-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
624 lines (448 loc) · 18 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
# %%
import torch
from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator
from torch import nn, Tensor
from torch.optim import Adam
import torch.nn.functional as F
import math
from tqdm import tqdm
import os
import random
print("Hello. We are running")
# %%
SRC = Field(tokenize="spacy", tokenizer_language="de",
init_token="<sos>", eos_token="<eos>", lower=True)
TRG = Field(tokenize="spacy", tokenizer_language="en",
init_token="<sos>", eos_token="<eos>", lower=True)
train_data, val_data, test_data = Multi30k.splits(
exts=(".de", ".en"), fields=(SRC, TRG))
# %%
SRC.build_vocab(train_data, min_freq=2)
TRG.build_vocab(train_data, min_freq=2)
# %%
# device = "cpu"
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
if device == "cuda:1":
torch.set_default_tensor_type('torch.cuda.FloatTensor')
BATCH_SIZE = 64
train_iter, val_iter, test_iter = BucketIterator.splits(
(train_data, val_data, test_data),
batch_size=BATCH_SIZE,
device=device,
repeat=True,
shuffle=True
)
# %%
x_ = next(iter(train_iter))
toy_vocab = torch.Tensor([[1, 2, 3]]).long().to(device) # [a,b,c]
# %%
D_MODEL = 512
P_DROP = 0.1
NUM_HEADS = 8
D_FF = 2048
# %%
class Embeddings(nn.Module):
def __init__(self, len_vocab, d_model=D_MODEL):
super(Embeddings, self).__init__()
self.d_model = d_model
self.embedding = nn.Embedding(len_vocab, self.d_model)
def forward(self, x):
return self.embedding(x) * math.sqrt(self.d_model)
# %%
# toy_embedding_layer = Embeddings(toy_vocab.shape[-1]+1, d_model=4).to(device)
# toy_embeddings = toy_embedding_layer(toy_vocab)
# print(toy_embeddings, toy_embeddings.shape)
# %%
class PositionalEncoding(nn.Module):
def __init__(self, d_model=D_MODEL, p_drop=P_DROP, max_len=5000):
super().__init__()
pe = torch.zeros(max_len, d_model)
pos = torch.arange(0, max_len).unsqueeze(1).float()
two_i = torch.arange(0, d_model, step=2)
div_term = torch.pow(10000, (two_i/d_model)).float()
pe[:, 0::2] = torch.sin(pos/div_term)
pe[:, 1::2] = torch.cos(pos/div_term)
pe = pe.unsqueeze(0)
# assigns the first argument to a class variable
# i.e. self.pe
self.register_buffer("pe", pe)
self.dropout = nn.Dropout(P_DROP)
# x is the input embedding
def forward(self, x):
# work through this line :S
x = x + self.pe[:, :x.size(1)].to(device)
return self.dropout(x)
# %%
# toy_PE_layer = PositionalEncoding(d_model=4).to(device)
# toy_PEs = toy_PE_layer(toy_embeddings)
# print(toy_PEs)
# %%
class MultiHeadAttention(nn.Module):
def __init__(self, d_model=D_MODEL, num_heads=NUM_HEADS, p_drop=P_DROP):
super().__init__()
# d_q, d_k, d_v
self.d = d_model//num_heads
self.d_model = d_model
self.num_heads = num_heads
self.dropout = nn.Dropout(P_DROP)
self.linear_Qs = [nn.Linear(d_model, self.d).to(device)
for head in range(num_heads)]
self.linear_Ks = [nn.Linear(d_model, self.d).to(device)
for head in range(num_heads)]
self.linear_Vs = [nn.Linear(d_model, self.d).to(device)
for head in range(num_heads)]
self.mha_linear = nn.Linear(d_model, d_model).to(device)
def scaled_dot_product_attention(self, Q: Tensor, K: Tensor, V: Tensor, mask=None):
Q_K_matmul = torch.matmul(Q, K.transpose(-2, -1))
matmul_scaled = Q_K_matmul/math.sqrt(self.d)
if mask is not None:
matmul_scaled += (mask * '-inf')
attention_weights = F.softmax(matmul_scaled, dim=-1)
# print("WHAT's THE MASK", mask)
# print("SCALED SOFTMAX", attention_weights)
output = torch.matmul(attention_weights, V)
return output, attention_weights
def forward(self, x: Tensor, queries: Tensor = None, keys: Tensor = None, values: Tensor = None, mask=None):
q = x if not queries else queries
if keys is not None:
k = keys
else:
k = x
if values is not None:
v = values
else:
v = x
# These will all be a list of Tensors
Q = [linear(q) for linear in self.linear_Qs]
K = [linear(k) for linear in self.linear_Ks]
V = [linear(v) for linear in self.linear_Vs]
# Why doesn't this work as expected?
# scores_per_head, attention_weights = [self.scaled_dot_product_attention(
# Q_, K_, V_, mask) for (Q_, K_, V_) in zip(Q, K, V)]
scores_per_head = []
attention_weights_per_head = []
for Q_, K_, V_ in zip(Q, K, V):
score, attention_weight = self.scaled_dot_product_attention(
Q_, K_, V_)
scores_per_head.append(score)
attention_weights_per_head.append(attention_weight)
concat_scores = torch.cat(scores_per_head, -1)
# shape: [B x num_head x S x S]
attn_stacked = torch.stack(
attention_weights_per_head, -1).permute(0, 3, 1, 2)
return self.dropout(self.mha_linear(concat_scores)), attn_stacked
# %%
# toy_MHA_layer = MultiHeadAttention(d_model=4, num_heads=2).to(device)
# toy_MHA, attention_weights = toy_MHA_layer(toy_PEs)
# print(toy_MHA, toy_MHA.shape)
# %%
# temp_MHA_layer = MultiHeadAttention(d_model=3, num_heads=1)
# def print_out(q, k, v):
# temp_out, temp_attn = temp_MHA_layer.scaled_dot_product_attention(
# q, k, v, None)
# print('Attention weights are:')
# print(temp_attn)
# print('Output is:')
# print(temp_out)
# temp_k = torch.Tensor([[10, 0, 0],
# [0, 10, 0],
# [0, 0, 10],
# [0, 0, 10]])
# temp_v = torch.Tensor([[1, 0],
# [10, 0],
# [100, 5],
# [1000, 6]])
# temp_q = torch.Tensor([[0, 0, 10], [0, 10, 0], [10, 10, 0]])
# print_out(temp_q, temp_k, temp_v)
# temp_y = torch.rand((1, 60, 512))
# %%
class AddNorm(nn.Module):
def __init__(self, d_model=D_MODEL, p_drop=P_DROP):
super().__init__()
self.layer_norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(p_drop)
def forward(self, x, res_input):
ln = self.layer_norm(res_input + x)
return self.dropout(ln)
# %%
# toy_AddNorm_layer = AddNorm(d_model=4).to(device)
# toy_AddNorm = toy_AddNorm_layer(toy_MHA, toy_PEs)
# print(toy_AddNorm, toy_AddNorm.shape)
# %%
class PointwiseFeedforward(nn.Module):
def __init__(self, d_model=D_MODEL, d_ff=D_FF, p_drop=P_DROP):
super().__init__()
self.pffn = nn.Sequential(
nn.Linear(d_model, d_ff),
nn.ReLU(),
nn.Dropout(p_drop),
nn.Linear(d_ff, d_model)
)
def forward(self, x):
return self.pffn(x)
# %%
# toy_PFFN_layer = PointwiseFeedforward(d_model=4, d_ff=16).to(device)
# toy_PFFN = toy_PFFN_layer(toy_AddNorm)
# print(toy_PFFN, toy_PFFN.shape)
# %%
# toy_AddNorm_layer_2 = AddNorm(d_model=4).to(device)
# toy_AddNorm_2 = toy_AddNorm_layer_2(toy_PFFN, toy_AddNorm)
# print(toy_AddNorm_2, toy_AddNorm_2.shape)
# %%
class EncoderLayer(nn.Module):
def __init__(self, d_model=D_MODEL, num_heads=NUM_HEADS, d_ff=D_FF, p_drop=P_DROP):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.d_ff = d_ff
self.p_drop = p_drop
self.MHA = MultiHeadAttention(
self.d_model, self.num_heads, self.p_drop)
self.addNorm1 = AddNorm(self.d_model, self.p_drop)
self.addNorm2 = AddNorm(self.d_model, self.p_drop)
self.PFFN = PointwiseFeedforward(
self.d_model, self.d_ff, self.p_drop)
def forward(self, x):
mha, _ = self.MHA(x)
addNorm_1 = self.addNorm1(mha, x)
pffn = self.PFFN(addNorm_1)
addNorm_2 = self.addNorm2(pffn, addNorm_1)
return addNorm_2
# %%
class Encoder(nn.Module):
def __init__(self, num_layers, len_vocab, d_model, num_heads, d_ff, p_drop, Embedding: Embeddings):
super().__init__()
self.len_vocab = len_vocab
self.d_model = d_model
self.num_heads = num_heads
self.d_ff = d_ff
self.p_drop = p_drop
self.Embedding = Embedding
self.PE = PositionalEncoding(
self.d_model, self.p_drop)
self.encoders = nn.ModuleList([EncoderLayer(
self.d_model,
self.num_heads,
self.d_ff,
self.p_drop
) for layer in range(num_layers)])
self.encodersModelStack = nn.Sequential(*self.encoders)
def forward(self, x):
embeddings = self.Embedding(x)
positional_encoding = self.PE(embeddings)
return self.encodersModelStack(positional_encoding)
# %%
# toy_encoder = Encoder(3, 4, 4, 2, 16, 0.1, toy_embedding_layer).to(device)
# toy_encoder_output = toy_encoder(toy_vocab)
# print(toy_encoder_output, toy_encoder_output.shape)
# %%
class DecoderLayer(nn.Module):
def __init__(self, d_model=D_MODEL, num_heads=NUM_HEADS, d_ff=D_FF, p_drop=P_DROP):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.d_ff = d_ff
self.p_drop = p_drop
# These are both of type List<Tensors>.
# They store the attention weights per layer
# So if we had N decoder layers in our Decoder,
# the final DecoderLayer will hold N attention weight tensors
self.masked_mha_attn_weights = None
self.enc_dec_mha_attn_weights = None
self.addNorm1 = AddNorm(self.d_model, self.p_drop)
self.addNorm2 = AddNorm(self.d_model, self.p_drop)
self.addNorm3 = AddNorm(self.d_model, self.p_drop)
self.MHA1 = MultiHeadAttention(
self.d_model, self.num_heads, self.p_drop)
self.MHA2 = MultiHeadAttention(
self.d_model, self.num_heads, self.p_drop)
self.PFFN = PointwiseFeedforward(
self.d_model, self.d_ff, self.p_drop)
def forward(self, inputs):
x, encoder_output, mask, masked_mha_attn_weights, enc_dec_mha_attn_weights = inputs
# add masking capabilities
masked_mha, masked_mha_attn_weights = self.MHA1(x, mask=mask)
addNorm_1 = self.addNorm1(masked_mha, x)
mha, enc_dec_mha_attn_weights = self.MHA2(
x, None, encoder_output, encoder_output)
addNorm_2 = self.addNorm2(mha, addNorm_1)
pffn = self.PFFN(addNorm_2)
addNorm_3 = self.addNorm3(pffn, addNorm_2)
self.masked_mha_attn_weights = masked_mha_attn_weights
self.enc_dec_mha_attn_weights = enc_dec_mha_attn_weights
return (addNorm_3, encoder_output, mask, self.masked_mha_attn_weights, self.enc_dec_mha_attn_weights)
# %%
class Decoder(nn.Module):
def __init__(self, num_layers, len_vocab, d_model, num_heads, d_ff, p_drop, Embedding: Embeddings):
super().__init__()
self.len_vocab = len_vocab
self.d_model = d_model
self.num_heads = num_heads
self.d_ff = d_ff
self.p_drop = p_drop
self.Embedding = Embedding
self.PE = PositionalEncoding(
self.d_model, self.p_drop)
self.decoders = nn.ModuleList([DecoderLayer(
self.d_model,
self.num_heads,
self.d_ff,
self.p_drop
) for layer in range(num_layers)])
self.decodersModelStack = nn.Sequential(*self.decoders)
def create_mask(self, seq_len):
ones_arr = torch.ones((seq_len, seq_len))
mask = ones_arr.triu(1)
return mask
def forward(self, x, encoder_output):
embeddings = self.Embedding(x)
mask = self.create_mask(x.shape[1])
positional_encoding = self.PE(embeddings)
return self.decodersModelStack((positional_encoding, encoder_output, mask, None, None))
# %%
# toy_decoder = Decoder(3, 4, 4, 2, 16, 0.1, toy_embedding_layer).to(device)
# toy_decoder_output, _, _, toy_mmha_w, toy_e_d_mha_w = toy_decoder(
# toy_vocab, toy_encoder_output)
# print(toy_decoder_output, toy_decoder_output.shape)
# print(toy_mmha_w, len(toy_mmha_w))
# print(toy_e_d_mha_w, len(toy_e_d_mha_w))
# %%
class Transformer(nn.Module):
def __init__(self, num_layers, src_vocab_len, trg_vocab_len, d_model, num_heads, d_ff, p_drop):
super().__init__()
# len_vocab = src_vocab_len + trg_vocab_len
encoder_Embedding = Embeddings(src_vocab_len, d_model)
decoder_Embedding = Embeddings(trg_vocab_len, d_model)
self.encoder = Encoder(num_layers, src_vocab_len,
d_model, num_heads, d_ff, p_drop, encoder_Embedding)
self.decoder = Decoder(num_layers, trg_vocab_len,
d_model, num_heads, d_ff, p_drop, decoder_Embedding)
# Maybe use target vocab size here
self.linear_layer = nn.Linear(d_model, trg_vocab_len)
def forward(self, input, target):
encoder_outputs = self.encoder(input)
decoder_output, _, _, masked_mha_attn_weights, enc_dec_mha_attn_weights = self.decoder(
target, encoder_outputs)
return (self.linear_layer(decoder_output), masked_mha_attn_weights, enc_dec_mha_attn_weights)
# %%
toy_transformer_layer = Transformer(
2, 8000, 8500, 512, 8, 2048, 0.1
).to(device)
toy_input = torch.rand((64, 38)).long().to(device)
toy_target = torch.rand((64, 36)).long().to(device)
toy_output, _, _ = toy_transformer_layer(toy_input, toy_target)
print("TOY OUTPUT SHAPE:", toy_output.shape)
# print(toy_output)
# %%
def custom_lr_optimizer(optimizer: Adam, step, d_model=D_MODEL, warmup_steps=4000):
min_arg1 = math.sqrt(1/(step+1))
min_arg2 = step * (warmup_steps**-1.5)
lr = math.sqrt(1/d_model) * min(min_arg1, min_arg2)
optimizer.param_groups[0]["lr"] = lr
return optimizer
# %%
def init_weights(model: nn.Module):
for param in model.parameters():
if param.dim() > 1:
nn.init.xavier_uniform_(param)
# %%
PAD_IDX = TRG.vocab.stoi["<pad>"]
src_vocab_len = SRC.vocab.__len__()
trg_vocab_len = TRG.vocab.__len__()
transformer = Transformer(6, src_vocab_len, trg_vocab_len,
D_MODEL, NUM_HEADS, D_FF, P_DROP).to(device)
# %%
MODEL_PATH = "transformer_model.pt"
# %%
def train(STEPS=100000):
EPOCHS = STEPS // len(train_iter)
loss_list = []
criterion = nn.CrossEntropyLoss(reduction="none", ignore_index=PAD_IDX)
optimizer = Adam(transformer.parameters(), betas=(0.9, 0.98))
transformer.train()
for step in tqdm(range(STEPS)):
transformer.train()
optimizer = custom_lr_optimizer(optimizer, step)
optimizer.zero_grad()
# Get current batch from train_iter.
# Since we're shuffling with repeat, we just need
# to call next(iter(.)) at every step
train_batch = next(iter(train_iter))
train_source, train_target = train_batch.src.T, train_batch.trg.T
train_target_input = train_target[:, :-1]
train_target_real = train_target[:, 1:]
predictions, _, _ = transformer(train_source, train_target_input)
loss = criterion(predictions.permute(0, 2, 1), train_target_real)
loss.mean().backward()
optimizer.step()
loss_list.append(loss)
if step % 50 == 0:
print("Loss at {}th step: {}".format(step, loss.mean().item()))
# rand_index = random.randrange(BATCH_SIZE)
# transformer.eval()
# v = next(iter(test_iter))
# v_src, v_trg = v.src.T, v.trg.T
# v_trg_inp = v_trg[:, :-1]
# v_trg_real = v_trg[:, 1:]
# v_predictions, _, _ = transformer(v_src, v_trg_inp)
# max_args = v_predictions[rand_index].argmax(-1)
# print("For random element in TEST batch (real/pred)...")
# print(v_trg_real[rand_index, :])
# print(max_args)
# print("Length til first <PAD> (real -> pred)...")
# try:
# pred_PAD_idx = max_args.tolist().index(3)
# except:
# pred_PAD_idx = None
# print(v_trg_real[rand_index, :].tolist().index(3), " ---> ", pred_PAD_idx)
if step % 1000 == 0:
torch.save(transformer, MODEL_PATH)
# %%
# %%
def evaluate():
rand_index = random.randrange(BATCH_SIZE)
# transformer.eval()
v = next(iter(test_iter))
v_src, v_trg = v.src.T, v.trg.T
v_trg_inp = v_trg[:, :-1]
v_trg_real = v_trg[:, 1:]
v_predictions, _, _ = transformer(v_src, v_trg_inp)
max_args = v_predictions[rand_index].argmax(-1)
print("For random element in TEST batch (real/pred)...")
print(v_trg_real[rand_index, :])
print(max_args)
# transformer.to(device).eval()
# test_data = next(iter(test_iter))
# src, trg = test_data.src.T, test_data.trg.T
# print(src[0])
# print(trg[0])
# src = torch.LongTensor([ 2, 5, 842, 0, 149, 301, 4, 3, 1]).to(device)
# trg = torch.LongTensor([ 2, 4, 429, 4548, 51, 27, 394, 13, 4, 4642, 5, 3]).to(device)
# src = src.unsqueeze(0)
# pred = torch.LongTensor([2]).to(device)
# pred = pred.unsqueeze(0)
# print(pred.shape)
# for i in range(40):
# predictions, _, _ = transformer(src, pred)
# predicted_id = predictions[:, -1:, :].argmax(-1)
# print("predicted id", predicted_id)
# if predicted_id.squeeze(0).item() == 3:
# break
# else:
# pred = torch.cat((pred, predicted_id), dim=-1)
# print("pred shape:", pred.shape)
# print("pred id shape:", predicted_id.shape)
# print("PRED:", pred)
# src_tokens = [SRC.vocab.itos[i] for i in src.squeeze()]
# trg_tokens = [TRG.vocab.itos[i] for i in trg.squeeze()]
# pred_tokens = [TRG.vocab.itos[i] for i in pred.squeeze()]
# print(src_tokens)
# print(trg_tokens)
# print(pred_tokens)
# %%
if not os.path.exists(MODEL_PATH):
train()
else:
transformer = torch.load(MODEL_PATH, map_location=torch.device(device))
evaluate()