-
Notifications
You must be signed in to change notification settings - Fork 0
/
chat.py
436 lines (352 loc) · 17.6 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
from threading import Thread
import json
import torch
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex
from bs4 import BeautifulSoup
def clean_html(html_content):
# Parse the HTML
soup = BeautifulSoup(html_content, 'html.parser')
# Remove all elements with class 'small-text'
for element in soup.find_all(class_='small-text'):
element.decompose() # Removes the element from the tree
# Get the plain text, stripping any remaining HTML tags
cleaned_text = soup.get_text()
return cleaned_text.strip().replace(" ", " ").replace("( ", "(").replace(" )", ")")
# Reusing the original MLP class and other functions (unchanged) except those specific to Streamlit
class MLP(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
super(MLP, self).__init__()
self.fc1 = torch.nn.Linear(input_dim, hidden_dim)
self.fc3 = torch.nn.Linear(hidden_dim, output_dim)
self.layer_id = layer_id
if cuda:
self.device = "cuda"
else:
self.device = "cpu"
self.to(self.device)
def forward(self, x):
x = torch.flatten(x, start_dim=1)
x = torch.relu(self.fc1(x))
x = self.fc3(x)
return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()
def map_value_to_color(value, colormap_name='tab20c'):
value = np.clip(value, 0.0, 1.0)
colormap = plt.get_cmap(colormap_name)
rgba_color = colormap(value)
css_color = to_hex(rgba_color)
return css_color + "88"
# Caching functions for model and classifier
model_cache = {}
def get_model_and_tokenizer(name):
if name not in model_cache:
tok = AutoTokenizer.from_pretrained(name, token=os.getenv("HF_TOKEN"))
model = AutoModelForCausalLM.from_pretrained(name, token=os.getenv("HF_TOKEN"), torch_dtype="bfloat16")
model_cache[name] = (model, tok)
return model_cache[name]
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
config = {
"classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
"classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
}
layer_id = config["classifier_token"]["layer"]
classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device))
classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device))
return classifier_span, classifier_token, config["classifier_token"]["label_map"]
def find_datasets_and_model_ids(root_dir):
datasets = {}
for root, dirs, files in os.walk(root_dir):
if 'config.json' in files and 'stoke_config.json' in files:
config_path = os.path.join(root, 'config.json')
stoke_config_path = os.path.join(root, 'stoke_config.json')
with open(config_path, 'r') as f:
config_data = json.load(f)
model_id = config_data.get('model_id')
if model_id:
dataset_name = os.path.basename(os.path.dirname(config_path))
with open(stoke_config_path, 'r') as f:
stoke_config_data = json.load(f)
if model_id:
dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
return datasets
def filter_spans(spans_and_values):
if spans_and_values == []:
return [], []
# Create a dictionary to store spans based on their second index values
span_dict = {}
spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]
# Iterate through the spans and update the dictionary with the highest value
for span, value in zip(spans, values):
start, end = span
if start > end or end - start > 15 or start == 0:
continue
current_value = span_dict.get(end, None)
if current_value is None or current_value[1] < value:
span_dict[end] = (span, value)
if span_dict == {}:
return [], []
# Extract the filtered spans and values
filtered_spans, filtered_values = zip(*span_dict.values())
return list(filtered_spans), list(filtered_values)
def remove_overlapping_spans(spans):
# Sort the spans based on their end points
sorted_spans = sorted(spans, key=lambda x: x[0][1])
non_overlapping_spans = []
last_end = float('-inf')
# Iterate through the sorted spans
for span in sorted_spans:
start, end = span[0]
value = span[1]
# If the current span does not overlap with the previous one
if start >= last_end:
non_overlapping_spans.append(span)
last_end = end
else:
# If it overlaps, choose the one with the highest value
existing_span_index = -1
for i, existing_span in enumerate(non_overlapping_spans):
if existing_span[0][1] <= start:
existing_span_index = i
break
if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
non_overlapping_spans[existing_span_index] = span
return non_overlapping_spans
def generate_html_no_overlap(tokenized_text, spans):
current_index = 0
html_content = ""
for (span_start, span_end), value in spans:
# Add text before the span
html_content += "".join(tokenized_text[current_index:span_start])
# Add the span with underlining
html_content += "<b><u>"
html_content += "".join(tokenized_text[span_start:span_end])
html_content += "</u></b> "
current_index = span_end
# Add any remaining text after the last span
html_content += "".join(tokenized_text[current_index:])
return html_content
def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer, new_tags):
# spanwise annotated text
annotated = []
span_ends = -1
in_span = False
out_of_span_tokens = []
for i in reversed(range(len(tokenwise_preds))):
if in_span:
if i >= span_ends:
continue
else:
in_span = False
predicted_class = ""
style = ""
span = None
for s in spans:
if s[1] == i+1:
span = s
if tokenwise_preds[i] != 0 and span is not None:
predicted_class = f"highlight spanhighlight"
style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
annotated.append(" ")
span_opener = f" <span class='{predicted_class}' data-tooltip-text='{new_tags[tokenwise_preds[i]]}' style='{style}'>".replace(" ", " ")
span_end = f"<span class='small-text'>{new_tags[tokenwise_preds[i]]}</span></span>"
annotated.extend(out_of_span_tokens)
out_of_span_tokens = []
span_ends = span[0]
in_span = True
annotated.append(span_end)
annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
annotated.append(span_opener)
else:
out_of_span_tokens.append(token_strings[i])
annotated.extend(out_of_span_tokens)
return [x for x in reversed(annotated)]
# Creating the Gradio Interface
def generate_text(input_text, messages=None):
if input_text == "":
yield "Please enter some text first."
return
token_limit=350
#print([clean_html(x["content"]) for x in messages])
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
if messages is None:
messages = []
else:
messages = []
system="""You are a knowledge assistant. Keep your responses very short."""
messages = [{"role": "system", "content": system}]+ [{"role": x["role"], "content": clean_html(x["content"])} for x in messages] +[{"role": "user", "content": input_text}]
input_text = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tok([input_text], return_tensors="pt").to(model.device)
if len(inputs.input_ids[0]) > 80:
yield [{"role": "assistant", "content": "Your message is too long for this demo, sorry :("}]
return
#inputs = tok([f" {input_text[:200]}"], return_tensors="pt").to(model.device)
#inputs = tok([input_text[:200]], return_tensors="pt").to(model.device)
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=token_limit-len(inputs.input_ids[0]),
repetition_penalty=1.2, do_sample=False
)
def generate_async():
model.generate(**generation_kwargs)
thread = Thread(target=generate_async)
thread.start()
# Display generated text as it becomes available
output_text = ""
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
output_text = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
output_text += tk
else:
text_tokenwise += tk
output_text += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok, new_tags)
#generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
generated_text_spanwise = "".join(annotated_tokens).replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
output = generated_text_spanwise
#output += "<h5>Show tokenwise classification</h5>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$").replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
#output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
#if removed_spans != "":
# output += f"<br><br><i>({removed_spans})</i>"
list_of_spans = [{"name": tok.convert_tokens_to_string(new_text[2][x[0]:x[1]]).strip(), "type": new_tags[tags[x[1]-1]]} for x in filter_spans(spans)[0] if new_tags[tags[x[1]-1]] != "O"]
out_dict = {"text": output_text.replace("<|endoftext|>", "").replace("<|begin_of_text|>", "").strip(), "entites": list_of_spans}
if output.endswith("<|end_header_id|>\n\n"):
continue
html_out = output.replace("<|endoftext|>", "").replace("<|begin_of_text|>", "").strip().split("<|end_header_id|>")[-1].replace("**", "")
yield [messages[-1]] + [{"role": "assistant", "content": html_out}]
return
# Load datasets and models for the Gradio app
datasets = find_datasets_and_model_ids("data/")
available_models = list(datasets.keys())
available_datasets = {model: list(datasets[model].keys()) for model in available_models}
available_configs = {model: {dataset: list(datasets[model][dataset].keys()) for dataset in available_datasets[model]} for model in available_models}
def update_datasets(model_name):
return available_datasets[model_name]
def update_configs(model_name, dataset_name):
return available_configs[model_name][dataset_name]
model_id = "meta-llama/Llama-3.2-1B-Instruct"
data_id = "STOKE_500_wikiqa"
config_id = "default"
#model_id = "gpt2"
#data_id = "1_NER"
#config_id = "default"
model, tok = get_model_and_tokenizer(model_id)
if torch.cuda.is_available():
model.cuda()
# Load model classifiers
try:
classifier_span, classifier_token, label_map = get_classifiers_for_model(
model.config.n_head * model.config.n_layer, model.config.n_embd, model.device,
datasets[model_id][data_id][config_id]
)
except:
classifier_span, classifier_token, label_map = get_classifiers_for_model(
model.config.num_attention_heads * model.config.num_hidden_layers, model.config.hidden_size, model.device,
datasets[model_id][data_id][config_id]
)
css = """
<style>
.prose {
line-height: 200%;
}
.highlight {
display: inline;
}
.highlight::after {
background-color: var(data-color);
}
.spanhighlight {
padding: 2px 5px;
border-radius: 5px;
}
.tooltip {
position: relative;
display: inline-block;
}
.tooltip::after {
content: attr(data-tooltip-text); /* Set content from data-tooltip-text attribute */
display: none;
position: absolute;
background-color: #333;
color: #fff;
padding: 5px;
border-radius: 5px;
bottom: 100%; /* Position it above the element */
left: 50%;
transform: translateX(-50%);
width: auto;
min-width: 120px;
margin: 0 auto;
text-align: center;
}
.tooltip:hover::after {
display: block; /* Show the tooltip on hover */
}
.small-text {
padding: 2px 5px;
background-color: white;
border-radius: 5px;
font-size: xx-small;
margin-left: 0.5em;
vertical-align: 0.2em;
font-weight: bold;
color: grey!important;
}
footer {
display:none !important
}
.gradio-container {
padding: 0!important;
height:400px;
}
</style>"""
"""
with gr.Blocks(css=css, elem_id="chatbox") as demo:
gr.ChatInterface(generate_text, examples=["Who where the Beatles?", "Whats the GDP of Norway?", "List some fun things to do in Miami", "What do you know about the KIT in Karlsruhe?", "Give me a list of the most iconic 90s songs", "Whats the typical cost of a pizza in New York City?", "Got any suggestions for a day trip from Miami?", "Tell me about the climate in Europe.", "Where can I go scuba diving?", "give me a list of famous people and their years of birth"], type="messages")
"""
example_messages=[{'role': 'user', 'content': "I'm going to Miami. What should I do there?"}, {'role': 'assistant', 'content': """<span class='highlight spanhighlight' data-tooltip-text='GPE' style='background-color: #e6550d88'>Miami<span class='small-text'>GPE</span></span> has plenty of exciting activities:
* Visit <span class='highlight spanhighlight' data-tooltip-text='LOC' style='background-color: #fdd0a288'> South Beach<span class='small-text'>LOC</span></span> for art deco architecture and vibrant nightlife.
* Explore the <span class='highlight spanhighlight' data-tooltip-text='FAC' style='background-color: #c6dbef88'> Vizcaya Museum & Gardens<span class='small-text'>FAC</span></span>, an estate with European-inspired gardens.
* Take a stroll through <span class='highlight spanhighlight' data-tooltip-text='FAC' style='background-color: #c6dbef88'> Little Havana's Calle Ocho<span class='small-text'>FAC</span></span> ( <span class='highlight spanhighlight' data-tooltip-text='FAC' style='background-color: #c6dbef88'>8th Street<span class='small-text'>FAC</span></span>) for <span class='highlight spanhighlight' data-tooltip-text='NORP' style='background-color: #a1d99b88'> Cuban<span class='small-text'>NORP</span></span> culture and food.
* Relax on <span class='highlight spanhighlight' data-tooltip-text='LOC' style='background-color: #fdd0a288'> Miami Beach<span class='small-text'>LOC</span></span> or visit <span class='highlight spanhighlight' data-tooltip-text='FAC' style='background-color: #c6dbef88'> Crandon Park<span class='small-text'>FAC</span></span> for snorkeling and beach activities.
Which one interests you most?"""}]
with gr.Blocks(css=css, fill_width=True) as demo:
chatbot = gr.Chatbot(type="messages", value=example_messages)
msg = gr.Textbox(submit_btn=True, max_length=80, placeholder="Type your message here...")
msg.submit(lambda: None, None, chatbot).then(generate_text, msg, chatbot, queue="queue")
# Add an examples section for users to pick from predefined messages
examples = gr.Examples(examples=["What can you tell me about the Beatles?", "Whats the GDP of Norway?", "I'm going to Miami. What should I do there?", "What do you know about the KIT in Karlsruhe?"], inputs=msg, run_on_click=True, fn=generate_text, outputs=chatbot)
demo.launch()