diff --git a/nistats/model.py b/nistats/model.py index b0db26dc..ad2e5ffa 100644 --- a/nistats/model.py +++ b/nistats/model.py @@ -46,7 +46,7 @@ def __init__(self, theta, Y, model, cov=None, dispersion=1., nuisance=None, multiplicative factor in front of `cov` nuisance : None of ndarray - parameter estimates needed to compute logL + parameter estimates needed to compute log-lokelohood rank : None or scalar rank of the model. If rank is not None, it is used for df_model @@ -76,14 +76,8 @@ def __init__(self, theta, Y, model, cov=None, dispersion=1., nuisance=None, self.df_model = model.df_model # put this as a parameter of LikelihoodModel self.df_resid = self.df_total - self.df_model - - @setattr_on_read - def logL(self): - """ - The maximized log-likelihood - """ - return self.model.logL(self.theta, self.Y, nuisance=self.nuisance) + def t(self, column=None): """ Return the (Wald) t-statistic for a given parameter estimate. diff --git a/nistats/regression.py b/nistats/regression.py index 6ae048b8..b9b9118c 100644 --- a/nistats/regression.py +++ b/nistats/regression.py @@ -46,7 +46,6 @@ class OLSModel(object): Methods ------- model.__init___(design) - model.logL(b=self.beta, Y) Attributes ---------- @@ -98,70 +97,6 @@ def initialize(self, design): self.df_model = matrix_rank(self.design, eps) self.df_resid = self.df_total - self.df_model - def logL(self, beta, Y, nuisance=None): - r''' Returns the value of the loglikelihood function at beta. - - Given the whitened design matrix, the loglikelihood is evaluated - at the parameter vector, beta, for the dependent variable, Y - and the nuisance parameter, sigma. - - Parameters - ---------- - beta : ndarray - The parameter estimates. Must be of length df_model. - - Y : ndarray - The dependent variable - - nuisance : dict, optional - A dict with key 'sigma', which is an optional estimate of sigma. If - None, defaults to its maximum likelihood estimate (with beta fixed) - as ``sum((Y - X*beta)**2) / n``, where n=Y.shape[0], X=self.design. - - Returns - ------- - loglf : float - The value of the loglikelihood function. - - Notes - ----- - The log-Likelihood Function is defined as - - .. math:: - - \ell(\beta,\sigma,Y)= - -\frac{n}{2}\log(2\pi\sigma^2) - \|Y-X\beta\|^2/(2\sigma^2) - - The parameter :math:`\sigma` above is what is sometimes referred to as a - nuisance parameter. That is, the likelihood is considered as a function - of :math:`\beta`, but to evaluate it, a value of :math:`\sigma` is - needed. - - If :math:`\sigma` is not provided, then its maximum likelihood estimate: - - .. math:: - - \hat{\sigma}(\beta) = \frac{\text{SSE}(\beta)}{n} - - is plugged in. This likelihood is now a function of only :math:`\beta` - and is technically referred to as a profile-likelihood. - - References - ---------- - .. [1] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. - ''' - # This is overwriting an abstract method of LikelihoodModel - X = self.wdesign - wY = self.whiten(Y) - r = wY - np.dot(X, beta) - n = self.df_total - SSE = (r ** 2).sum(0) - if nuisance is None: - sigmasq = SSE / n - else: - sigmasq = nuisance['sigma'] - loglf = - n / 2. * np.log(2 * np.pi * sigmasq) - SSE / (2 * sigmasq) - return loglf def whiten(self, X): """ Whiten design matrix @@ -353,12 +288,6 @@ def __init__(self, results): # put this as a parameter of LikelihoodModel self.df_resid = self.df_total - self.df_model - def logL(self, Y): - """ - The maximized log-likelihood - """ - raise ValueError('can not use this method for simple results') - def resid(self, Y): """ Residuals from the fit.