-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenvironment.py
522 lines (435 loc) · 19.3 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import gym
import time
import math
import numpy as np
import pyglet
import os
from gym import spaces, logger
from gym.utils import seeding
from utils import WrsnParameters
from utils import NetworkInput, Point
from utils import energy_consumption, dist, normalize, bound
from network import WRSNNetwork
__location__ = os.path.dirname(os.path.abspath(__file__))
sink_img = os.path.join(__location__, 'images/sink.png')
depot_img = os.path.join(__location__, 'images/depot.png')
sensor_img = os.path.join(__location__, 'images/sensor2.png')
mc_img = os.path.join(__location__, 'images/mc.png')
class MobileCharger():
"""MobileCharger.
"""
def __init__(self, position, battery_cap, velocity, ecr_move, ecr_charge, mu, cur_energy=None):
self.depot = position
self.cur_position = position
self.battery_cap = battery_cap
self.velocity = velocity
self.ecr_move = ecr_move
self.ecr_charge = ecr_charge
self.mu = mu
self.cur_energy = cur_energy or battery_cap
self.is_active = True
self.lifetime = 0
self.travel_distance = 0
def get_state(self):
return np.array([self.cur_position.x,
self.cur_position.y,
self.cur_energy,
self.battery_cap,
self.ecr_move,
self.mu,
self.velocity],
dtype=np.float32)
def reset(self):
self.cur_position = self.depot
self.cur_energy = self.battery_cap
self.activate()
self.lifetime = 0
def deactivate(self):
"""deactivate.
"""
self.is_active = False
def activate(self):
"""activate.
"""
self.is_active = True
def move(self, dest: Point):
src = self.cur_position
d1 = dist(src, dest)
d2 = min(d1, self.cur_energy / self.ecr_move)
t1 = d1 / self.velocity
t2 = d2 / self.velocity
if t1 == 0:
return (0, 0, True)
e = d2 * self.ecr_move
self.travel_distance += d2
self.cur_position = Point(src.x + t2/t1 * (dest.x - src.x),
src.y + t2/t1 * (dest.y - src.y),
src.z + t2/t1 * (dest.z - src.z))
self.cur_energy -= e
if self.cur_energy <= 0:
self.deactivate()
self.lifetime += t2
return t2, d2, (abs(d1 - d2) < 1e-9) # (running time, travel distance, reach dest or not)
def charge(self, ce, te, ecr, mu):
# If charging rate = energy consumption rate, then charge it until exhausted
if ecr == mu:
return self.cur_energy / mu
# if charing rate < energy consumption rate, then target energy is zero
if mu - ecr <= 0:
te = 0
# n is floor of maximum charging time in order to reach target energy
# this function's considering discrete energy consumption of sensors
# it means sensors will be dissipated ecr J once each second
# other components of energy model such as idle, sleep, sensing energy is omitted
# note that this formulation is still not correct since it
# does not consider decimal fraction of current network lifetime
# however, to keep it simple, we omitted it
# as a consequence, sometimes, mc leaves the sensor not being full charged
n = int((te - ce) / (mu - ecr))
alpha = (te - ce - n * (mu - ecr)) / mu
t = n + alpha
if self.cur_energy > mu * t:
self.cur_energy -= mu * t
return t
else:
self.cur_energy = 0.0
self.deactivate()
return self.cur_energy / mu
def recharge(self):
t = (self.battery_cap - self.cur_energy) / self.ecr_charge
self.cur_energy = self.battery_cap
return t
def idle(self):
pass
class WRSNEnv(gym.Env):
"""WRSNEnv.
Description:
A simulation of Wireless Rechargable Sensor Network
Observation:
Type: Tuple(Box(7), Box(3), Box(num_sensors * 5))
Box(7): Observation of MC, the first 3 values are dynamic,
and 4 next values are static
(x_coor, y_coor, current_energy,
battery_capacity, moving_energy_consumption_rate,
charging_energy_rate, velocity)
Box(num_sensors, 6): Box[i, :] for observation of sensor ith
the first 4 values are static and
the rest of them is dynamic
(x_coor, y_coor, battery_capacity, is_sensor, (or_depot)
current_energy, energy_consumption_rate)
Box(3): Observation of depot
Actions:
Type: Discrete(num_sensors + 1)
0 : Run MC back to depot and recharging
i : Run MC to sensor i and charging sensor ith
Reward:
(t, d)
t: lifetime
d: moving distance of mobile charger
Starting state:
All sensors and MC are initialized with full battery
Other values are inferred from Network
Episode Termination:
MC is exhausted and cannot come back to depot to recharge
Network is not coverage ( not cover all targets )
"""
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': 10
}
def __init__(self, inp: NetworkInput=None, sensors=None, targets=None,
seed=None, wp=WrsnParameters, normalize=False):
self.wp = wp
if inp is None:
if sensors is None or targets is None:
raise ValueError('Invalid input WRSNEnv')
sink = Point(**wp.sink)
depot = Point(**wp.depot)
num_sensors = len(sensors)
num_targets = len(targets)
sensors = [Point(x.item() * wp.W, y.item() * wp.H) for x, y in sensors]
targets = [Point(x.item() * wp.W, y.item() * wp.H) for x, y in targets]
inp = NetworkInput(wp.W, wp.H,
num_sensors=num_sensors,
num_targets=num_targets,
sink=sink,
depot=depot,
sensors=sensors,
targets=targets,
r_c=wp.r_c,
r_s=wp.r_s)
self.is_connected = inp.is_connected()
self.world_width = wp.W
self.world_height = wp.H
self.depot = inp.depot
self.charging_points = inp.charging_points
self.action_dest = [inp.depot, *inp.charging_points]
self.mc = MobileCharger(
inp.depot, wp.E_mc, wp.v_mc, wp.ecr_move, wp.ecr_charge, wp.mu, wp.E_mc_init)
self.net = WRSNNetwork(inp, wp)
self.normalize = normalize
max_ecr = energy_consumption(50, 1, wp.r_c, wp=wp)
high_s_row = np.array([inp.W,
inp.H,
wp.E_mc,
inp.num_targets,
wp.E_mc,
max_ecr],
dtype=np.float32)
self.high_s = np.tile(high_s_row, (inp.num_sensors, 1))
self.low_s = np.zeros((inp.num_sensors, 6), dtype=np.float32)
self.high_depot = np.array([inp.W,
inp.H,
wp.ecr_charge])
self.low_depot = np.zeros(3, dtype=np.float32)
self.high_mc = np.array([inp.W,
inp.H,
wp.E_mc,
wp.E_mc,
wp.ecr_move,
wp.ecr_charge,
wp.v_mc],
dtype=np.float32)
self.low_mc = np.zeros(7, dtype=np.float32)
self.action_space = spaces.Discrete(self.net.num_sensors + 1)
self.observation_space = spaces.Tuple((spaces.Box(self.low_mc, self.high_mc, dtype=np.float32),
spaces.Box(self.low_depot, self.high_depot, dtype=np.float32),
spaces.Box(self.low_s, self.high_s, shape=(inp.num_sensors, 6),
dtype=np.float32)))
self.seed(seed)
self.state = None
self.viewer = None
self.last_action = 0 # mc is initialized at depot position
self.steps_beyond_done = None
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
self.action_space.seed(self.np_random.randint(1000))
self.observation_space.seed(self.np_random.randint(1000))
return [seed]
def step(self, action):
"""step.
Accepts an action and returns a tuple (observation, reward, done, info).
Parameters
----------
action (object): move to a sensor (or depot if action = 0) and charge it (or recharge)
Returns:
observation (object): agent's observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)
"""
err_msg = "%r (%s) invalid" % (action, type(action))
assert self.action_space.contains(action), err_msg
if not self.is_connected:
return None, (0, 0), True, {}
idle = (self.last_action == action)
reward_t, reward_d = 0.0, 0.0
if idle:
self.mc.idle()
t1_net = self.net.estimate_trans_time()
t1_net_1 = self.net.t_step(t1_net, charging_sensors=None)
reward_t = min(t1_net, t1_net_1)
# self.last_action = -1
else:
# 2 phases: move to dest and charge (or recharge)
# phase 1: move MC to dest
t1_mc, d_mc, reach_dest = self.mc.move(self.action_dest[action])
# simultaneously simulate the network running in t_1 seconds
t1_net = self.net.t_step(t1_mc, charging_sensors=None)
if reach_dest:
self.last_action = action
reward_t += min(t1_mc, t1_net)
reward_d += d_mc
if idle or not self.net.is_coverage:
pass
# phase 2: charge or recharge
elif action == 0:
# recharging
t2_mc = self.mc.recharge()
t2_net = self.net.t_step(t2_mc, charging_sensors=None)
reward_t += min(t2_mc, t2_net)
else:
# charge sensor ith
sn = self.net.nodes[action]
# if sensor is exhausted, precharge p percent first and reregister it to network
if not sn.is_active:
t2_mc = self.mc.charge(sn.cur_energy,
sn.battery_cap * self.wp.p_start_threshold,
sn.ecr,
self.wp.mu)
t2_net = self.net.t_step(t2_mc, charging_sensors={action: self.wp.mu})
reward_t += min(t2_mc, t2_net)
# continue charging until getting full battery
if self.net.is_coverage:
t3_mc = self.mc.charge(
sn.cur_energy, sn.battery_cap, sn.ecr, self.wp.mu)
t3_net = self.net.t_step(t3_mc, charging_sensors={action: self.wp.mu})
reward_t += min(t3_mc, t3_net)
# if mc is exhausted, cannot improve the network lifetime anymore,
# fast forward network simulation and stop game
# if not self.mc.is_active and self.net.is_coverage:
# reward_t += self.net.t_step(np.inf, charging_sensors=None)
self.state = (self.mc.get_state(), self.net.get_state())
done = bool(
not self.net.is_coverage
or not self.mc.is_active
)
if not done:
reward = (reward_t, reward_d)
elif self.steps_beyond_done is None:
self.steps_beyond_done = 0
reward = (reward_t, reward_d)
else:
if self.steps_beyond_done == 0:
logger.warn(
"You are calling 'step()' even though this "
"environment has already returned done = True. You "
"should always call 'reset()' once you receive 'done = "
"True' -- any further steps are undefined behavior."
)
self.steps_beyond_done += 1
reward = (0, np.inf)
return (self.get_state(), reward, done, {})
def get_state(self):
mc_state = self.mc.get_state()
sn_state = self.net.get_state()
depot_state = np.array([self.depot.x,
self.depot.y,
self.wp.ecr_charge],
dtype=np.float32)
if self.normalize:
return (normalize(mc_state, self.low_mc, self.high_mc),
normalize(depot_state, self.low_depot, self.high_depot),
normalize(sn_state, self.low_s, self.high_s))
else:
return (mc_state, depot_state, sn_state)
def get_network_lifetime(self):
# return self.net.network_lifetime + self.net.t_step(np.inf, charging_sensors=None)
return self.net.network_lifetime
def get_travel_distance(self):
return self.mc.travel_distance
def reset(self):
self.net.reset()
self.mc.reset()
self.steps_beyond_done = None
return self.get_state()
def render(self, mode='human'):
screen_width = 600
screen_height = 600
scale = screen_width / self.world_width
sink_width, sink_height = 30, 37.05
depot_width, depot_height = 40, 34
sn_width, sn_height, sn_color = 30, 30, (0.9, 0.9, .12)
en_width, en_height, en_color = 20, 6, (0.9, 0.9, .12)
mc_width, mc_height, mc_color = 40, 40, (.06, .2, .96)
tg_radius, tg_color = 5, (.9, .1, .1)
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
self.lines = dict()
self.trans = [None] * self.net.num_nodes
self.objs = [None] * self.net.num_nodes
# draw edges
for u, v in self.net.edges:
su, sv = self.net.nodes[u], self.net.nodes[v]
if su.is_active and sv.is_active:
sux, suy, _ = su.position
svx, svy, _ = sv.position
sux, suy = sux * scale, suy * scale
svx, svy = svx * scale, svy * scale
line = rendering.Line((sux, suy), (svx, svy))
self.lines[(u, v)] = line
self.viewer.add_geom(line)
x, y, _ = self.net.sink.position
x, y = x * scale, y * scale
sink_obj = rendering.Image(sink_img, sink_width, sink_height)
sink_obj.add_attr(rendering.Transform(translation=(x, y)))
self.viewer.add_geom(sink_obj)
self.objs[0] = sink_obj
x, y, _ = self.depot
x, y = x * scale, y * scale
x, y = bound(x, depot_width/2, self.wp.W*scale), bound(y, depot_height/2, self.wp.H*scale)
depot_obj = rendering.Image(depot_img, depot_width, depot_height)
depot_obj.add_attr(rendering.Transform(translation=(x, y)))
self.viewer.add_geom(depot_obj)
for sn in self.net.sensors:
l, r, t, b = -sn_width / 2 , sn_width / 2 , sn_height / 2, -sn_height / 2
x, y, _ = sn.position
x, y = x * scale, y * scale
snb = rendering.Image(sensor_img, sn_width, sn_height)
snb.add_attr(rendering.Transform(translation=(x, y)))
# snb = self.viewer.draw_polyline([(x + l, y + b), (x + l, y + t),
# (x + r, y + t), (x + r, y + b),
# (x + l, y + b)])
self.viewer.add_geom(snb)
l, r, t, b = -en_width / 2 + 1, en_width / 2 - 1, en_height / 2 - 1, -en_height / 2 + 1
sno = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
ep = sn.cur_energy / sn.battery_cap
sn_scl = (ep, 1)
r, g, b = min(0.9, 1.8 * (1 - ep)), min(0.9, 1.8 * ep), .12
x += (1 - sn_scl[0]) * l
y -= sn_height / 2 + 2
sntrans = rendering.Transform(translation=(x, y), scale=sn_scl)
sno.add_attr(sntrans)
sno.set_color(r, g, b)
self.viewer.add_geom(sno)
self.trans[sn.id] = sntrans
self.objs[sn.id] = sno
for tg in self.net.targets:
x, y, _ = tg.position
x, y = x * scale, y * scale
circ = self.viewer.draw_circle(tg_radius)
circ.add_attr(rendering.Transform(translation=(x, y)))
circ.set_color(*tg_color)
self.objs[tg.id] = circ
self.viewer.add_geom(circ)
l, r, t, b = -mc_width / 2, mc_width / 2, mc_height / 2, -mc_height / 2
mc = rendering.Image(mc_img, mc_width, mc_height)
self.mctrans = rendering.Transform()
mc.add_attr(self.mctrans)
mc.set_color(*mc_color)
self.viewer.add_geom(mc)
if self.state is None:
return None
# transform mc
mc_state, sn_state = self.state
x, y = mc_state[0] * scale, mc_state[1] * scale
x, y = bound(x, mc_width/2, self.wp.W*scale-mc_width/2), bound(y, mc_height/2, self.wp.H*scale-mc_height/2)
self.mctrans.set_translation(x, y)
# transform sns
for sn in self.net.sensors:
l, r, t, b = -en_width / 2 - 1, en_width / 2 - 1, en_height / 2 - 1, -en_height / 2 - 1
x, y, _ = sn.position
x, y = x * scale, y * scale
ep = sn.cur_energy / sn.battery_cap
sn_scl = (ep, 1)
r, g, b = min(0.9, 1.8 * (1 - ep)), min(0.9, 1.8 * ep), .12
x += (1 - sn_scl[0]) * l
y -= sn_height / 2 + 2
self.trans[sn.id].set_scale(ep, 1)
self.trans[sn.id].set_translation(x, y)
self.objs[sn.id].set_color(r, g, b)
for u, v in self.net.edges:
su, sv = self.net.nodes[u], self.net.nodes[v]
if su.is_active and sv.is_active:
self.lines[(u, v)].set_color(0, 0, 0)
else:
self.lines[(u, v)].set_color(1, 1, 1)
return self.viewer.render(return_rgb_array=mode == 'rgb_array')
def close(self):
if self.viewer:
self.viewer.close()
self.viewer = None
if __name__ == '__main__':
np.set_printoptions(suppress=True)
inp = NetworkInput.from_file('net1.inp')
env = WRSNEnv(inp)
env.reset()
actions = [20,18,8,2,6,8,14,17,14,17,15,4,8,13,4,9]
for action in actions:
env.render()
state, reward, done, _ = env.step(action)
# print(state)
print(reward, done)
print(env.mc.cur_position)
print(env.mc.cur_energy)