forked from elias-cannesson/aml-enjoyers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
478 lines (396 loc) · 15.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import os
import sys
from traceback import format_exc
from typing import *
import random
import pygame
from collections import namedtuple
from tqdm import tqdm
from dataclasses import dataclass
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
# import matplotlib for line graph
import matplotlib.pyplot as plt
from snake import Snake
from learn import *
# # if gpu is to be used
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (200, 0, 0)
RIGHT = 0
DOWN = 1
LEFT = 2
UP = 3
MOVE_STRAIGHT = [1, 0, 0]
MOVE_LEFT = [0, 1, 0]
MOVE_RIGHT = [0, 0, 1]
MODEL_PATH = './snake.pth'
START = False
BLOCK_SIZE = 50
BOUNDS = (1000, 800)
WIDTH = BOUNDS[0]
HEIGHT = BOUNDS[1]
BATCH_SIZE = 2500
GAMMA = 0.99
EPS_STEPS = 200
EPS_START = 0.99
EPS_END = 0.0001
EPS_DECAY = 0.992
TARGET_UPDATE = 200
LR = 0.0009
PER = False
ALPHA = 0.5 # controls how much prioritization is used
PER_EPS = 0.01 # small amount to add to the TD errors when updating priorities
MEMORY_SIZE = 300000
EPOCHS = 500
ACTION_SIZE = 3
STATE_SIZE = 11
HIDDEN_SIZE = 512
# STATE_SIZE = 11 + (WIDTH // BLOCK_SIZE) * (HEIGHT // BLOCK_SIZE)
# STATE_SIZE = 7
CLEAN = 10000
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward', 'done'))
direction_mask = lambda d: 0 if d[0] == 1 else 1 if d[1] == 1 else 2 if d[2] == 1 else 3
def plot_categories(
ax: List[plt.Axes],
categories: list,
):
colors = ['r', 'b', 'g', 'y', 'c']
for i in range(len(categories)):
for j in range(len(categories[i])):
ax[i].plot(j, categories[i][j], f'{colors[i]}o', markersize=1)
return
def create_n_subplots(
n: int,
figsize: Tuple[int, int],
xlabels: List[str],
ylabels: List[str],
dimensions: List[Tuple],
):
fig, axs = plt.subplots(
nrows=1,
ncols=n,
figsize=figsize,
)
for i, ax in enumerate(axs):
ax.set_xlabel(xlabels[i])
ax.set_ylabel(ylabels[i])
ax.set_title(f"{xlabels[i]} vs {ylabels[i]}")
ax.axis(dimensions[i])
return fig, axs
# function to plot bar graph of values in a list
def plot_bar_graph(
values: List[int],
title: str,
xlabel: str,
ylabel: str
):
# creating the bar plot
fig = plt.figure()
fig.set_size_inches(9, 7)
ax = fig.add_subplot()
ax.bar(range(len(values)), values, color='blue', width=0.2,
label=['right', 'down', 'left', 'up'])
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return
def train(
seed: Optional[Any] = 4567,
d: Optional[int] = 1,
load_model: Optional[bool] = False,
save_model: Optional[bool] = False
):
global START
print("training...")
while True:
pygame.init()
if d == 1 or d == 3:
window = pygame.display.set_mode(BOUNDS)
pygame.display.set_caption("Snake")
font = pygame.font.SysFont("comicsansms", 20)
agent = Agent(state_size=STATE_SIZE, action_size=ACTION_SIZE, hidden_size=HIDDEN_SIZE,
lr=LR, gamma=GAMMA, epsilon=EPS_START, batch_size=BATCH_SIZE,
memory_size=MEMORY_SIZE,update_every=TARGET_UPDATE, device='cpu',
seed=seed, load_model=load_model, epsilon_decay=EPS_DECAY,
epsilon_min=EPS_END)
snake_skeleton = Snake(w=WIDTH,h=HEIGHT, color=RED,
csize=BLOCK_SIZE)
of_interest = ["Score", "Epsilon", "Loss", "Rewards"] # ["Score", "Epsilon", "Loss", "Steps", "Rewards"]
dims = [100, 1, 2, 1000]
l_oi = len(of_interest)
if d >= 2 or not d:
# create figure with 2 subplots
fig, ax = create_n_subplots(
n=l_oi,
figsize=(6, 6.5),
xlabels=["Epochs"] * l_oi,
ylabels=of_interest,
dimensions = [(0, EPOCHS, 0, d ) for d in dims])
plt.ion()
direction_counts = [0, 0, 0, 0] # right, down, left, up
max_score = 0
max_reward = float('-inf')
max_steps = 0
for epoch in tqdm(range(EPOCHS + 1)):
score = 0
total_reward = 0
steps = 0
while True:
if d == 1 or d == 3:
pygame.time.delay(50)
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
state = snake_skeleton.get_state()
# perform action via epsilon greedy policy
action, action_values = agent.act(state)
steps += 1
# get reward, done
reward, game_over = snake_skeleton.update(action)
direction_counts[snake_skeleton.direction] += 1
# get next state
next_state = snake_skeleton.get_state()
total_reward += reward
agent.train()
# store transition in memory
agent.remember(state=state, action=action, reward=torch.Tensor([reward]),
next_state=next_state, done=game_over)
if game_over:
last_direction = snake_skeleton.direction
snake_skeleton.reset()
agent.replay_experiences()
if score > max_score:
max_score = score
agent.save_model(MODEL_PATH)
break
score = snake_skeleton.get_score()
if score > max_score:
max_score = score
if d == 1 or d == 3:
text = font.render(f"Score: {score}", True, WHITE)
text2 = font.render(f"Epoch: {epoch}", True, WHITE)
window.fill((10, 10, 10))
window.blit(text, (WIDTH - 100, 10))
window.blit(text2, (WIDTH - 100, 50))
snake_skeleton.draw(window)
pygame.display.flip()
max_reward = max(max_reward, total_reward)
max_steps = max(max_steps, steps)
if max_score == 100:
break
# if epoch == 400:
# d = 3
# window = pygame.display.set_mode(BOUNDS)
# pygame.display.set_caption("Snake")
# font = pygame.font.SysFont("comicsansms", 20)
if epoch % 15 == 0:
print(f"epoch: {epoch}, score: {score}, steps: {steps}, total reward: {total_reward}")
print(f"epsilon: {agent.epsilon}")
print(f"max score: {max_score}")
print(f"max reward: {max_reward}")
print(f"max steps: {max_steps}")
print(f"loss: {agent.loss}")
print(f"last action: {action}")
print(f"last direction: {last_direction}")
print(f"last action values: {action_values}")
print(f"length of memory: {len(agent.memory)}")
print(f"direction counts: {direction_counts}")
if d == 3:
plt.pause(0.001)
window.fill((10, 10, 10))
snake_skeleton.draw(window)
pygame.display.flip()
ax[0].plot(epoch, score, 'ro', markersize=1)
ax[1].plot(epoch, agent.epsilon, 'bo', markersize=1)
ax[2].plot(epoch, agent.loss, 'go', markersize=1)
#ax[3].plot(epoch, steps, 'yo', markersize=1)
ax[3].plot(epoch, total_reward, 'co', markersize=1)
plt.show()
elif d == 1:
window.fill((10, 10, 10))
#snake_skeleton.draw(window)
pygame.display.flip()
elif d == 2 or not d:
if d == 2:
plt.pause(0.001)
ax[0].plot(epoch, score, 'ro', markersize=1)
ax[1].plot(epoch, agent.epsilon, 'bo', markersize=1)
ax[2].plot(epoch, agent.loss, 'go', markersize=1)
# ax[3].plot(epoch, steps, 'yo', markersize=1)
ax[3].plot(epoch, total_reward, 'co', markersize=1)
if d == 2:
plt.show()
break
if not d:
plt.show()
plot_bar_graph(values=direction_counts,
title='Direction counts',
xlabel='Epochs',
ylabel='Direction Counts')
if save_model:
try:
agent.save_model(MODEL_PATH)
print("Model saved")
except Exception as e:
print(f"Model not saved. Error: {e}")
plt.show()
pygame.quit()
return
def main(
func: Optional[str] = 'train',
d: Optional[int] = 0,
load_model: Optional[bool] = False,
save_model: Optional[bool] = False
):
global START
if func == 'train':
train(d=d, load_model=load_model, save_model=save_model)
pygame.init()
p = 0
print("Enter 'start' or 'quit'")
while True:
line = input(f"Enter a command: ")
if line == "quit":
break
elif line == "start":
if not p:
window = pygame.display.set_mode(BOUNDS)
pygame.display.set_caption("Snake")
font = pygame.font.SysFont("comicsansms", 20)
clock = pygame.time.Clock()
START = True
snake_skeleton = Snake(w=WIDTH, h=HEIGHT, csize=BLOCK_SIZE,
color=RED)
run = True
f = 0
direction = RIGHT
window.fill((10, 10, 10))
text = font.render(f"Score: {snake_skeleton.score}", True, WHITE)
window.blit(text, (WIDTH - 100, 10))
snake_skeleton.draw(window)
pygame.display.flip()
while run:
if f == 0:
pygame.time.delay(400)
f = 1
pygame.time.delay(1000)
for event in pygame.event.get():
if event.type == pygame.QUIT:
print("shutting down pygame...")
run = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_UP:
direction = UP
if event.key == pygame.K_DOWN:
direction = DOWN
if event.key == pygame.K_LEFT:
direction = LEFT
if event.key == pygame.K_RIGHT:
direction = RIGHT
# make move
# check if game over
cont = snake_skeleton.play(direction=direction)
# state = snake_skeleton.get_state_v2()
# # print state in this format
# print(
# f"state: {state}, direction: {direction}, score: {snake_skeleton.score}"
# )
# sys.exit()
if not cont:
print("game over")
run = False
break
# draw
window.fill((10, 10, 10))
text = font.render(f"Score: {snake_skeleton.score}", True, WHITE)
snake_skeleton.draw(window)
pygame.display.flip()
#pygame.quit()
pygame.quit()
return
def print_program_usage():
# incllude -e flag which can take a float value between 0-1
print("Usage: python snake.py [-t|-l|-p] [-d 0|1|2|3] [-s model_path] \n"
"[-e (value btwn 0 and 1)] [-ed (value btwn 0 and 1)] [-lr (value btwn 0 and 1)]\n"
"[-ep (epochs for training: any positive integer)] [-hs (hidden size)]\n"
"[-g (gamma / discount-factor for future actions)] [-bs (batch size of training data)]\n"
"[-tu (target update, must be int greater than 0)] \n")
print("Options:")
print("-t: train model")
print("-l: load model")
print("-s <model_path>: save model to model path")
print("-p: play game")
print("-e: epsilon value (float between 0 and 1) (default is 0.99)")
print("-ed: epsilon decay value (float between 0 and 1) (default is 0.999)")
print("-lr: learning rate (float between 0 and 1) (default is 0.001)")
print(f"-ep: epochs (any positive integer) (default is {EPOCHS})")
print(f"-hs: hidden size (any positive integer) (default is {HIDDEN_SIZE})")
print(f"-g: gamma (float between 0 and 1) (default is {GAMMA})")
print(f"-bs: batch size (any positive integer) (default is {BATCH_SIZE})")
print(f"-tu: target update (any positive integer) (default is {TARGET_UPDATE})")
print("-d: display mode")
print("0: no display")
print("1: display snake game")
print("2: display graphs")
print("3: display snake game and graphs")
if __name__ == '__main__':
try:
if len(sys.argv) > 1:
# parse through args, where -t indicates
# user wants to train model, -l indicates
# the user wants to load a saved model,
# -p indicates user wants to play game,
# and -d followed by 0, 1, 2, or 3
# indicates value of d
# default is to train model
func = 'train'
load_model = False
save_model = False
d = 0
if '-t' in sys.argv and '-p' in sys.argv:
print("Please only choose one of the following: -t for train, -p for play")
print_program_usage()
sys.exit(1)
if '-h' in sys.argv or '--help' in sys.argv:
print_program_usage()
sys.exit(1)
for i in range(1, len(sys.argv)):
if sys.argv[i] == '-t':
func = 'train'
elif sys.argv[i] == '-l':
load_model = True
elif sys.argv[i] == '-p':
func = 'play'
elif sys.argv[i] == '-d':
d = int(sys.argv[i + 1])
elif sys.argv[i] == '-e':
EPS_START = float(sys.argv[i + 1])
elif sys.argv[i] == '-ed':
EPS_DECAY = float(sys.argv[i + 1])
elif sys.argv[i] == '-lr':
LR = float(sys.argv[i + 1])
elif sys.argv[i] == '-s':
save_model = True
MODEL_PATH = sys.argv[i + 1]
elif sys.argv[i] == '-ep':
EPOCHS = int(sys.argv[i + 1])
elif sys.argv[i] == '-hs':
HIDDEN_SIZE = int(sys.argv[i + 1])
elif sys.argv[i] == '-g':
GAMMA = float(sys.argv[i + 1])
elif sys.argv[i] == '-bs':
BATCH_SIZE = int(sys.argv[i + 1])
elif sys.argv[i] == '-tu':
TARGET_UPDATE = int(sys.argv[i + 1])
main(func=func, d=d, load_model=load_model, save_model=save_model)
except Exception as e:
print("An error occurred: ", e)
print(format_exc())
sys.exit(1)