-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlandmark_generation.py
70 lines (60 loc) · 2.19 KB
/
landmark_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import dlib
import cv2
import numpy as np
import shutil
from tqdm import tqdm
# used for accessing url to download files
import urllib.request as urlreq
import glob, os
# Load the detector
detector = dlib.get_frontal_face_detector()
# Load the predictor
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
def generate_landmarks(img_dir, skip=1, valid=False):
filenames = []
#if valid:
# img_dir = img_dir + 'val/real/'
#else:
# img_dir = img_dir + 'train/real/'
for root, dirs, files in os.walk(img_dir):
for file in files:
if file.endswith(".jpg") or file.endswith(".png"):
filenames.append(os.path.join(root, file))
landmark_coords = {}
count = 0
for i in tqdm(range(len(filenames))):
if i%skip == 0:
image_file = filenames[i]
image = cv2.imread(image_file)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_cropped = image_rgb
# create a copy of the cropped image to be used later
image_template = image_cropped.copy()
# convert image to Grayscale
image_gray = cv2.cvtColor(image_cropped, cv2.COLOR_BGR2GRAY)
# Detect faces using dlib on the "grayscale image"
try:
faces = detector(image_gray)
for face in faces:
landmarks = predictor(image=image_gray, box=face)
coord_list = []
for n in range(0, 68):
x = landmarks.part(n).x
y = landmarks.part(n).y
coord_list.append([x, y])
landmark_coords[image_file] = coord_list
except Exception as e:
print(e)
import json
if valid:
save_name = 'landmarks_valid.json'
else:
save_name = 'landmarks.json'
with open(save_name, 'w') as fp:
json.dump(landmark_coords, fp)
generate_landmarks(img_dir='dataset/data_train_2020-11-24_09-59-48/', skip=200)
generate_landmarks(img_dir='dataset/images1024x1024/', skip=1)
#generate_landmarks(valid=True)