forked from SnPM-toolbox/SnPM-devel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnpm_pi_PairT.m
322 lines (304 loc) · 11.5 KB
/
snpm_pi_PairT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
% Mfile snpm_pi_PairT
% PlugIn design module for snpm_ui
% - MultiSubj nonrandomized act design: 2 (cond) no replications
% MultiSub: Paired T test; 2 conditions, 1 scan per condition
% FORMAT snpm_pi_PairT
%
% See body of snpm_ui for definition of PlugIn interface.
%_______________________________________________________________________
%
%
% snpm_pi_PairT is a PlugIn for the SnPM design set-up program,
% creating design and permutation matrix appropriate for multi-
% subject, two condition no replication design, where the condition
% labels have been applied to the subjects in a nonrandomized fasion.
%
% With only two scans per subject, there are only two possible sets of
% labels: AB and BA. No restriction is placed on how many subjects
% received A first. That is, unlike snpm_MSA2x, this PlugIn handles
% designs where all subjects receive condition A first.
%
% Since there is no randomization we must justify exchangibility with
% assumptions under the null hypothesis. In particular, we must assume
% that at each voxel, the distribution of the data is the same for A and
% B scans and for all subjects. This is equivalent to assuming that
% distribution of A-B is symmetric and the same for all subjects. Note
% that that an unmodeled temporal effect would violated this assumption
% (no such assumption is needed when a randomization design is used; if
% randomization was used snpm_MSA2x should be used).
%
% (If there are replications, it is recommended that a "first level")
% (model is fit, reducing each condition to a single summary image. )
%
%-Number of permutations
%=======================================================================
% There are 2^nSubj possible labelings, where nSubj is the number of
% subjects. This is because each subject can have two possible states,
% flipped or unflipped.
%
% For example, 2^7 = 128 and 2^8 = 256. Hence at least eight subjects are
% needed to characterize the permutation distribution well, and 10 or more
% are best.
%
%-Prompts
%=======================================================================
%
% '# subjects': Number of subjects to analyze
%
% For each subject you will be prompted:
%
% 'Subject #: Select scans in time order': Enter this subject's scans.
% It is important to input the scans in time order so that temporal
% effects can be accounted for.
%
% 'Enter conditions index: (B/A)': Using A's to indicate activation
% scans and B's to indicate baseline, enter a sequence of 2*nRepl
% letters, nRepl A's and nRepl B's, where nRepl is the number of
% replications. Spaces are permitted.
% There can only be two possible condition indicies: That of the
% first subject and the A<->B flip of the first subject.
%
% '### Perms. Use approx. test?': If there are a large number of
% permutations it may not be necessary (or possible!) to compute
% all the permutations. A common guideline is that 10,000 permutations
% are sufficient to characterize the permutation distribution well.
% More permutations will probably not change the results much.
% If you answer yes you will be prompted for the number...
% '# perms. to use?'
%
%
%-Variable "decoder" - This PlugIn supplies the following:
%=======================================================================
% - core -
% P - string matrix of Filenames corresponding to observations
% iGloNorm - Global normalisation code, or allowable codes
% - Names of columns of design matrix subpartitions
% PiCond - Permuted conditions matrix, one labelling per row, actual
% labelling on first row
% sPiCond - String describing permutations in PiCond
% sHCform - String for computation of HC design matrix partitions
% permutations indexed by perm in snpm_cp
% CONT - single contrast for examination, a row vector
% sDesign - String defining the design
% sDesSave - String of PlugIn variables to save to cfg file
%
% - design -
% H,Hnames - Condition partition of design matrix, & effect names
% B,Bnames - Block partition (exchangability blocks), & effect names
%
% - extra -
% iCond - Condition indicator vector
% iRepl - Replication indicator vector
% PiSubj - +/-1 flip conditions indicator for subjects,
% relative to first subject.
%_______________________________________________________________________
% Copyright (C) 2013 The University of Warwick
% Id: snpm_pi_PairT.m SnPM13 2013/10/12
% Thomas Nichols, Camille Maumet
% Based on snpm_MSA2x.m v1.5
%-----------------------------functions-called------------------------
% spm_DesMtx
% spm_select
% spm_input
%-----------------------------functions-called------------------------
%-Initialisation
%-----------------------------------------------------------------------
nCond = 2; % Number of conditions
iGloNorm = '123'; % Allowable Global norm. codes
sDesSave = 'iCond iRepl PiSubj';
if snpm_get_defaults('shuffle_seed')
% Shuffle seed of random number generator
try
rng('shuffle');
catch
% Old syntax
rand('seed',sum(100*clock));
end
end
MaxExh_nSubj = snpm_get_defaults('pi_PairT_MaxExh');
% PlugIn variables to save in cfg file
%-Get number of subjects
% nSubj = spm_input('# subjects','+1');
% if (nSubj==1), error('SnPM:SingleSubject', 'Use single subject plug for single subjects'); end
nSubj = numel(job.fsubject);
%-Only consider one replication -- basically a RFX machine.
nRepl = 1;
nScan = nRepl*nCond;
%-Get filenames and iCond, the condition labels
%=======================================================================
P = [];
iCond = [];
iSubj = [];
iSubjC= [];
iRepl = [];
for subj=1:nSubj
tmp = ['Subject ',int2str(subj),': Select scans in time order'];
P = str2mat(P, str2mat(job.fsubject(subj).scans)); %str2mat(P,spm_select(nCond*nRepl,'image',tmp));
Cond=[];
while(isempty(Cond))
% tmp=['Enter conditions index: (A/B) [',int2str(nCond*nRepl),']'];
% tmpCond = spm_input(tmp,'+0','s');
% %-Convert a/b notation to +/- vector
% tmpCond(isspace(tmpCond)) = [];
% tmpCond = abs(upper(tmpCond));
% tmp = tmpCond;
tmpCond = job.fsubject(subj).scindex;
tmpCond = tmpCond-min(tmpCond);
tmpCond = tmpCond/max([1,tmpCond])*2-1;
%-Check validity of tmpCond
if length(tmpCond)==nScan
if length(find(diff(sort(tmpCond)))) ~= nCond-1
error('SnPM:InvalidnCond', 'Exactly ',[int2str(nCond), ...
' conditions must be supplied']);
elseif sum(tmpCond)~=0
error('SnPM:InvalidnRepl', ['Exactly ',int2str(nRepl),' As and ', ...
int2str(nRepl),' Bs must be supplied']);
elseif isempty(iCond)
sCond=setstr(tmp([1,diff(sort(tmp))]~=0));
Cond = tmpCond;
elseif any(iCond(1:nScan)~=tmpCond) && ...
any(iCond(1:nScan)~=(-tmpCond))
error('SnPM:InvalidiCond', ['Conditions index must be same as', ...
'first subject, or flipped']);
else
Cond = tmpCond;
end
else
error('SnPM:InvalidiIndices', ['Enter indicies for ',int2str(nCond*nRepl),' scans'])
end
end
iCond = [iCond, Cond];
iSubj = [iSubj, subj*ones(1,nScan)];
iSubjC= [iSubjC, Cond(1)];
iRepl = [iRepl, cumsum(Cond==-1).*(Cond==-1) + ...
cumsum(Cond==1).*(Cond==1)];
end
% Force Subj 1 to have +1 label
if (iSubjC(1)==-1)
iSubjC = -iSubjC;
iCond = -iCond;
end
P(1,:) = [];
iSUBJ = iSubj;
%-Compute permutations of subjects
%=======================================================================
%-Work out how many perms, and ask about approximate tests
%-----------------------------------------------------------------------
if nSubj <= 52
nPiSubj_mx = 2^nSubj;
else
nPiSubj_mx = Inf;
end
nPiSubj = job.nPerm;
if job.nPerm >= nPiSubj_mx
bAproxTst=0;
if job.nPerm > nPiSubj_mx
fprintf('NOTE: %d permutations requested, only %d possible.\n',job.nPerm, nPiSubj_mx)
nPiSubj = nPiSubj_mx;
end
else
bAproxTst=1;
end
if rem(nPiSubj,2)
error('SnPM:OddPermutations', ['Number of perms must be even']);
nPiSubj = 0;
end
% if (spm_input(sprintf('%d Perms. Use approx. test?',nPiSubj),'+1','y/n')=='y')
% bAproxTst = 1;
% tmp = 0;
% while ((tmp>nPiSubj) | (tmp==0))
% tmp = spm_input(sprintf('# perms. to use? (Max %d)',nPiSubj),'+0');
% tmp = floor(max([0,tmp]));
% if rem(tmp,2)
% error('SnPM:OddPermutations', ['Number of perms must be even']);
% tmp=0;
% end
% end
% if (tmp==nPiSubj)
% bAproxTst = 0;
% else
% nPiSubj=tmp;
% end
% else
% bAproxTst = 0;
% end
%-Compute permutations of subjects
%=======================================================================
%-All possible labelings correspond to the binary representation of
% numbers {1...2^nSubj}.
if nSubj<=MaxExh_nSubj
if (bAproxTst)
tmp = randperm(2^nSubj)-1;
tmp = tmp(1:nPiSubj)';
else
tmp = (0:(2^nSubj-1))';
end
%-Generate labelings of subjects as +/-1
PiSubj=[];
for i=(nSubj-1):-1:0
PiSubj = [PiSubj,2*(tmp>=2^i)-1];
tmp = tmp - (tmp>=2^i)*2^i;
end
% Look for correct labeling
d = find(all((PiSubj==meshgrid(iSubjC,1:size(PiSubj,1)))'));
if (length(d)~=1 && ~bAproxTst)
error('SnPM:CorrectLabelMissing', 'Internal error: Correct labeling is not in the perms');
elseif (length(d)~=1)
% Correct labeling randomly removed, insert at top
PiSubj(1,:) = iSubjC;
else
% Swap correct labeling to top
PiSubj(d,:) = PiSubj(1,:);
PiSubj(1,:) = iSubjC(1:nSubj);
end
else
% Here we are always approximate
PiSubj = [...
iSubjC
2*randi(2,nPiSubj-1,nSubj)-3];
end
%-If not approximate then we can just calc half
%----------------------------------------------------------------------
if ~bAproxTst
PiSubj = PiSubj(PiSubj(:,1)==1,:);
bhPerms=1;
else
bhPerms=0;
end
%-Build conditions perumutions - PiCond
%=======================================================================
% is there a better way?
tmp1=zeros(nSubj*nScan,nSubj);
tmp2=meshgrid(1:nScan,1:nSubj)';
tmp3=meshgrid(1:nSubj,1:nScan); tmp3 = tmp3(:)';
tmp1((tmp3-1)*(nSubj+1)*nScan + tmp2(:)') = iCond(tmp2(:));
PiCond = PiSubj*tmp1';
clear tmp1 tmp2 tmp3
%-Change Cond def; Old: [1=A, -1=B]; New: [1=A, 2=B]
%=======================================================================
iCond(iCond==-1) = 2;
PiCond(PiCond==-1) = 2;
%-Build correct perm design matrix, partition B
%=======================================================================
%-Use implicit SumToZero constraints via relative block effects & pinv.
%-See spm_DesMtx for more information on this.
[B,Bnames] = spm_DesMtx(iSUBJ,'+0m','Subj');
%-Form non-null design matrix partitions (Globals handled later)
%=======================================================================
%-Form for HC computation at permutation perm
sHCform = 'spm_DesMtx(PiCond(perm,:),''-'',''Cond'')';
%-Condition partition
[H] = spm_DesMtx(iCond,'-','Cond');
Hnames=[];
for i=1:nCond
Hnames=str2mat(Hnames,['Cond_',sCond(i)]); end
Hnames(1,:) = [];
%-Contrast of condition effects
% (spm_DesMtx puts condition effects in index order)
CONT = [1,-1];
%-Design description
%-----------------------------------------------------------------------
sDesign = sprintf('MultiSub: Paired T test; 2 conditions, 1 scan per condition: %d(subj) %d(cond)x%d(repl)%s', ...
nSubj,nCond,nRepl);
sPiCond = sprintf('Permutations of conditions by subject, %d permutations, bhPerms=%d', ...
size(PiCond,1)*(bhPerms+1),bhPerms);