forked from CC2Vec/CC2Vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjit_DExtended.py
85 lines (68 loc) · 4.41 KB
/
jit_DExtended.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
from jit_DExtended_padding import padding_data
import pickle
import numpy as np
from jit_DExtended_eval import evaluation_model
from jit_DExtended_train import train_model
def read_args():
parser = argparse.ArgumentParser()
# Training our model
parser.add_argument('-train', action='store_true', help='training DeepJIT model')
parser.add_argument('-train_data', type=str, help='the directory of our training data')
parser.add_argument('-train_data_cc2ftr', type=str, help='the directory of our training data with cc2ftr')
parser.add_argument('-dictionary_data', type=str, help='the directory of our dicitonary data')
# Predicting our data
parser.add_argument('-predict', action='store_true', help='predicting testing data')
parser.add_argument('-pred_data', type=str, help='the directory of our testing data')
parser.add_argument('-pred_data_cc2ftr', type=str, help='the directory of our testing data with cc2ftr')
# Predicting our data
parser.add_argument('-load_model', type=str, help='loading our model')
# Number of parameters for reformatting commits
parser.add_argument('-msg_length', type=int, default=256, help='the length of the commit message')
parser.add_argument('-code_line', type=int, default=10, help='the number of LOC in each hunk of commit code')
parser.add_argument('-code_length', type=int, default=512, help='the length of each LOC of commit code')
# Number of parameters for PatchNet model
parser.add_argument('-embedding_dim', type=int, default=64, help='the dimension of embedding vector')
parser.add_argument('-filter_sizes', type=str, default='1, 2, 3', help='the filter size of convolutional layers')
parser.add_argument('-num_filters', type=int, default=64, help='the number of filters')
parser.add_argument('-hidden_units', type=int, default=512, help='the number of nodes in hidden layers')
parser.add_argument('-dropout_keep_prob', type=float, default=0.5, help='dropout for training DeepJIT')
parser.add_argument('-l2_reg_lambda', type=float, default=1e-5, help='regularization rate')
parser.add_argument('-learning_rate', type=float, default=1e-4, help='learning rate')
parser.add_argument('-batch_size', type=int, default=64, help='batch size')
parser.add_argument('-num_epochs', type=int, default=50, help='the number of epochs')
parser.add_argument('-save-dir', type=str, default='snapshot', help='where to save the snapshot')
# CUDA
parser.add_argument('-device', type=int, default=-1,
help='device to use for iterate data, -1 mean cpu [default: -1]')
parser.add_argument('-no-cuda', action='store_true', default=False, help='disable the GPU')
return parser
if __name__ == '__main__':
params = read_args().parse_args()
if params.train is True:
data = pickle.load(open(params.train_data, 'rb'))
ids, labels, msgs, codes = data
labels = np.array(labels)
data_ftr = pickle.load(open(params.train_data_cc2ftr, 'rb'))
dictionary = pickle.load(open(params.dictionary_data, 'rb'))
dict_msg, dict_code = dictionary
pad_msg = padding_data(data=msgs, dictionary=dict_msg, params=params, type='msg')
pad_code = padding_data(data=codes, dictionary=dict_code, params=params, type='code')
data = (data_ftr, pad_msg, pad_code, labels, dict_msg, dict_code)
train_model(data=data, params=params)
elif params.predict is True:
data = pickle.load(open(params.pred_data, 'rb'))
ids, labels, msgs, codes = data
labels = np.array(labels)
data_ftr = pickle.load(open(params.pred_data_cc2ftr, 'rb'))
dictionary = pickle.load(open(params.dictionary_data, 'rb'))
dict_msg, dict_code = dictionary
pad_msg = padding_data(data=msgs, dictionary=dict_msg, params=params, type='msg')
pad_code = padding_data(data=codes, dictionary=dict_code, params=params, type='code')
data = (data_ftr, pad_msg, pad_code, labels, dict_msg, dict_code)
evaluation_model(data=data, params=params)
else:
print('--------------------------------------------------------------------------------')
print('--------------------------Something wrongs with your command--------------------')
print('--------------------------------------------------------------------------------')
exit()