forked from CC2Vec/CC2Vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjit_DExtended_train.py
58 lines (49 loc) · 2.32 KB
/
jit_DExtended_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from jit_DExtended_model import DeepJITExtended
import torch
from tqdm import tqdm
from jit_utils import mini_batches_update_DExtended
import torch.nn as nn
import os, datetime
from jit_utils import save
def train_model(data, params):
cc2ftr, data_pad_msg, data_pad_code, data_labels, dict_msg, dict_code = data
# set up parameters
params.cuda = (not params.no_cuda) and torch.cuda.is_available()
del params.no_cuda
params.filter_sizes = [int(k) for k in params.filter_sizes.split(',')]
params.save_dir = os.path.join(params.save_dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
params.vocab_msg, params.vocab_code = len(dict_msg), len(dict_code)
params.embedding_ftr = cc2ftr.shape[1]
if len(data_labels.shape) == 1:
params.class_num = 1
else:
params.class_num = data_labels.shape[1]
params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# create and train the defect model
model = DeepJITExtended(args=params)
if torch.cuda.is_available():
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=params.l2_reg_lambda)
criterion = nn.BCELoss()
for epoch in range(1, params.num_epochs + 1):
total_loss = 0
# building batches for training model
batches = mini_batches_update_DExtended(X_ftr=cc2ftr, X_msg=data_pad_msg, X_code=data_pad_code, Y=data_labels)
for i, (batch) in enumerate(tqdm(batches)):
ftr, pad_msg, pad_code, labels = batch
if torch.cuda.is_available():
ftr = torch.tensor(ftr).cuda()
pad_msg, pad_code, labels = torch.tensor(pad_msg).cuda(), torch.tensor(
pad_code).cuda(), torch.cuda.FloatTensor(labels)
else:
ftr = torch.tensor(ftr).long()
pad_msg, pad_code, labels = torch.tensor(pad_msg).long(), torch.tensor(pad_code).long(), torch.tensor(
labels).float()
optimizer.zero_grad()
predict = model.forward(ftr, pad_msg, pad_code)
loss = criterion(predict, labels)
total_loss += loss
loss.backward()
optimizer.step()
print('Epoch %i / %i -- Total loss: %f' % (epoch, params.num_epochs, total_loss))
save(model, params.save_dir, 'epoch', epoch)