-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
204 lines (163 loc) · 8.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os, sys, gc, argparse, numpy as np
import torch
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torch.autograd import Variable
from models.models import GeneratorCoarse, Discriminator
from datasets.dataloader import PolyDatasetShape, PolyDatasetStitch
from utils.utils import ReplayBuffer, weights_init_normal, LambdaLR
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--j', type=int, default=0) # number of workers/thread to use for loading data
parser.add_argument('--b', type=int, default=1) # batch size
parser.add_argument("--dataroot", default = "data")
parser.add_argument("--datamode", default = "train")
parser.add_argument("--stage", default = "Shape",help='Shape, Stitch, Refine')
parser.add_argument("--data_list", default = "train_pairs.txt")
parser.add_argument("--radius", type=int, default = 5) # skeleton width
parser.add_argument("--grid_size", type=int, default = 5)
parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
parser.add_argument("--display_count", type=int, default = 1000)
parser.add_argument("--save_count", type=int, default = 100)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument("--epochs", type=int, default = 45)
parser.add_argument("--input_channel", type=int, default = 6)
parser.add_argument("--decay_epoch", type=int, default = 10)
parser.add_argument('--results', type=str, default='results/Shape', help='save results')
parser.add_argument("--critic", type=int, default = 10) # Number of times after which to update Discriminator.
parser.add_argument("--save_model", type=int, default = 2)
opt = parser.parse_args()
return opt
def train(opt,train_loader,netG,netD):
epoch = 0
n_epochs = opt.epochs
decay_epoch = opt.decay_epoch
batchSize = opt.b
size = 128
input_nc = opt.input_channel
output_nc = 3
lr = opt.lr
if opt.stage!="Refine":
nRow = 3
else:
nRow = 4
criterion_GAN = torch.nn.MSELoss()
criterion_identity = torch.nn.L1Loss()
optimizer_G = torch.optim.Adam(netG.parameters(),lr=lr, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(netD.parameters(), lr=lr, betas=(0.5, 0.999))
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(optimizer_G, lr_lambda=LambdaLR(n_epochs, epoch, decay_epoch).step)
lr_scheduler_D = torch.optim.lr_scheduler.LambdaLR(optimizer_D, lr_lambda=LambdaLR(n_epochs, epoch, decay_epoch).step)
# Inputs & targets memory allocation
Tensor = torch.cuda.FloatTensor
input_A = Tensor(batchSize, input_nc, size, size)
target_real = Variable(Tensor(batchSize).fill_(1.0), requires_grad=False)
target_fake = Variable(Tensor(batchSize).fill_(0.0), requires_grad=False)
fake_buffer = ReplayBuffer()
for epoch in range(0, n_epochs):
gc.collect()
Source = iter(train_loader)
avg_loss_g = 0
avg_loss_d = 0
for i in range(0,len(train_loader)):
netG.train()
target_real = Variable(torch.ones(1,1), requires_grad=False).cuda()
target_fake = Variable(torch.zeros(1,1), requires_grad=False).cuda()
optimizer_G.zero_grad()
if opt.stage!="Refine":
src,mask,style_img,target,gt_cloth,skel,cloth = Source.next()
src,mask,style_img,target,gt_cloth,skel,cloth = Variable(src.cuda()),Variable(mask.cuda()),Variable(style_img.cuda()),Variable(target.cuda()),Variable(gt_cloth.cuda()),Variable(skel.cuda()),Variable(cloth.cuda())
else:
src,mask,style_img,target,gt_cloth,wrap,diff,cloth = Source.next()
src,mask,style_img,target,gt_cloth,wrap,diff,cloth = Variable(src.cuda()),Variable(mask.cuda()),Variable(style_img.cuda()),Variable(target.cuda()),Variable(gt_cloth.cuda()),Variable(wrap.cuda()),Variable(diff.cuda()),Variable(cloth.cuda())
#Inverse identity
if opt.stage=="Shape":
gen_targ,_,_,_,_,_,_ = netG(skel,cloth) # src,conditions
elif opt.stage == "Stitch":
gen_targ,_,_,_,_,_,_ = netG(src,style_img,skel)
elif opt.stage == "Refine":
gen_targ,_,_,_,_,_,_ = netG(diff,wrap)
pred_fake = netD(gen_targ)
if opt.stage=="Shape":
loss_GAN = 10*criterion_GAN(pred_fake, target_real) + 10*criterion_identity(gen_targ, gt_cloth)
elif opt.stage == "Stitch" or opt.stage == "Refine":
loss_GAN = 10*criterion_GAN(pred_fake, target_real) + 10*criterion_identity(gen_targ, target)
loss_G = loss_GAN
loss_G.backward()
optimizer_G.step()
#############################################
optimizer_D.zero_grad()
if opt.stage=="Shape":
pred_real = netD(gt_cloth)
elif opt.stage == "Stitch" or opt.stage == "Refine":
pred_real = netD(target)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
gen_targ = fake_buffer.push_and_pop(gen_targ)
pred_fake = netD(gen_targ.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
loss_D = (loss_D_real + loss_D_fake)*0.5
loss_D.backward()
if (i + 1) % opt.critic == 0:
optimizer_D.step()
avg_loss_g = (avg_loss_g+loss_G)/(i+1)
avg_loss_d = (avg_loss_d+loss_D)/(i+1)
if (i + 1) % 100 == 0:
print("Epoch: (%3d) (%5d/%5d) Loss: (%0.0003f) (%0.0003f)" % (epoch, i + 1, len(train_loader), avg_loss_g*1000, avg_loss_d*1000))
if (i + 1) % opt.display_count == 0:
if opt.stage=="Shape":
pic = (torch.cat([style_img, gen_targ, cloth,skel, target,gt_cloth], dim=0).data + 1) / 2.0
elif opt.stage=="Stitch":
pic = (torch.cat([src, gen_targ, cloth,skel, target,gt_cloth], dim=0).data + 1) / 2.0
elif opt.stage=="Refine":
pic = (torch.cat([wrap,diff,gen_targ, target], dim=0).data + 1) / 2.0
save_dir = "{}/{}".format(os.getcwd(),opt.results)
# os.mkdir(save_dir)
save_image(pic, '%s/Epoch_(%d)_(%dof%d).jpg' % (save_dir, epoch, i + 1, len(train_loader)), nrow=nRow)
if (epoch + 1) % opt.save_model == 0:
save_dir = "{}/{}".format(os.getcwd(),opt.results)
torch.save(netG.state_dict(), '{}/Gan_{}.pth'.format(save_dir,epoch))
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D.step()
def main():
opt = get_opt()
print(opt)
print("Start to train stage: %s" % (opt.stage))
# create dataset
if opt.stage=="Shape":
dataset = PolyDatasetShape(128)
train_loader = DataLoader(dataset,
batch_size=opt.b,
shuffle=False,
num_workers=opt.j,
drop_last=True,pin_memory=True)
elif opt.stage=="Stitch":
dataset = PolyDatasetStitch(128)
train_loader = DataLoader(dataset,
batch_size=opt.b,
shuffle=False,
num_workers=opt.j,
drop_last=True,pin_memory=True)
elif opt.stage=="Refine":
dataset = PolyDatasetRefine(128)
train_loader = DataLoader(dataset,
batch_size=opt.b,
shuffle=False,
num_workers=opt.j,
drop_last=True,pin_memory=True)
else:
sys.exit("Please mention the Stage from [Shape, Stitch, Refine]")
if not os.path.exists(opt.results):
os.makedirs(opt.results)
netG = GeneratorCoarse(opt.input_channel,3)
netD = Discriminator()
# create model & train & save the final checkpoint
netG.cuda()
netD.cuda()
netG.apply(weights_init_normal)
netD.apply(weights_init_normal)
train(opt,train_loader,netG,netD)
print('Finished training %s!' % (opt.stage))
if __name__ == "__main__":
main()