-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmeasure_l1.py
33 lines (28 loc) · 917 Bytes
/
measure_l1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import numpy as np
from tqdm import tqdm
from PIL import Image
ori_folder = 'datas/KCMI-550'
data_folder = 'results/KCMI-550-Ours'
# ori_folder = 'datas/VISION-1500'
# data_folder = 'results/VISION-1500-Ours'
# ori_folder = 'results/KCMI-550-Crop'
# data_folder = 'results/KCMI-550-Crop-Ours'
paths = os.listdir(ori_folder)
paths_filter = []
for p in paths:
if 'jpg' in p or 'png' in p:
paths_filter.append(p)
paths = paths_filter
paths.sort()
l1_record = []
for i in tqdm(range(len(paths))):
im_ori = np.asarray(Image.open(os.path.join(ori_folder, paths[i]))).astype(np.float32)
im_pred = np.asarray(Image.open(os.path.join(data_folder, paths[i][:-3]+'png'))).astype(np.float32)
im_diff = np.abs(im_ori - im_pred)
l1 = np.mean(im_diff)
l1_record.append(l1)
print(np.mean(l1_record))