-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
263 lines (204 loc) · 8.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import array
import random
import numpy
from math import sqrt
import cluster
from deap import algorithms
from deap import base
from deap import benchmarks
from deap.benchmarks.tools import diversity, convergence
from deap import creator
from deap import tools
import os
from population import *
from network import Neterr
from chromosome import Chromosome, crossover
n_hidden = 100
indim = 8
outdim = 2
network_obj = Neterr(indim, outdim, n_hidden, random)
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, 0.0, 0.0))
creator.create("Individual", Chromosome, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
def minimize(individual):
outputarr = network_obj.feedforward_ne(individual)
neg_log_likelihood_val = give_neg_log_likelihood(outputarr, network_obj.resty)
mean_square_error_val = give_mse(outputarr, network_obj.resty)
false_positve_rat = give_false_positive_ratio(outputarr, network_obj.resty)
false_negative_rat = give_false_negative_ratio(outputarr, network_obj.resty)
return neg_log_likelihood_val, mean_square_error_val, false_positve_rat, false_negative_rat
def mycross(ind1, ind2, gen_no):
child1 = crossover(ind1, ind2, gen_no, inputdim=8, outputdim=2)
child2 = crossover(ind1, ind2, gen_no, inputdim=8, outputdim=2)
return child1, child2
def mymutate(ind1):
new_ind = ind1.do_mutation(0.2, 0.1, 0.05, indim, outdim, n_hidden, numpy.random)
return new_ind
def initIndividual(ind_class, inputdim, outputdim):
ind = ind_class(inputdim, outputdim)
return ind
toolbox.register("individual", initIndividual, creator.Individual, indim, outdim)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", minimize)
toolbox.register("mate", mycross)
toolbox.register("mutate", mymutate)
toolbox.register("select", tools.selNSGA2)
bp_rate = 0.05
def main(seed=None, play = 0, NGEN = 40, MU = 4 * 10):
random.seed(seed)
# this has to be a multiple of 4. period.
CXPB = 0.9
stats = tools.Statistics(lambda ind: ind.fitness.values[1])
# stats.register("avg", numpy.mean, axis=0)
# stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
pop = toolbox.population(n=MU)
#network_obj = Neterr(indim, outdim, n_hidden, np.random)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in pop if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# This is just to assign the crowding distance to the individuals
# no actual selection is done
pop = toolbox.select(pop, len(pop))
# print(pop)
record = stats.compile(pop)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
maxi = 0
stri = ''
flag= 0
# Begin the generational process
# print(pop.__dir__())
for gen in range(1, NGEN):
# Vary the population
offspring = tools.selTournamentDCD(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
if play == 1:
if gen == int(NGEN*0.9):
print("gen:",gen, "doing clustering")
to_bp_lis = cluster.give_cluster_head(offspring, int(MU*bp_rate))
assert (to_bp_lis[0] in offspring )
print( "doing bp")
[ item.modify_thru_backprop(indim, outdim, network_obj.rest_setx, network_obj.rest_sety, epochs=10, learning_rate=0.1, n_par=10) for item in to_bp_lis]
for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
# print(ind1.fitness.values)
"""if not flag :
ind1.modify_thru_backprop(indim, outdim, network_obj.rest_setx, network_obj.rest_sety, epochs=10, learning_rate=0.1, n_par=10)
flag = 1
print("just testing")
"""
if random.random() <= CXPB:
toolbox.mate(ind1, ind2, gen)
maxi = max(maxi, ind1.node_ctr, ind2.node_ctr)
toolbox.mutate(ind1)
toolbox.mutate(ind2)
del ind1.fitness.values, ind2.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Select the next generation population
pop = toolbox.select(pop + offspring, MU)
record = stats.compile(pop)
logbook.record(gen=gen, evals=len(invalid_ind), **record)
anost = logbook.stream
liso = [item.rstrip() for item in anost.split("\t")]
mse = float(liso[3])
if (mse <= 115 ):
print("already achieved a decent performance(validation), breaking at gen_no.", gen)
break
print(anost)
stri += anost + '\n'
# file_ob.write(str(logbook.stream))
# print(len(pop))
# file_ob.close()
#print(stri)
return pop, logbook
def note_this_string(new_st,stringh):
"""flag_ob = open("flag.txt","r+")
ctr = None
st = flag_ob.read()
flag = int(st.rstrip())
while flag ==1:
flag_ob.seek(0)
st = flag_ob.read()
flag = int(st.rstrip())
time.sleep(3)
if flag == 0:
flag = 1
flag_ob.seek(0)
flag_ob.write("1\n")
flag_ob.close()
'/home/robita/forgit/neuro-evolution/05/state/tf/indep_pima/input/model.ckpt.meta'
"""
name = "./ctr_folder/ctr"+stringh+".txt"
if not os.path.isfile(name):
new_f = open(name, "w+")
new_f.write("0\n")
new_f.close()
ctr_ob = open(name, "r+")
strin = ctr_ob.read().rstrip()
assert (strin is not '')
ctr = int(strin)
ctr_ob.seek(0)
ctr_ob.write(str(ctr+1)+"\n")
ctr_ob.close()
"""
flag_ob = open("flag.txt","w")
flag_ob.write("0\n")
flag_ob.close()
"""
new_file_ob = open("log_folder/log"+stringh+".txt", "a+")
new_file_ob.write(str(ctr)+" "+new_st+"\n")
new_file_ob.close()
return ctr
def test_it_without_bp():
pop, stats = main(NGEN = 80 , MU = 4 * 25)
stringh = "_without_bp"
fronts = tools.sortNondominated(pop, len(pop))
if len(fronts[0]) < 30:
pareto_front = fronts[0]
else:
pareto_front = random.sample(fronts[0], 30)
print("Pareto Front: ")
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
print("\ntest: test on one with min validation error", network_obj.test_err(min(pop, key=lambda x: x.fitness.values[1])))
tup = network_obj.test_on_pareto_patch_correctone(pareto_front)
print("\n test: avg on sampled pareto set", tup)
st = str(network_obj.test_err(min(pop, key=lambda x: x.fitness.values[1]))) + " " + str(tup)
print(note_this_string(st, stringh))
def test_it_with_bp():
pop, stats = main( play = 1, NGEN = 40)
stringh = "_with_bp"
fronts = tools.sortNondominated(pop, len(pop))
if len(fronts[0]) < 30:
pareto_front = fronts[0]
else:
pareto_front = random.sample(fronts[0], 30)
print("Pareto Front: ")
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
print("\ntest: test on one with min validation error",
network_obj.test_err(min(pop, key=lambda x: x.fitness.values[1])))
tup = network_obj.test_on_pareto_patch_correctone(pareto_front)
print("\n test: avg on sampled pareto set", tup)
st = str(network_obj.test_err(min(pop, key=lambda x: x.fitness.values[1]))) + " " + str(tup)
print(note_this_string(st, stringh))
if __name__ == "__main__":
test_it_without_bp()
# file_ob.write( "test on one with min validation error " + str(neter.test_err(min(pop, key=lambda x: x.fitness.values[1]))))
# print(stats)
'''
import matplotlib.pyplot as plt
import numpy
front = numpy.array([ind.fitness.values for ind in pop])
plt.scatter(front[:,0], front[:,1], c="b")
plt.axis("tight")
plt.show()'''