You only have to be careful with how you call variables (some explanations on when to use `${variable}` vs. `$variable`): +A process may contain any of the following definition blocks: directives, inputs, outputs, when clause, and the process script. Here is how we write it: + +``` +process CONVERT_MAF2BED { + // HEADER + tag "$meta.id" + label 'process_single' + // DEPENDENCIES DIRECTIVES + conda "anaconda::pandas=1.4.3" + container "${ workflow.containerEngine == 'singularity' && !task.ext.singularity_pull_docker_container ? + 'https://depot.galaxyproject.org/singularity/pandas:1.4.3' : + 'quay.io/biocontainers/pandas:1.4.3' }" + // INPUT BLOCK + input: + tuple val(meta), path(maf) + // OUTPUT BLOCK + output: + tuple val(meta), path('*.bed') , emit: bed + path "versions.yml" , emit: versions + // WHEN CLAUSE + when: + task.ext.when == null || task.ext.when + // SCRIPT BLOCK + script: // This script is bundled with the pipeline in bin + def args = task.ext.args ?: '' + def prefix = task.ext.prefix ?: "${meta.id}" + + """ +maf2bed.py --mafin $maf --bedout ${prefix}.bed + """ +``` + +More on nextflow's process components in the [docs](https://www.nextflow.io/docs/latest/process.html). + + + +### Include your module in the workflow +In general, we will call out nextflow module `main.nf` and save it in the `modules` folder under another folder called `conver_maf2bed`. If you believe your custom script could be useful for others and it is potentially reusable or calling a tool that is not yet present in nf-core modules you can start the process of making it official adding a `meta.yml` [explained above](#adding-modules-to-a-pipeline). In the `meta.yml` The overall tree for the pipeline skeleton will look as follows: + +``` +pipeline/ +├── bin/ +│ └── maf2bed.py +├── modules/ +│ ├── local/ +│ │ └── convert_maf2bed/ +│ │ ├── main.nf +│ │ └── meta.yml +│ └── nf-core/ +├── config/ +│ ├── base.config +│ └── modules.config +... +``` + +To use our custom module located in `./modules/local/convert_maf2bed` within our workflow, we use a module inclusions command as follows (this has to be done before we invoke our workflow): + +``` +include { CONVERT_MAF2BED } from './modules/local/convert_maf2bed/main' +workflow { + input_data = [[id:123, data_type='maf'], /path/to/maf/example.maf] + CONVERT_MAF2BED(input_data) +} +``` + +### Other notes +#### What happens in I want to use containers but there is no image created with the packages I need? + +No worries, this can be done fairly easy thanks to [BioContainers](https://biocontainers-edu.readthedocs.io/en/latest/what_is_biocontainers.html), see instructions [here](https://github.com/BioContainers/multi-package-containers). If you see the combination that you need in the repo, you can also use [this website](https://midnighter.github.io/mulled) to find out the "mulled" name of this container. + +### I want to know more about software dependencies! + +You are in luck, we have more documentation [here](https://nf-co.re/docs/contributing/modules#software-requirements) + + +#### I want to know more about modules! +See more info about modules in the nextflow docs [here](https://nf-co.re/docs/contributing/modules#software-requirements.) + + ## Lint all modules As well as the pipeline template you can lint individual or all modules with a single command: