From d4c3c10fad1bd6adec72d2f1f236761a8d6a07f8 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Thu, 12 Sep 2024 13:33:57 +0200 Subject: [PATCH] lora : raise error if lm_head is ignored (#9103) * lora : raise error if lm_head is ignored * fix style * clarify comment --- convert_lora_to_gguf.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/convert_lora_to_gguf.py b/convert_lora_to_gguf.py index ddd347a2abd2a..d1c94e58034b3 100755 --- a/convert_lora_to_gguf.py +++ b/convert_lora_to_gguf.py @@ -363,7 +363,13 @@ def get_tensors(self) -> Iterator[tuple[str, Tensor]]: yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B))) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: - dest = super().modify_tensors(data_torch, name, bid) + dest = list(super().modify_tensors(data_torch, name, bid)) + # some archs may have the same tensor for lm_head and output (tie word embeddings) + # in this case, adapters targeting lm_head will fail when using llama-export-lora + # therefore, we ignore them for now + # see: https://github.com/ggerganov/llama.cpp/issues/9065 + if name == "lm_head.weight" and len(dest) == 0: + raise ValueError("lm_head is present in adapter, but is ignored in base model") for dest_name, dest_data in dest: assert isinstance(dest_data, LoraTorchTensor) lora_a, lora_b = dest_data.get_lora_A_B()