forked from SnPM-toolbox/SnPM-devel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnpm_pi_OneSampT.m
271 lines (242 loc) · 9.53 KB
/
snpm_pi_OneSampT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
% Mfile snpm_pi_OneSampT
% SnPM PlugIn design module - 1 group, 1 scan per subject
% MultiSub: One Sample T test on diffs/contrasts; 1 condition, 1 scan per subject
% FORMAT snpm_pi_OneSampT
%
% See body of snpm_ui for definition of PlugIn interface.
%_______________________________________________________________________
%
% snpm_pi_OneSampT is a PlugIn for the SnPM design set-up program,
% creating design and permutation matrix appropriate for one group
% analyses where there is just *one* scan per subject. This plug in
% effects a one-sample t-test.
%
% A common use of this plug is for random effects analysis of contrast
% images. For this analysis we only need to assume, under the null
% hypothesis, that each of the images are exchangeble and the contrast
% images have mean zero, symmetrically distributed data at each
% voxel. (Exchangeability follows from independence of different
% subjects.)
%
%
%-Number of permutations
%=======================================================================
%
% There are 2^nSubj possible permutations, where nScan is the total
% number of scans.
%
% It is recommended that at least 6 or 7 subjects are used; with only 5
% subjects, the permutation distribution will only have 2^5 = 32 elements
% and the smallest p-value will be 1/32=0.03125.
%
%
%-Prompts
%=======================================================================
%
% 'Select all scans': Enter the scans to be analyzed.
%
% '# of confounding covariates' & '[<len>] - Covariate <num>': Use these
% prompts to specify a covariate of no interest. As mentioned above,
% fitting a confounding covariate of age may be desirable.
%
% '<nPerms> Perms. Use approx. test': This prompt will inform you of the
% number of possible permutations, that is, the number of ways the group
% labels can be arranged under the assumption that there is no group
% effect. Fewer than 200 permutations is undesirable; more than 10,000
% is unnecessary. If the number of permutations is much greater than 10,000
% you should use an approximate test. Answering 'y' will produce another
% prompt...
% '# perms. to use? (Max <MaxnPerms>)': 10,000 permutations is regarded as
% a sufficient number to characterize the permutation distribution well.
%
%
%-Variable "decoder" - This PlugIn supplies the following:
%=======================================================================
% - core -
% P - string matrix of Filenames corresponding to observations
% iGloNorm - Global normalisation code, or allowable codes
% - Names of columns of design matrix subpartitions
% PiCond - Permuted conditions matrix, one labelling per row, actual
% labelling on first row
% sPiCond - String describing permutations in PiCond
% sHCform - String for computation of HC design matrix partitions
% permutations indexed by perm in snpm_cp
% CONT - single contrast for examination, a row vector
% sDesign - String defining the design
% sDesSave - String of PlugIn variables to save to cfg file
%
% - design -
% H,Hnames - Condition partition of design matrix, & effect names
% B,Bnames - Block partition (constant term), & effect names
%
% - extra -
% iCond - Condition indicator vector
%
%_______________________________________________________________________
% Copyright (C) 2013 The University of Warwick
% Id: snpm_pi_OneSampT.m SnPM13 2013/10/12
% Thomas Nichols, Camille Maumet
% Based on UM-modified snpm_MG2x.m, v1.7
%-----------------------------functions-called------------------------
% spm_DesMtx
% spm_select
% spm_input
%-----------------------------functions-called------------------------
%
% Note: For a multisubject, no-replication design,
% exchagiblity is guaranteed for all observations by random selection of
% subjects from the populations of interest. Hence, Xblk is all scans.
%
%-Initialisation
%-----------------------------------------------------------------------
iGloNorm = '123'; % Allowable Global norm. codes
sDesSave = 'iCond'; % PlugIn variables to save in cfg file
if snpm_get_defaults('shuffle_seed')
% Shuffle seed of random number generator
try
rng('shuffle');
catch
% Old syntax
rand('seed',sum(100*clock));
end
end
%-Get filenames and iCond, the condition labels
%=======================================================================
P = strvcat (job.P);
nScan = size(P,1);
iCond = ones(1,nScan);
nFlip = 0;
%-Get confounding covariates
%-----------------------------------------------------------------------
G = []; Gnames = ''; Gc = []; Gcnames = ''; q = nScan;
if numel(job.cov) > 0 %isfield(job.covariate,'cov_Val')
for i = 1:numel(job.cov)
d = job.cov(i).c;
if (size(d,1) == 1)
d = d';
end
nGcs = size(Gc,2);
if size(d,1) ~= q
error(sprintf('SnPM:InvalidCovariate', 'Covariate [%d,1] does not match number of subjects [%d]',...
size(job.cov(i).c,1),nScan))
else
%-Save raw covariates for printing later on
Gc = [Gc,d];
% Center
d = d - ones(q,1)*mean(d); str='';
G = [G, d];
dnames = job.cov(i).cname;
% dnames = [str,'ConfCov#',int2str(nGcs+1)];
% for j = nGcs+1:nGcs+size(d,1)
% dnames = str2mat(dnames,['ConfCov#',int2str(j)]);
% end
Gcnames = str2mat(Gcnames,dnames);
end
end
%-Strip off blank line from str2mat concatenations
if size(Gc,2)
Gcnames(1,:)=[];
end
end
%-Since no FxC interactions these are the same
Gnames = Gcnames;
%-Compute permutations of subjects (we'll call them scans)
%=======================================================================
%-Compute permutations for a single exchangability block
%-----------------------------------------------------------------------
nPiCond_mx = 2^nScan;
nPiCond = job.nPerm;
if job.nPerm >= nPiCond_mx
bAproxTst=0;
if job.nPerm > nPiCond_mx
nPiCond = nPiCond_mx;
fprintf('NOTE: %d permutations requested, only %d possible.\n',job.nPerm, nPiCond_mx)
end
else
bAproxTst=1;
end
snpm_check_nperm(nPiCond,nPiCond_mx);
%-Two methods for computing permutations, random and exact; exact
% is efficient, but a memory hog; Random is slow but requires little
% memory.
%-We use the exact one when the nScan is small enough; for nScan=12,
% PiCond will initially take 384KB RAM, for nScan=14, 1.75MB, so we
% use 12 as a cut off. (2^nScan*nScan * 8bytes/element).
%-If user wants all perms, then random method would seem to take an
% absurdly long time, so exact is used.
%-If number of subjects/scans is too large, abandon integer indexing
if nScan<=12 || ~bAproxTst % exact method
%-Generate all labellings of nScan scans as +/- 1
PiCond=[];
for i=0:nScan-1
PiCond=[ones(2^i,1),PiCond;-ones(2^i,1),PiCond];
end
%-Only do half the work, if possible
bhPerms=0;
if ~bAproxTst
PiCond=PiCond(PiCond(:,1)==1,:);
bhPerms=1;
elseif bAproxTst % pick random supsample of perms
tmp=randperm(size(PiCond,1));
if min(tmp(1:nPiCond)) ~= 1
tmp(1) = 1; % Always include correctly labeled iCond
end
PiCond=PiCond(tmp(1:nPiCond),:);
end
elseif nScan<=53 % random method, using integer indexing
d = nPiCond-1;
tmp = pow2(0:nScan-1)*iCond'; % Include correctly labeled iCond
while (d>0)
tmp = union(tmp,floor(rand(1,d)*2^nScan));
tmp(tmp==2^nScan) = []; % This will almost never happen
d = nPiCond-length(tmp);
end
% randomize tmp before it is used to get PiCond
rand_tmp=randperm(length(tmp));
tmp=tmp(rand_tmp);
PiCond = 2*rem(floor(tmp(:)*pow2(-(nScan-1):0)),2)-1;
bhPerms=0;
else % random method, for nSubj>=54, when exceeding
% double-precision's significand's 53 bit precision
% For now, don't check for duplicates
d = nPiCond-1;
PiCond = [iCond;
2*(rand(nPiCond-1,nScan)>0.5)-1];
bhPerms=0;
end
%-Find (maybe) iCond in PiCond, move iCond to 1st; negate if neccesary
%-----------------------------------------------------------------------
perm = find(all((meshgrid(iCond,1:size(PiCond,1))==PiCond)'));
if (bhPerms)
perm=[perm,-find(all((meshgrid(iCond,1:size(PiCond,1))==-PiCond)'))];
end
if length(perm)==1
if (perm<0), PiCond=-PiCond; perm=-perm; end
%-Actual labelling must be at top of PiCond
if (perm~=1)
PiCond(perm,:)=[];
PiCond=[iCond;PiCond];
end
if ~bAproxTst
%-Randomise order of PiConds, unless already randomized
% Allows interim analysis
PiCond=[PiCond(1,:);PiCond(randperm(size(PiCond,1)-1)+1,:)];
end
else
error('SnPM:InvalidPiCond', ['Bad PiCond (' num2str(perm) ')'])
end
%-Form non-null design matrix partitions (Globals handled later)
%=======================================================================
%-Form for HC computation at permutation perm
sHCform = 'spm_DesMtx(PiCond(perm,:),''C'',''Mean'')';
%-Condition partition
[H,Hnames] = spm_DesMtx(iCond,'C','Mean');
%-Contrast of condition effects
% (spm_DesMtx puts condition effects in index order)
CONT = [1];
%-No block/constant
B=[]; Bnames='';
%-Design description
%-----------------------------------------------------------------------
sDesign = sprintf('MultiSub: One Sample T test on diffs/contrasts; 1 condition, 1 scan per subject: %d(subj)',nScan);
sPiCond = sprintf('%d permutations of conditions, bhPerms=%d',size(PiCond,1)*(bhPerms+1),bhPerms);